
The Containment Problem for Unambiguous
Register Automata
Antoine Mottet
Department of Algebra, Faculty of Mathematics and Physics, Charles University, Czech Republic

Karin Quaas
University of Oldenburg, Germany

Abstract
We investigate the complexity of the containment problem “Does L(A) ⊆ L(B) hold?”, where B is
an unambiguous register automaton and A is an arbitrary register automaton. We prove that the
problem is decidable and give upper bounds on the computational complexity in the general case,
and when B is restricted to have a fixed number of registers.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases Data words, Register automata, Unambiguous Automata, Containment
Problem, Language Inclusion Problem

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.53

Funding Antoine Mottet: This author received funding from DFG Graduiertenkolleg 1763 (QuantLA)
and from the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 771005, “CoCoSym”).
Karin Quaas: Supported by DFG, QU 316/1-2.

1 Introduction

Register automata [10] are a widely studied model of computation that extend finite automata
with finitely many registers that are able to hold values from an infinite domain and perform
equality comparisons with data from the input word. This allows register automata to accept
data languages, i.e., sets of data words over Σ× D, where Σ is a finite alphabet and D is an
infinite set called the data domain. The study of register automata is motivated by problems
in formal verification and database theory, where the objects under study are accompanied by
annotations (identification numbers, labels, parameters, ...), see the survey by Ségoufin [18].
One of the central problems in these areas is to check whether a given input document or
program complies with a given input specification. In our context, this problem can be
formalized as a containment problem: given two register automataA and B, does L(A) ⊆ L(B)
hold, i.e., is the data language accepted by A included in the data language accepted by
B? Here, B is understood as a specification, and one wants to check whether A satisfies the
specification. For arbitrary register automata, the containment problem is undecidable [14, 4].
It is known that one can recover decidability in two different ways. First, the containment
problem is known to be PSPACE-complete when B is a deterministic register automaton [4].
This is a severe restriction on the expressive power of B, and it is of practical interest to find
natural classes of register automata that can be tackled algorithmically and that can express
more properties than deterministic register automata. Secondly, one can recover decidability
of the containment problem when B is a non-deterministic register automaton with a single
register [10, 4]. However, in this setting, the problem is Ackermann-complete [6]; it can
therefore hardly be considered tractable.

© Antoine Mottet and Karin Quaas;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 53; pp. 53:1–53:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/188358680?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-3517-1745
https://doi.org/10.4230/LIPIcs.STACS.2019.53
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2 Containment for Unambiguous Register Automata

This motivates the study of unambiguous register automata, which are non-deterministic
register automata for which every data word has at most one accepting run. Such automata
are strictly more expressive than deterministic register automata [10, 11].

In the present paper, we investigate the complexity of the containment problem when B is
restricted to be an unambiguous register automaton. We prove that the problem is decidable
with a 2-EXPSPACE complexity, and is even decidable in EXPSPACE if the number of registers
of B is a fixed constant. This is a striking difference to the non-deterministic case, where even
for a fixed number of registers greater than 1 the problem is undecidable. Classically, one way
to approach the containment problem (for general models of computation) is to reduce it to a
reachability problem on an infinite state transition system, called the synchronized state space
of A and B, cf. [15]. Proving decidability or complexity upper bounds for the containment
problem then amounts to finding criteria of termination or bounds on the complexity of a
reachability algorithm on this space. In this paper, our techniques also rely on the analysis of
the synchronized state space of A and B, where our main contribution is to provide a bound
on the size of synchronized states that one needs to explore before being able to certify that
L(A) ⊆ L(B) holds. This bound is found by identifying elements of the synchronized state
space whose behaviour is similar, and by showing that every element of the synchronized
state space is equivalent to a small one. In the general case, where B is unambiguous and A
is an arbitrary non-deterministic register automaton, we bound the size of the graph that
one needs to inspect by a triple exponential in the size of A and B. In the restricted case
that B has a fixed number of registers, we proceed to give a better bound that is only doubly
exponential in the size of A and B.

Related Literature. A thorough study of the current literature on register automata re-
veals that there exists a variety of different definitions of register automata, partially with
significantly different semantics. In this paper, we study register automata as originally
introduced by Kaminski and Francez [10]. Such register automata process data words over
an infinite data domain. The registers can take data values that appear in the input data
word processed so far. The current input datum can be compared for (in)equality with the
data that is stored in the registers. Kaminski and Francez study register automata mainly
from a language-theoretic point of view; more results on the connection to logic, as well
as the decidability status and computational complexity of classical decision problems like
emptiness and containment are presented, e.g., in [17, 14, 4]. In [7], register automata over
ordered data domains are studied.

Kaminski and Zeitlin [11] define a generalisation of the model in [10], in the following called
register automata with guessing. The registers in such automata can non-deterministically
reassign, or “guess”, the datum of a register. In particular, such register automata can
store data values that have not appeared in the input data word before, in contrast to the
register automata in [10]. Register automata with guessing are strictly more expressive
than register automata; for instance, there exists a register automaton with guessing that
accepts the complement of the data language accepted by the register automaton in Figure
1 (Example 4 in [11]). Figueira [5] studies an alternating version of this model, also over
ordered data domains. Colcombet [2, 1] considers unambiguous register automata with
guessing. In Theorem 12 in [2], it is claimed that this automata class is effectively closed
under complement, so that universality, containment and equivalence are decidable; however,
to the best of our knowledge, this claim remains unproved.

Finally, unambiguity has become an important topic in automata theory, as witnessed by
the growing body of literature in the recent years [8, 13, 3, 16]. In addition to the motivations
mentioned above, unambiguous automata form an important model of computation due to

A. Mottet and K. Quaas 53:3

their succinctness compared to their deterministic counterparts. For example, it is known that
unambiguous finite automata can be exponentially smaller than deterministic automata [12]
while the fundamental problems (such as emptiness, universality, containment, equivalence)
remain tractable.

2 Main Definitions

We study register automata as introduced in the seminal paper by Kaminski and Francez [10].
Throughout the paper, Σ denotes a finite alphabet, and D denotes an infinite set of data
values. In our examples, we assume D = N, the set of non-negative integers. A data word is
a finite sequence (σ1, d1) . . . (σk, dk) ∈ (Σ× D)∗. A data language is a set of data words. We
use ε to denote the empty data word. The length k of a data word w is denoted by |w|. Given
a data word w as above and 0 ≤ i ≤ k, we define the infix w(i, j] := (σi+1, di+1) . . . (σj , dj).
Note that w(i, i] = ε. We use data(w) to denote the set {d1, . . . , dk} of all data occurring in
w. We use proj(w) to denote the projection of w onto Σ∗, i.e., the word σ1 . . . σk.

