Unambiguous Languages Exhaust the Index
Hierarchy

Michatl Skrzypczak

University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

mskrzypczak@mimuw.edu.pl
https://orcid.org/0000-0002-9647-4993

—— Abstract

This work is a study of the expressive power of unambiguity in the case of automata over infinite

trees. An automaton is called unambiguous if it has at most one accepting run on every input,
the language of such an automaton is called an unambiguous language. It is known that not
every regular language of infinite trees is unambiguous. Except that, very little is known about
which regular tree languages are unambiguous.

This paper answers the question whether unambiguous languages are of bounded complexity
among all regular tree languages. The notion of complexity is the canonical one, called the
(parity or Rabin-Mostowski) index hierarchy. The answer is negative, as exhibited by a family
of examples of unambiguous languages the cannot be recognised by any alternating parity tree
automata of bounded range of priorities.

Hardness of the examples is based on the theory of signatures, previously studied by Walu-
kiewicz. The technical core of the article is a definition of the canonical signatures together with
a parity game that compares signatures of a given pair of parity games (of the same index).

2012 ACM Subject Classification Theory of computation — Tree languages

Keywords and phrases unambiguous automata, parity games, infinite trees, index hierarchy
Digital Object ldentifier 10.4230/LIPIcs.ICALP.2018.140

Related Version For a full version see https://arxiv.org/abs/1803.06163.

Funding This work has been supported by Poland’s NSC (NCN) grant 2016/21/D/ST6,/00491.

Acknowledgements The author would like to thank Szczepan Hummel, Damian Niwinski, and
Igor Walukiewicz for inspiring and fruitful discussions on the topic. Moreover, the author is
grateful to Bartek Klin, Kamila Lyczek, Filip Murlak, Grzegorz Rzaca, and the anonymous
referees for a number of editorial suggestions about the paper.

1 Introduction

Non-determinism provides a machine with a very powerful ability to guess its choices.
Depending on the actual model, it might enhance the expressive power of the considered
machines or, while preserving the class of recognised languages, make the machines more
succinct or effective. All these benefits come at the cost of algorithmic difficulties when
handling non-deterministic devices. This complexity motivates a search of ways of restricting
the power of non-determinism. One of the most natural among these restrictions is a semantic
notion called unambiguity: a non-deterministic machine is called unambiguous if it has at
most one accepting run on every input.

Unambiguity turns out to be very intriguing in the context of automata theory [7]. In the
classical case of finite words it does not enhance the expressive power of the automata, still it

© Michal Skrzypczak;
37 licensed under Creative Commons License CC-BY
45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).

Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Déaniel Marx, and Donald Sannella;
Article No. 140; pp. 140:1-140:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:mskrzypczak@mimuw.edu.pl
https://orcid.org/0000-0002-9647-4993
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.140
https://arxiv.org/abs/1803.06163
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

140:2

Unambiguous Languages Exhaust the Index Hierarchy

simplifies some decision problems [16]. The situation is more complex in the case of infinite
trees: the language of infinite trees labelled {a,b} containing a letter a cannot be recognised
by any unambiguous parity automaton [15, 6]. This example makes the impression that very
few regular languages of infinite trees are in fact unambiguous (i.e. can be recognised by an
unambiguous automaton). However, there is only a couple of distinct examples of ambiguous
regular tree languages [3]. Our understanding of how many (or which) regular tree languages
are unambiguous is far from being complete, in particular it is not known how to decide if
a given regular tree language is unambiguous.

Another way of understanding the power of unambiguous tree languages is aimed at
estimating their descriptive complexity. The complexity can be measured either in terms of
the topological complexity or of the parity index, i.e. the range of priorities needed for an
alternating parity tree automaton to recognise a given language. Initially, it was considered
plausible that all unambiguous tree languages are co-analytic (II}); that is topologically not
more complex than deterministic ones. Hummel in [11] gave an example of an unambiguous
language that is 31-complete, in particular not IT{. Further improvements [8, 12] showed
that unambiguous languages reach high into the second level of the index hierarchy. However,
the question whether this is an upper bound on their index complexity was left open. In this
paper we prove that it is not the case, as expressed by the following theorem.