Let D⊥ denote the set D ∪ {⊥}, where ⊥ 6∈ D is a fresh symbol not occurring in D. A
partial isomorphism of D⊥ is an injection f : S → D⊥ with finite domain S ⊂ D⊥ such that
if ⊥ ∈ S, then f(⊥) = ⊥. We use boldface lower-case letters like a, b, . . . to denote tuples in
Dn⊥, where n ∈ N. Given a tuple a ∈ Dn⊥, we write ai for its i-th component, and data(a)
denotes the set {a1, . . . , an} ⊆ D⊥ of all data occurring in a.

Let R = {r1, . . . , rn} be a finite set of registers. A register valuation is a mapping
a : R → D⊥; we may write ai as shorthand for a(ri). Let DR⊥ denote the set of all
register valuations. Given λ ⊆ R and d ∈ D, define the register valuation a[λ ← d] by
(a[λ← d])(ri) := d if ri ∈ λ, and (a[λ← d])(ri) := ai otherwise.

A register constraint over R is defined by the grammar

φ ::= true |= r | ¬φ | φ ∧ φ ,

where r ∈ R. We use Φ(R) to denote the set of all register constraints over R. We may use
6= r or φ1 ∨ φ2 as shorthand for ¬(= r) and ¬(¬φ1 ∧ ¬φ2), respectively. The satisfaction
relation |= for Φ(R) on DR⊥ × D is defined by structural induction in the obvious way; e.g.,
a, d |= (= r1 ∧ 6= r2) if a1 = d and a2 6= d.

A register automaton over Σ is a tuple A = (R,L, `in,Lacc, E), where
R is a finite set of registers,
L is a finite set of locations,
`in ∈ L is the initial location,
Lacc ⊆ L is the set of accepting locations, and
E ⊆ L× Σ× Φ(R)× 2R × L is a finite set of edges. We may write ` σ,φ,λ−−−→ `′ to denote
an edge (`, σ, φ, λ, `′) ∈ E. Here, σ is the label of the edge, φ is the register constraint of
the edge, and λ is the set of updated registers of the edge. A register constraint true is
vacuously true and may be omitted; likewise we may omit λ if λ = ∅.

A state of A is a pair (`,a) ∈ L × DR⊥, where ` is the current location and a is the current
register valuation. Given two states (`,a) and (`′,a′) and some input letter (σ, d) ∈ (Σ×D),
we postulate a transition (`,a) σ,d−−→A (`′,a′) if there exists some edge ` σ,φ,λ−−−→ `′ such
that a, d |= φ and a′ = a[λ ← d]. If the context is clear, we may omit the index A and
write (`,a) σ,d−−→ (`′,a′) instead of (`,a) σ,d−−→A (`′,a′). We use −→∗ to denote the reflexive
transitive closure of −→. A run of A on the data word (σ1, d1) . . . (σk, dk) is a sequence
(`0,a

0) σ1,d1−−−→ (`1,a
1) σ2,d2−−−→ . . .

σk,dk−−−→ (`k,ak) of transitions. We say that a run starts in

STACS 2019

53:4 Containment for Unambiguous Register Automata

(`,a) if (`0,a
0) = (`,a). A run is initialized if it starts in (`in, {⊥}R), and a run is accepting

if `k ∈ Lacc. The data language accepted by A, denoted by L(A), is the set of data words
w ∈ (Σ× D)∗ such that there exists an initialized accepting run of A on w.

We classify register automata into deterministic register automata (DRA), unambiguous
register automata (URA), and non-deterministic register automata (NRA). A register auto-
maton is a DRA if for every data word w there is at most one initialized run. A register
automaton is a URA if for every data word w there is at most one initialized accepting
run. A register automaton without any restriction is an NRA. We say that a data language
L ⊆ (Σ× D)∗ is DRA-recognizable (URA-recognizable and NRA-recognizable, respectively),
if there exists a DRA (URA and NRA, respectively) A over Σ such that L(A) = L. We
write DRA, URA, and NRA for the class of DRA-recognizable, URA-recognizable, and
NRA-recognizable, respectively, data languages. Note that DRA ⊆ URA ⊆ NRA. Also
note that, albeit a semantical property, the unambiguity of a register automaton can be
decided using a simple extension of a product construction, cf. [2].

The containment problem is the following decision problem: given two register automata
A and B, does L(A) ⊆ L(B) hold? We consider two more decision problems that stand in
a close relation to the containment problem (namely, they both reduce to the containment
problem): the universality problem is the question whether L(B) = (Σ × D)∗ for a given
register automaton B. The equivalence problem is to decide, given two register automata A
and B, whether L(A) = L(B).

3 Some Facts about Register Automata

For many computational models, a straightforward approach to solve the containment
problem is by a reduction to the emptiness problem using the equivalence: L(A) ⊆ L(B)
if, and only if, L(A) ∩ L(B) = ∅. This approach proves useful for DRA, which is closed
under complementation. Using the decidability of the emptiness problem for NRA, as well
as the closure of NRA under intersection [10], we obtain the decidability of the containment
problem for the case where A is an NRA and B is a DRA. More precisely, and using results
in [4], the containment problem for this particular case is PSPACE-complete.

In contrast to DRA, the class NRA is not closed under complementation [10] so that
the above approach must fail if B is an NRA. Indeed, it is well known that the containment
problem for the case where B is an NRA is undecidable [4]. The proof is a reduction from
the halting problem for Minsky machines: an NRA is capable to accept the complement of a
set of data words encoding halting computations of a Minsky machine.

In this paper, we are interested in the containment problem for the case where A is an
NRA and B is a URA. When attempting to solve this problem, an obvious idea is to ask
whether the class URA is closed under complementation. Kaminski and Francez [10] proved
that URA is not closed under complementation, and this even holds for the class of data
languages that are accepted by URA that only use a single register. In Figure 1, we show a
standard example of a URA for which the complement of the accepted data language cannot
even be accepted by an NRA [11]. Intuitively, this automaton is unambiguous because it is
not possible for two different runs of the automaton on some data word to reach the location
`1 with the same register valuation at the same time. Therefore, at any time only one run
can proceed to the accepting location `2. Note that this also implies DRA (URA.

An alternative approach for solving the containment problem is to explore the (possibly
infinite) synchronized state space of A and B, cf. [15]. Intuitively, the synchronized state
space of A and B stores for every state (`,a) that A is in after processing a data word w

A. Mottet and K. Quaas 53:5

`0 `1 `2
{r} = r

6= r

{(`0,⊥)}

{(`0,⊥), (`1, 1)} {(`0,⊥), (`1, 2)}

{(`0,⊥), (`1, 1), (`2, 1)} {(`0,⊥), (`1, 1), (`1, 2)}

{(`0,⊥), (`1, 1), (`2, 1)} . . . {(`0,⊥), (`1, 3), (`1, 2), (`1, 1)} . . .

.

. . .1 2

1

1

1

3

Figure 1 On the left we depict a URA with a single register r and over a singleton alphabet (we
omit the labels at the edges). The complement of the data language accepted by this URA cannot
be accepted by any NRA. On the right we show a finite part of the infinite state space of the URA.

the set of states that B is in after processing the same data word w. For an example, see
the computation tree on the right side of Figure 1, where the leftmost branch shows the set
of states that the URA on the left side of Figure 1 reaches after processing the data word
(σ, 1)(σ, 1)(σ, 1), and the rightmost branch shows the set of states that the URA reaches after
processing the data word (σ, 2)(σ, 1)(σ, 3). The key property of the synchronized state space
of A and B is that it contains sufficient information to decide whether for every data word
for which there is an initialized accepting run in A there is also an initialized accepting run
in B. We formalize this intuition in the following paragraphs.

We start by defining the state space of a given NRA. Fix an NRA A = (R,L, `in,Lacc, E)
over Σ. A configuration of A is a finite set C ⊆ (L × DR⊥) of states of A; if C = {(`,a)}
is a singleton set, in slight abuse of notation and if the context is clear, we may omit the
parentheses and write (`,a). Given a configuration C and an input letter (σ, d) ∈ (Σ×D), we
use SuccA(C, (σ, d)) to denote the successor configuration of C on the input (σ, d), formally
defined by

SuccA(C, (σ, d)) := {(`,a) ∈ (L × DR⊥) | ∃(`′,a′) ∈ C.(`′,a′) σ,d−−→A (`,a)}.

In order to extend this definition to data words, we define inductively SuccA(C, ε) := C and
SuccA(C,w ·(σ, d)) := SuccA(SuccA(C,w), (σ, d)). We say that a configuration C is reachable
in A if there exists some data word w such that C = SuccA((`in, {⊥}R), w). We say that a
configuration C is coverable in A if there exists some configuration C ′ ⊇ C such that C ′ is
reachable in A. We say that a configuration C is accepting if there exists (`,a) ∈ C such that
` ∈ Lacc; otherwise we say that C is non-accepting. We define data(C) :=

⋃
(`,a)∈C data(a)

as the set of data occurring in configuration C.
The following proposition follows immediately from the definition of URA.

I Proposition 1. If A is a URA and C,C ′ are two configurations of A such that C ∩C ′ = ∅
and C ∪ C ′ is coverable, then for every data word w the following holds: if SuccA(C,w) is
accepting, then SuccA(C ′, w) is non-accepting.

Let C,C ′ be two configurations of A. Consider two data words w = (σ1, d1) . . . (σk, dk)
and w′ = (σ1, d

′
1) . . . (σk, d′k) such that proj(w) = proj(w′). Recall that a partial func-

tion f : D⊥ → D⊥ with finite domain is a partial isomorphism if it is an injection such
that if ⊥ ∈ dom(f) then f(⊥) = ⊥. Let f be a partial isomorphism of D⊥ and let C
be a configuration with data(C) ⊆ dom(f). We define f(C) := {(`, f(d1), . . . , f(d|R|)) |
(`, d1, . . . , d|R|) ∈ C}; likewise, if {d1, . . . , dk} ⊆ dom(f), we define f((σ1, d1) . . . (σk, dk)) :=
(σ1, f(d1)) . . . (σk, f(dk)). We say that C,w and C ′, w′ are equivalent with respect to f ,
written C,w ∼f C ′, w′, if

f(C) = C ′ and f(w) = w′. (?)

STACS 2019

53:6 Containment for Unambiguous Register Automata

If w = w′ = ε, then we may simply write C ∼f C ′. We write C ∼ C ′ if C ∼f C ′ for some
partial isomorphism f of D⊥.

I Proposition 2. If C,w ∼ C ′, w′, then SuccA(C,w(0, i]), w(i, k] ∼ SuccA(C ′, w′(0, i]),
w′(i, k] for all 0 ≤ i ≤ k, where k = |w|.

Proof. The proof is by induction on i. For the induction base, let i = 0. But then
SuccA(C,w(0, 0])) = SuccA(C, ε) = C and w(0, k] = w, and similarly for C ′ and w′, so
that the statement holds by assumption. For the induction step, let i > 0. Define Ci−1 :=
SuccA(C,w(0, i−1]) and similarly C ′i−1. By induction hypothesis, there exists some bijective
mapping

fi−1 : data(Ci−1) ∪ data(w(i− 1, k])→ data(C ′i−1) ∪ data(w′(i− 1, k])

satisfying (?) fi−1(Ci−1) = C ′i−1 and fi−1(w(i − 1, k]) = w′(i − 1, k]. Define Ci :=
SuccA(Ci−1, (σi, di)) and C ′i := SuccA(C ′i−1, (σi, d′i)). Note that data(Ci) ⊆ data(Ci−1) ∪
{di}, and similarly for data(C ′i). Let fi be the restriction of fi−1 to data(Ci) ∪ data(w(i, k]).
We are going to prove that Ci, w(i, k] ∼fi

C ′i, w
′(i, k]. Note that fi(w(i, k]) = w′(i, k]

holds by definition of fi and (2). We prove fi(Ci) ⊆ C ′i. Suppose (`,a) ∈ Ci. Hence
there exists (`i−1, b) ∈ Ci−1 such that (`i−1, b) σi,di−−−→ (`,a). Thus there exists an edge
`i−1

σi,φ,λ−−−−→ ` such that b, di |= φ and a = b[λ ← di]. By induction hypothesis, there
exists (`i−1, b

′) ∈ C ′i−1 such that fi−1(b) = b′. By induction on the structure of φ, one
can easily prove that b, di |= φ if, and only if, b′, d′i |= φ. Define a′ := b′[λ ← d′i]. We
prove fi(a) = a′: there are two cases: (i) If r ∈ λ, then fi(a(r)) = fi(di) = d′i = a′(r).
(ii) If r 6∈ λ, then fi(a(r)) = fi(b(r)) = fi−1(b(r)) = a′(r). Hence, fi(a) = a′. Altogether
(`, fi(a)) ∈ C ′i, and thus fi(Ci) ⊆ C ′i. The proof for C ′i ⊆ fi(Ci) is analogous. Altogether,
Ci, w(i, k] ∼fi

C ′i, w
′(i, k]. J

As an immediate consequence of Proposition 2, we obtain that ∼ preserves the configura-
tion properties of being accepting respectively non-accepting.

I Corollary 3. Let C and C ′ be two configurations of A. If C,w ∼ C ′, w′ and SuccA(C,w)
is non-accepting (accepting, respectively), then SuccA(C ′, w′) is non-accepting (accepting,
respectively).

Combining the last corollary with Proposition 1, we obtain

I Corollary 4. If A is a URA and C,C ′ are two configurations such that C ∩ C ′ = ∅ and
C∪C ′ is coverable in A, then for every data word w such that C,w ∼ C ′, w, the configurations
SuccA(C,w) and SuccA(C ′, w) are non-accepting.

For the rest of this paper, let A = (RA,LA, `Ain,LAacc, EA) be an NRA over Σ, and
let B = (RB,LB, `Bin,LBacc, EB) be a URA over Σ. Without loss of generality, we assume
RA ∩RB = ∅ and LA ∩ LB = ∅. We let m be the number of registers of A, and we let n be
the number of registers of B.

A synchronized configuration of A and B is a pair ((`,d), C), where (`,d) ∈ (LA × DRA

⊥)
is a single state of A, and C ⊆ (LB × DRB

⊥) is a configuration of B. Given a synchronized
configuration S, we use data(S) to denote the set data(d) ∪ data(C) of all data occurring in
S. We define Sin := ((`Ain, {⊥}m), {(`Bin, {⊥}n)}) to be the initial synchronized configuration
of A and B. We define the synchronized state space of A and B to be the (infinite) state
transition system (S,⇒), where S is the set of all synchronized configurations of A and B,
and ⇒ is defined as follows. If S = ((`,d), C) and S′ = ((`′,d′), C ′), then S ⇒ S′ if there

A. Mottet and K. Quaas 53:7

exists a letter (σ, d) ∈ (Σ× D) such that (`,d) σ,d−−→A (`′,d′), and SuccB(C, (σ, d)) = C ′. We
say that a synchronized configuration S reaches a synchronized configuration S′ in (S,⇒) if
there exists a path in (S,⇒) from S to S′. We say that a synchronized configuration S is
reachable in (S,⇒) if Sin reaches S. We say that a synchronized configuration S = ((`,d), C)
is coverable in (S,⇒) if there exists some synchronized configuration S′ = ((`,d), C ′) such
that C ′ ⊇ C and S′ is reachable in (S,⇒).

We aim to reduce the containment problem L(A) ⊆ L(B) to a reachability problem in
(S,⇒). For this, call a synchronized configuration ((`,d), C) bad if ` ∈ LAacc is an accepting
location and C is non-accepting, i.e., `′ 6∈ LBacc for all (`′,a) ∈ C. The following proposition
is easy to prove, cf. [15].

I Proposition 5. L(A) ⊆ L(B) does not hold if, and only if, some bad synchronized
configuration is reachable in (S,⇒).

We extend the equivalence relation ∼ defined above to synchronized configurations in
a natural manner, i.e, given a partial isomorphism f of D⊥ such that data(d) ∪ data(C) ⊆
dom(f), we define ((`,d), C) ∼f ((`,d′), C ′) if f(C) = C ′ and f(d) = d′. We shortly write
S ∼ S′ if there exists a partial isomorphism f of D⊥ such that S ∼f S′. Clearly, an analogon
of Proposition 2 holds for this extended relation. In particular, we have the following:

I Proposition 6. Let S, S′ be two synchronized configurations of (S,⇒) such that S ∼ S′.
If S reaches a bad synchronized configuration, so does S′.

Note that the state transition system (S,⇒) is infinite. First of all, (S,⇒) is not finitely
branching: for every synchronized configuration S = ((`,d), C) in S, every datum d ∈ D may
give rise to its own individual synchronized configuration Sd such that S ⇒ Sd. However,
it can be easily seen that for every two different data values d, d′ ∈ D\data(S), if inputting
(σ, d) gives rise to a transition S ⇒ Sd and inputting (σ, d′) gives rise to a transition S ⇒ Sd′

(for some σ ∈ Σ), then Sd ∼ Sd′ . Hence there exist synchronized configurations S1, . . . , Sk
for some k ∈ N such that S ⇒ Si for all i ∈ {1, . . . , k}, and such that for all S′ ∈ S with
S ⇒ S′ there exists i ∈ {1, . . . , k} such that Si ∼ S′. This is why we define in Section 4.3 the
notion of abstract configuration, representing synchronized configurations up to the relation
∼. Second, and potentially more harmful for the termination of an algorithm to decide
the reachability problem from Proposition 5, the configuration C of B in a synchronized
configuration may grow unboundedly. As an example, consider the URA on the left side
of Figure 1. For every k ≥ 1, the configuration {(`0,⊥), (`1, d1), (`1, d2) . . . , (`1, dk)} with
pairwise distinct data values d1, . . . , dk is reachable in this URA by inputting the data word
(σ, d1)(σ, d2) . . . (σ, dk). In the next section, we prove that we can solve the reachability
problem from Proposition 5 by focussing on a subset of configurations of B that are bounded
in size, thus reducing to a reachability problem on a finite graph.

4 The Containment Problem for Register Automata

4.1 Types
Given k ∈ N, a k-type1 of D⊥ is a quantifier-free formula ϕ(y1, . . . , yk) formed by a conjunction
of (positive or negative) literals of the form yi = yj and yi = ⊥ that is satisfiable in
D⊥. A k-type is complete if for any other quantifier-free formula ψ(y1, . . . , yk), either

1 Types are a standard notion of model theory (see, e.g., [9] for a definition). The definition that we give
here coincides with the standard notion of types when applied to D⊥.

STACS 2019

53:8 Containment for Unambiguous Register Automata

∀y1, . . . , yk.(ϕ(y1, . . . , yk)⇒ ψ(y1, . . . , yk)) holds or ϕ ∧ ψ is unsatisfiable. It is easy to see
that given a ∈ Dk, there is a unique complete k-type ϕ such that ϕ(a) holds in D⊥. We call
ϕ the type of a and denote it by tp(a). It may be observed that a, b ∈ Dk⊥ have the same
type if, and only if, there exists a partial isomorphism f of D⊥ such that f(a) = b.

Recall that m and n denote the number of registers of A and B. For every a ∈ Dn⊥ and
for every complete (2n+m)-type ϕ(y), where y = (y1, . . . , y2n+m), we define the set

Lϕ(a) = {`′ ∈ LB | ∃b ∈ Dn⊥ such that (`′, b) ∈ C and ϕ(a, b,d) holds in D⊥}.

Let S = ((`,d), C) be a synchronized configuration and let a, b ∈ Dn⊥ be two register
valuations occurring in C, i.e., there exist `a, `b ∈ LB such that (`a,a), (`b, b) ∈ C. We say
that a and b are indistinguishable in S, written a ≡S b, if Lϕ(a) = Lϕ(b) for every complete
(2n+m)-type ϕ(y).

I Example 7. Let (`A, 3) be a state in some NRA with a single register, and let C ′ =
{(`, 1, 3), (`, 2, 3), (`′, 1, 2)} be a configuration of a URA with two registers. Let S′ =
((`A, 3), C ′) be the corresponding synchronized configuration of A and B. Consider a = (1, 3)
and b = (2, 3). For the 5-type

ϕ1 = (y1 6= y2) ∧ (y1 6= y3) ∧ (y2 = y4) ∧ (y4 = y5) ∧ (y3 6= y2)

we have Lϕ1(a) = {`} as ϕ1(a, b,d) holds in (N,=), and similarly, Lϕ1(b) = {`} as ϕ1(b,a,d)
holds in (N,=). However, we have Lϕ2(a) = {`′} and Lϕ2(b) = ∅ for the 5-type

ϕ2 = (y1 6= y2) ∧ (y1 = y3) ∧ (y2 6= y4) ∧ (y2 = y5) ∧ (y4 6= y1).

Hence a ≡S′ b does not hold. However, a ≡S b for S = ((`A, 3), C) with C := C ′∪{(`′, 2, 1)}.

I Proposition 8. Let S = ((`A,d), C) be a coverable synchronized configuration of A and
B. Let a, b be such that a ≡S b. Then the map f : data(a)→ data(b) defined by f(ai) := bi
is a partial isomorphism of D⊥. Moreover, if we let Ca := {(`,a) ∈ C | ` ∈ LB} and
Cb := {(`, b) ∈ C | ` ∈ LB}, then Ca ∼f Cb.

Proof. Let ϕ be the complete (2n+m)-type of (a,a,d). Note that for two vectors u,v ∈ Dn⊥,
ϕ(u,v,d) holds in D⊥ iff u = v and tp(a,d) = tp(u,d) = tp(v,d).

Let now (`,a) be in Ca. By definition, this means that ` ∈ Lϕ(a). By indistinguishibility,
` ∈ Lϕ(b) so that

ϕ(b, c,d) holds in D⊥ (†)

for some (`, c) ∈ C. Now, (†) implies b = c and tp(b) = tp(a). The former implies that
(`, b) ∈ Cb, while the latter implies that f is a partial isomorphism. Conversely, we obtain
that (`, b) ∈ Cb implies (`,a) ∈ Ca. Hence f(Ca) = Cb and thus Ca ∼f Cb. J

4.2 Collapsing Configurations
As we pointed out in the introduction, the crucial ingredient of our algorithm for deciding
whether L(A) ⊆ L(B) holds is to prevent configurations C in a synchronized configuration
((`,d), C) to grow unboundedly. We do this by collapsing two subconfigurations Ca, Cb ⊆ C
that behave equivalently with respect to reaching a bad synchronized configuration in (S,⇒)
into a single subconfiguration. The key notions for deciding when two subconfigurations
can be collapsed into a single one are k-types and indistinguishability from the previous
subsection.

A. Mottet and K. Quaas 53:9

I Proposition 9. Let S′ = ((`,d), C ′) be a coverable synchronized configuration of A and B.
Let a and b be two distinct register valuations in C ′ such that a ≡S′ b. Let Cb := {(`, b) ∈
C ′ | ` ∈ LB}. Then S := ((`,d), C ′ \ Cb) reaches a bad synchronized configuration if, and
only if, S′ reaches a bad synchronized configuration.

Proof. The “if” direction follows from the simple observation that for every data word w,
if SuccB(C ′, w) is non-accepting, then so is SuccB(D,w) for every subset D ⊆ C ′. For the
“only if” direction, let Ca := {(`,a) ∈ C ′ | ` ∈ LB} and C := C ′ \ (Ca ∪ Cb). Let m be the
number of registers of A and n be the number of registers of B. Suppose that there exists
a data word w such that there exists an accepting run of A on w that starts in (`,d), and
SuccB(Ca∪C,w) is non-accepting. We assume in the following that SuccB(Cb, w) is accepting;
otherwise we are done. Without loss of generality, we assume that data(w) ∩ data(S′) ⊆
data(b) ∪ data(d). Otherwise, pick for every d ∈ data(w) ∩ (data(a) ∪ data(C)) such that
d 6∈ data(b) ∪ data(d), a fresh datum d′ ∈ D not occurring in data(w) ∪ data(S′), and
simultaneously replace every occurrence of d in w by d′. Let w′ be the resulting data
word. Then (`,d), w ∼ (`,d), w′ and Cb, w ∼ Cb, w

′. By Corollary 3, SuccA((`,d), w′) is
accepting, and SuccB(Cb, w

′) is accepting, too. Then there must exist some accepting run of
A on w′ starting in (`,d), and, by Proposition 1, SuccB(Ca ∪ C,w′) must be non-accepting.
Hence, we could continue the proof with w′ instead of w. Let us assume henceforth that
data(w) ∩ data(S′) ⊆ data(b) ∪ data(d) holds.

Let now w′′ be the data word obtained from w as follows: for every bi ∈ data(w) with
bi 6= ai, pick some fresh datum ei ∈ D not occurring in data(w) ∪ data(S′). Then replace
every occurrence of the letter bi in w by ei.

Note that (`,d), w ∼ (`,d), w′′: the key argument for this is that by a ≡S′ b we have
bi 6∈ data(d) whenever bi 6= ai. By Corollary 3, SuccA((`,d), w′′) is accepting. Hence there
must exist some accepting run of A on w′′ starting in (`,d).

Further note that Ca, w
′′ ∼ Cb, w

′′: by Proposition 8, Ca ∼f Cb, where f : data(a) →
data(b) is the bijective mapping defined by f(ai) = bi for all 1 ≤ i ≤ n. Now let g :
data(a)∪ data(w′′)→ data(b)∪ data(w′′) be the bijective mapping that agrees with f on all
data in data(a), and that maps each datum d ∈ data(w′′)\data(a) to d. One can easily see
that g is a bijection such that g(Ca) = Cb and g(w′′) = w′′ so that indeed Ca, w

′′ ∼g Cb, w
′′.

By Corollary 4, SuccB(Ca, w
′′) and SuccB(Cb, w

′′) are non-accepting.
Finally, we prove that SuccB(C,w′′) is non-accepting, too. For this, let (`′, c) ∈ C; we

prove that SuccB((`′, c), w′′) is non-accepting. We distinguish the following two cases:
For all 1 ≤ i ≤ n with ai 6= bi we have bi 6∈ data(c). Then (`′, c), w ∼ (`′, c), w′′,
as witnessed by the bijection f such that f(bi) = ei for all bi ∈ data(w) such that
bi 6= ai, and that is the identity otherwise. Recall that by assumption SuccB((`′, c), w) is
non-accepting. By Corollary 3, SuccB((`′, c), w′′) is non-accepting.
There exists 1 ≤ i ≤ n such that ai 6= bi and bi ∈ data(c).
Let ϕ(y) be the (2n + m)-type of (b, c,d), and note that `′ ∈ Lϕ(b). By assumption
`′ ∈ Lϕ(a) and there exists a state (`′, c′) ∈ C such that ϕ(a, c′,d) holds. Note that
for all 1 ≤ j ≤ n such that bi = cj we have ai = c′j . By assumption, bi = cj for some
1 ≤ j ≤ n. Since ai 6= bi, we can infer cj 6= c′j , and hence (`′, c) 6= (`′, c′). Next we
prove (`′, c), w′′ ∼ (`′, c′), w′′. We define f : data(c) ∪ data(w′′) → data(c′) ∪ data(w′′)
as follows:

f :
{
cp 7→ c′p 1 ≤ p ≤ n
e 7→ e e ∈ data(w′′)

STACS 2019

53:10 Containment for Unambiguous Register Automata

A

`A
{r} 6= r {r}

B
{r1}

{r1 }

6= r1, {r2}

6= r1, {r1}

6= r1

`′

`
{r2}

= r1∨ = r2

6= r1∧ 6= r2

6= r1
= r1

Figure 2 An NRA A and a URA B over a singleton alphabet for which L(A) ⊆ L(B).

We prove below that
(i) for all 1 ≤ p, q ≤ n, cp = cq iff c′p = c′q;
(ii) for all 1 ≤ p ≤ n, for all e ∈ data(w′′), e = cp iff e = c′p;
note that this implies that f is well-defined and f is a bijective mapping, and hence
(`′, c), w′′ ∼f (`′, c′), w′′. By Proposition 2, SuccB((`′, c), w′′) ∼ SuccB((`′, c′), w′′). By
Corollary 4, SuccB((`′, c), w′′) and SuccB((`′, c′), w′′) are non-accepting. We now prove the
two items from above: (i) Follows directly from the fact that ϕ(a, c′,d) and ϕ(b, c,d) hold,
which implies that c′ and c have the same type. For (ii), recall that data(w)∩data(S′) ⊆
data(b) ∪ data(d). This, the definition of w′′, and a ≡S′ b yield the claim.

Altogether, we proved that SuccB(C ′, w′′) is non-accepting, while there exists some accepting
run (`,d) −→∗ (`′′,d′′) of A on w′′. This finishes the proof for the “only if” direction. J

When S is obtained from S′ by applying Proposition 9 to some pair of register valuations,
we say that S′ collapses to S. We say that S is maximally collapsed if for all pairs a and
b of distinct register valuations appearing in C we have that a ≡S b does not hold. Note
that in Proposition 9, the synchronized configuration S is again coverable. By iterating
Proposition 9, one obtains that a coverable synchronized configurations reaches a bad
synchronized configuration if, and only if, it collapses in finitely many steps to a maximally
collapsed synchronized configuration that also reaches a bad synchronized configuration.

Before we present our algorithm for deciding the containment problem, we would like
to point out that the intuitive notion of types alone is not sufficient for deciding whether
synchronized configurations can be collapsed. More precisely, given a coverable synchronized
configuration S′ = ((`A,d), C ′) and two register valuations a and b that occur in C ′ and for
which tp(a,d) = tp(b,d), it is in general not the case that S′ reaches a bad synchronized
configuration if S := ((`,d), C ′\Cb), where Cb := {(`, b) ∈ C ′ | ` ∈ LB}, reaches a bad
synchronized configuration. To see that, consider Figure 2, where two register automata
over a singleton alphabet (we omit the labels at the edges) are depicted: an NRA A with
a single register r on the left side, and a URA B with two registers r1 and r2 on the right
side. Note that L(A) ⊆ L(B). After processing the input data word w = (σ, 1)(σ, 2)(σ, 3),
the synchronized configuration S′ = ((`A, 3), C ′), where C ′ := {(`, 1, 3), (`, 2, 3), (`′, 1, 2)}), is
reached in the synchronized state space of A and B. For a = (1, 3) and b = (2, 3), we have
tp(a,d) = tp(b,d), but a ≡S′ b does not hold (cf. Example 7). Indeed, SuccB(C ′\Cb, (σ, 2))
is non-accepting, while C ′ cannot reach any non-accepting configuration.

4.3 Abstract Configurations
In this section, we study synchronized configurations up to the equivalence relation ∼. Recall
that m is the number of registers of A and n is the number of registers of B. An abstract
synchronized configuration of A and B is a tuple (`,Γ, ϕ) where ϕ is a complete (sn+m)-type
for some s ∈ N, Γ is an s-tuple of subsets of LB, and ` ∈ LA.

A. Mottet and K. Quaas 53:11

The size of an abstract synchronized configuration is defined to be (sn+m) log(sn+m) +
s|LB|+ log(|LA|), which corresponds to the size needed on the tape of a Turing machine to
encode an abstract synchronized configuration (where one encodes, for example, an (sn+m)-
type by giving for each of the sn+m variables, a number in {1, . . . , sn+m} in a way that
yi = yj is a conjunct in ϕ iff yi and yj are assigned the same number).

Every synchronized configuration S = ((`A,d), C) gives rise to an abstract synchronized
configuration in the following way: let a1, . . . ,as be the distinct register valuations in C,
listed in some arbitrary order. Let ϕ be the complete (sn + m)-type of (a1, . . . ,as,d).
Let Cai := {` ∈ LB | (`,ai) ∈ C}. We obtain an abstract synchronized configuration
(`A, (Ca1 , . . . , Cas), ϕ). Different enumerations of the register valuations of C can yield
different abstract configurations. We let abs(S) be the set of all abstract synchronized
configurations that can be obtained from S. Every two abstract synchronized configurations
in abs(S) can be obtained from one another by permuting the variables from the type and
the entries from the tuple accordingly. It is easy to prove that S ∼ S′ if, and only if,
abs(S) = abs(S′).

An abstract configuration (`,Γ, ϕ) is said to be maximally collapsed if there exists a
synchronized configuration S such that (`,Γ, ϕ) ∈ abs(S) and such that S is maximally
collapsed (equivalently, one could ask that every S such that (`,Γ, ϕ) ∈ abs(S) is maximally
collapsed). The main result of this section is that the number of different register valuations
in a maximally collapsed synchronized configuration is bounded. Let Br ≤ rr be the number
of complete r-types, which is also called the Bell number of order r.

I Proposition 10. Let S = ((`A,d), C) be a maximally collapsed synchronized configuration
of A and B. The number of different register valuations appearing in C is bounded by
(B2n+m · 2|L

B|)(2n+m)n .

Proof. We first prove a slightly worse upper bound, to give an idea of the proof. Let
K := B2n+m. We prove that the number of different register valuations is bounded by 2|LB|K .
Associate with every register valuation a appearing in C the K-tuple (Lϕ1(a), . . . ,LϕK

(a))
of subsets of LB, where ϕ1, . . . , ϕK is an enumeration of all the complete (2n + m)-types.
Note that there are at most 2|LB|K such tuples. Suppose by contradiction that S contains
more than 2|LB|K different register valuations. By the pigeonhole principle there are two
different register valuations a and b that have the same associated K-tuple. Note that if a

and b share the same K-tuple, then a ≡S b. By Proposition 9, S could be collapsed further,
contradiction. Hence, we proved an upper bound of 2|LB|K on the number of different register
valuations appearing in a given maximally collapsed synchronized configuration.

We now proceed to prove the actual bound. The important fact is that when a and d

are fixed in S, then few (i.e., ≤ (2n + m)n) entries in the tuple (Lϕ1(a), . . . ,LϕK
(a)) are

non-empty. Indeed, in a given (2n + m)-type, each of the variables yn+1, . . . , y2n can be
constrained to be equal to one of y1, . . . , yn, y2n+1, . . . , y2n+m, or constrained to be different
than all of them.

Therefore, it remains to bound the number of K-tuples with entries in 2LB and with
at most (2n + m)n non-empty entries. Each such tuple is characterised by the subset
T ⊆ {1, . . . ,K} of entries that are non-empty, together with a |T |-tuple of non-empty
subsets of LB. Since |T | can be bounded by (2n + m)n, we obtain that there are at most
K(2n+m)n · 2|LB|(2n+m)n possible tuples, and thus at most (B2n+m · 2|L

B|)(2n+m)n different
register valuations. J

Note that the bound in Proposition 10 is doubly exponential in n and exponential in
|LB| and m. As a direct corollary, we obtain a bound on the number of maximally collapsed
abstract synchronized configurations.

STACS 2019

53:12 Containment for Unambiguous Register Automata

I Proposition 11. The number of maximally collapsed abstract configurations is bounded by
a triple exponential in |A| and |B|. If the number of registers of B is fixed, then the number of
maximally collapsed abstract configurations is bounded by a double exponential in |A| and |B|.

Proof. Recall that m is the number of registers of A and n is the number of registers of B.
By Proposition 10, a maximally collapsed synchronized configuration S = ((`A,d), C) is such
that C contains at most K := (B2n+m · 2|L

B|)(2n+m)n different register valuations. Therefore,
any abstract synchronized configuration in abs(S) is described by an (sn + m)-type with
s ≤ K. For a given s, there are at most Bsn+m · |LB|s · |LA| different abstract synchronized
configurations. Summing up from s = 0 to K, we obtain that there are at most

K∑
s=0

Bsn+m · |LB|s · |LA| ≤ |LA| ·
(
Bm +Bn+m|LB|+ · · ·+BnK+m · |LB|K

)
≤ |LA| · (1 +K) ·BnK+m · |LB|K

≤ |LA| · (1 +K) · (nK +m)(nK+m) · |LB|K

maximally collapsed abstract synchronized configurations. Since K is doubly exponential in
|A| and |B|, this gives the first result. The second result follows from the fact that for fixed
n, K only depends exponentially on m and |LB|. J

Given abstract synchronized configurations (`A,Γ, ϕ) and (`′A,Γ′, ϕ′), define (`A,Γ, ϕ)
(`′A,Γ′, ϕ′) if there exist synchronized configurations S and S′ such that:

S ⇒ S′,
(`A,Γ, ϕ) is in abs(S),
S′ can be maximally collapsed to some S′′ such that (`′A,Γ′, ϕ′) is in abs(S′′).

I Lemma 12. Given two abstract synchronized configurations (`A,Γ, ϕ) and (`′A,Γ′, ϕ′),
deciding whether (`A,Γ, ϕ) (`′A,Γ′, ϕ′) holds can be done in polynomial space.

Proof. In this proof, we assume without loss of generality that D = N. Let s be such that ϕ
is an (sn+m)-type. Note that there is a synchronized configuration S of the form ((`A,d), D)
such that data(D) ∪ data(d) ⊆ {1, . . . , sn+m} and such that (`A,Γ, ϕ) ∈ abs(S). This S is
moreover computable in polynomial space.

To decide whether (`A,Γ, ϕ) (`′A,Γ′, ϕ′) holds, one simply:
guesses a letter σ ∈ Σ and a datum d in {1, . . . , sn+m+ 1},
computes a synchronized configuration S′ obtained by firing the transition corresponding
to (σ, d) from S,
guesses a sequence (a1, b1), . . . , (ar, br) of register valuations such that Proposition 9 can
be applied r times to obtain a maximally collapsed configuration S′′,
checks that (`′A,Γ′, ϕ′) is in abs(S′′).

At the second step, the size of S′ is polynomially bounded by the size of A, B, and of S.
Moreover, the maximal length of a collapsing sequence in the third step is also polynomially
bounded, as the number of distinct register valuations decreases after each application of
Proposition 9. Therefore, this algorithm uses a polynomial amount of space. J

As for synchronized configuration, an abstract synchronized configuration (`A,Γ, ϕ) is
called bad if `A is an accepting location and none of the states in Γ contains an accepting
location.

I Proposition 13. A bad synchronized configuration is reachable in (S,⇒) if, and only if, a
bad abstract synchronized configuration is reachable from abs(Sin).

A. Mottet and K. Quaas 53:13

Proof. We prove that for every coverable synchronized configuration S and every n ≥ 0, a
bad synchronized configuration is reachable in n steps from S if, and only if, a bad abstract
synchronized configuration is reachable in n steps from abs(S). The statement then follows
by taking S := Sin. The proof goes by induction on n, where the case n = 0 is trivial in both
directions.

Suppose now that S reaches a bad synchronized configuration in n steps. Let S′ be such
that S ⇒ S′ and such that S′ reaches a bad synchronized configuration in n− 1 steps. Let
S′′ be such that S′ can be maximally collapsed to S′′. By iterating Proposition 9, we have
that S′′ reaches a bad synchronized configuration in n− 1 steps (the fact that the length
of the path is unchanged can be seen from the proof of Proposition 9). It follows from the
induction hypothesis that some (`′,Γ′, ϕ′) ∈ abs(S′′) reaches a bad abstract synchronized
configuration in n− 1 steps. Let (`,Γ, ϕ) be an arbitrary abstraction in abs(S). We have
by definition (`,Γ, ϕ) (`′,Γ′, ϕ′), so that (`,Γ, ϕ) reaches a bad abstract synchronized
configuration in n steps. The converse direction is proved similarly. J

Finally, we are able to present the main theorem.

I Theorem 14. The containment problem L(A) ⊆ L(B), where A is a non-deterministic
register automaton and B is an unambiguous register automaton, is in 2-EXPSPACE. If the
number of registers of B is fixed, the problem is in EXPSPACE.

Proof. The algorithm checks whether a bad abstract synchronized configuration is reachable
from abs(Sin), using the classical non-deterministic logspace algorithm for reachability. Every
node of the graph can be stored using double-exponential space (see the second paragraph
at the beginning of Section 4.3), and the size of the graph is triply exponential in the size
of A and B by Proposition 11. Moreover, the relation is decidable in polynomial space
by Lemma 12. Therefore, we obtain that the algorithm uses at most a double-exponential
amount of space. In case the number of registers of B is fixed, Proposition 11 implies that the
size of the graph is doubly exponential in the size of A and B. We obtain that the algorithm
uses at most an exponential amount of space. J

As an immediate corollary of Theorem 14, we obtain that the universality problem is
in 2-EXPSPACE and in PSPACE for fixed number of registers. Similarly, the equivalence
problem for unambiguous register automata is in 2-EXPSPACE.

5 Open Problems

The most obvious problem is to figure out the exact computational complexity of the
containment problem L(A) ⊆ L(B), when B is an URA. Finding lower bounds for unam-
biguous automata is a hard problem. Techniques for proving lower complexity bounds of
the containment problem (respectively the universality problem) for the case where B is a
non-deterministic automaton rely heavily on non-determinism (cf. Theorem 5.2 in [4]); as
was already pointed out in [2], we are lacking techniques for finding lower computational
complexity bounds for the case where B is unambiguous, even for the class of finite automata.
Concerning the upper bound, computer experiments revealed that maximally collapsed
synchronized configurations seem to remain small. Based on these experiments, we believe
that the bound in Proposition 10 is not optimal and can be improved to O(2poly(n,m,|LB|)).
If this is correct, we would obtain an EXPSPACE upper-bound for the general containment
problem.

STACS 2019

53:14 Containment for Unambiguous Register Automata

We also would like to study to what extent our techniques can be used to solve the
containment problem for other computation models. In particular, we are interested in the
following:

One can extend the definition of register automata to work over an ordered domain,
where the register constraints are of the form < r and > r. Proposition 9 turns out to be
false in this setting, but it seems plausible that there exists a collapsibility notion that
would work for this model.
An automaton B is said to be k-ambiguous if it has at most k accepting runs for every
input data word, and polynomially ambiguous if the number of accepting runs for some
input data word w is bounded by p(|w|) for some polynomial p. Again, it is likely
that simple modifications of Proposition 9 would give an algorithm for the containment
problem for k-ambiguous register automata.
Last but not least, we would like to point out that our techniques cannot directly be
applied to the class of unambiguous register automata with guessing which we mentioned
in the introduction. Thus, the respective containment problem remains open for future
research.

References
1 Thomas Colcombet. Forms of Determinism for Automata (Invited Talk). In Christoph

Dürr and Thomas Wilke, editors, 29th International Symposium on Theoretical Aspects of
Computer Science, STACS 2012, February 29th - March 3rd, 2012, Paris, France, volume 14
of LIPIcs, pages 1–23. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012. doi:
10.4230/LIPIcs.STACS.2012.1.

2 Thomas Colcombet. Unambiguity in Automata Theory. In Jeffrey Shallit and Alexander
Okhotin, editors, Descriptional Complexity of Formal Systems - 17th International Workshop,
DCFS 2015, Waterloo, ON, Canada, June 25-27, 2015. Proceedings, volume 9118 of Lecture
Notes in Computer Science, pages 3–18. Springer, 2015. doi:10.1007/978-3-319-19225-3_1.

3 Laure Daviaud, Marcin Jurdzinski, Ranko Lazic, Filip Mazowiecki, Guillermo A. Pérez, and
James Worrell. When is Containment Decidable for Probabilistic Automata? In Ioannis
Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th
International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13,
2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 121:1–121:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.121.

4 Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log., 10(3), 2009. doi:10.1145/1507244.1507246.

5 Diego Figueira. Alternating register automata on finite words and trees. Logical Methods in
Computer Science, 8(1), 2012. doi:10.2168/LMCS-8(1:22)2012.

6 Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. Ackermannian
and Primitive-Recursive Bounds with Dickson’s Lemma. In Proceedings of the 26th Annual
IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-24, 2011, Toronto,
Ontario, Canada, pages 269–278. IEEE Computer Society, 2011. doi:10.1109/LICS.2011.39.

7 Diego Figueira, Piotr Hofman, and Slawomir Lasota. Relating timed and register automata. In
Sibylle B. Fröschle and Frank D. Valencia, editors, Proceedings 17th International Workshop on
Expressiveness in Concurrency, EXPRESS’10, Paris, France, August 30th, 2010., volume 41
of EPTCS, pages 61–75, 2010. doi:10.4204/EPTCS.41.5.

8 Nathanaël Fijalkow, Cristian Riveros, and James Worrell. Probabilistic Automata of Bounded
Ambiguity. In Roland Meyer and Uwe Nestmann, editors, 28th International Conference on
Concurrency Theory, CONCUR 2017, September 5-8, 2017, Berlin, Germany, volume 85 of
LIPIcs, pages 19:1–19:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:
10.4230/LIPIcs.CONCUR.2017.19.

http://dx.doi.org/10.4230/LIPIcs.STACS.2012.1
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.1
http://dx.doi.org/10.1007/978-3-319-19225-3_1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.121
http://dx.doi.org/10.1145/1507244.1507246
http://dx.doi.org/10.2168/LMCS-8(1:22)2012
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.4204/EPTCS.41.5
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.19
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.19

A. Mottet and K. Quaas 53:15

9 Wilfrid Hodges. A shorter model theory. Cambridge University Press, Cambridge, 1997.
10 Michael Kaminski and Nissim Francez. Finite-Memory Automata. Theor. Comput. Sci.,

134(2):329–363, 1994. doi:10.1016/0304-3975(94)90242-9.
11 Michael Kaminski and Daniel Zeitlin. Finite-memory automata with non-deterministic reas-

signment. International Journal of Foundations of Computer Science, Volume 21, Issue 05,
2010.

12 Hing Leung. Descriptional complexity of nfa of different ambiguity. Int. J. Found. Comput.
Sci., 16(5):975–984, 2005. doi:10.1142/S0129054105003418.

13 Michał Skrzypczak. Unambiguous Languages Exhaust the Index Hierarchy. In Ioannis
Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th
International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13,
2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 140:1–140:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.140.

14 Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004. doi:10.1145/1013560.
1013562.

15 Joël Ouaknine and James Worrell. On the Language Inclusion Problem for Timed Automata:
Closing a Decidability Gap. In 19th IEEE Symposium on Logic in Computer Science (LICS
2004), 14-17 July 2004, Turku, Finland, Proceedings, pages 54–63. IEEE Computer Society,
2004. doi:10.1109/LICS.2004.1319600.

16 Mikhail Raskin. A Superpolynomial Lower Bound for the Size of Non-Deterministic Com-
plement of an Unambiguous Automaton. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume
107 of LIPIcs, pages 138:1–138:11. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.
doi:10.4230/LIPIcs.ICALP.2018.138.

17 Hiroshi Sakamoto and Daisuke Ikeda. Intractability of decision problems for finite-memory
automata. Theor. Comput. Sci., 231(2):297–308, 2000. doi:10.1016/S0304-3975(99)00105-X.

18 Luc Segoufin. Automata and Logics for Words and Trees over an Infinite Alphabet. In Zoltán
Ésik, editor, Computer Science Logic, 20th International Workshop, CSL 2006, 15th Annual
Conference of the EACSL, Szeged, Hungary, September 25-29, 2006, Proceedings, volume 4207
of Lecture Notes in Computer Science, pages 41–57. Springer, 2006. doi:10.1007/11874683_3.

STACS 2019

http://dx.doi.org/10.1016/0304-3975(94)90242-9
http://dx.doi.org/10.1142/S0129054105003418
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.140
http://dx.doi.org/10.1145/1013560.1013562
http://dx.doi.org/10.1145/1013560.1013562
http://dx.doi.org/10.1109/LICS.2004.1319600
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.138
http://dx.doi.org/10.1016/S0304-3975(99)00105-X
http://dx.doi.org/10.1007/11874683_3

	Introduction
	Main Definitions
	Some Facts about Register Automata
	The Containment Problem for Register Automata
	Types
	Collapsing Configurations
	Abstract Configurations

	Open Problems