» Theorem 1. For every i < k there exists an unambiguous tree language L that cannot be
recognised by any alternating parity tree automaton (ATA) that uses priorities {i,...,k}. In
other words, L does not belong to the level (i,k) of the index hierarchy.

The canonical examples of languages lying high in the index hierarchy [4, 1] are the
languages W; , dating back to [9, 21] (see e.g. the formulae W,, in [1]). Unfortunately, the
languages W, j, are not unambiguous—one can interpret the choice problem [6] in such
a way that witnessing unambiguously that t € W » would indicate an MSO-definable choice
function [10, 5]. Therefore, to prove Theorem 1 we will use the following corollary of [2].

» Corollary 2 ([1, 2]). Let L be a set of trees. If there is a continuous function f s.t. W, =
f7YL) then L cannot be recognised by an ATA of index (i+1,k+1).

Our aim is to enrich in a continuous way a given tree ¢t with some additional information
denoted f(t), such that an unambiguous automaton reading f(t) can verify if t € W, .
Although this method is based on the topological concept of a continuous mapping f, the
construction provided in this paper is purely combinatorial; the core is a definition of a parity
game Cp that compares the difficulty of a given pair of parity games.

2 Basic notions

We use u - w to represent the concatenation of the two sequences. The symbol < stands for
the prefix order. By w = {0,1,...} we denote the set of natural numbers.

A (ranked) alphabet is a non-empty finite set A of letters where each letter a € A comes
with its own finite arity. A tree over an alphabet A is a partial function ¢: w* — A where the
domain dom(t) is non-empty, prefix-closed, and if u € dom(t) is a node with a kary letter
a = t(u) then u -1 € dom(t) if and only if I < k, i.e. u (the father) has children u -0, u -1,
..., u- (k=1). The set of all trees over A is denoted Tr4. The element € € dom(¢) is called
the root of t. A branch of a tree t is a sequence o € w* such that for all n € w the finite
prefix a[n is a node of . It is easy to encode ranked alphabets using alphabets of fixed arity
(or even binary), however for the technical simplicity we will work with ranked ones here.

M. Skrzypczak

QL Q

AN

qQ 41 492 - dk—1

Figure 1 A representation of a transition (q, a, qo, . ..,qx—1), for a kary letter a.

If u € dom(¢) is a node of a tree t then by ¢[u we denote the tree w — t(u - w) with the
domain {w | u-w € dom(t)}. A tree of the form t|u for v € dom(t) is called a subtree of t
in u. If a € A is a kary letter and to,...,t,_1 are trees then by a(to,...,tx—1) we denote
the unique tree t with ¢(¢) = a and ¢[(i) =¢; for i =0,...,k—1.

If X C dom(t) is a set of nodes of a tree t and u € dom(¢) then by X[u we denote the
set {w | u-w € X}, which is a subset of dom(¢[u).

Automata. A non-deterministic parity tree automaton is a tuple A = (A, Q, A, I, Q), where
A is a ranked alphabet; @ is a finite set of states; A is a finite set of transitions—tuples of
the form (¢, a, qo,...,qx—1) where a € A is a kary letter and ¢, qo, ..., qx—1 are states; I C Q
is a set of initial states; and Q: Q) — w is a priority mapping.

A run of an automaton A over a tree t over the alphabet A is a function p: dom(t) — @
such that p(e) € I and for every u € dom(t) with a kary letter a = t(u), the tuple
(p(w),a,p(u-0),...,p(u- (k—1))) is a transition in A. A run p is accepting if for every
branch « of ¢ the lowest priority of the states appearing infinitely many times along «
(i.e. liminf, o0 Q(p(a[n))) is even. An automaton A accepts a tree t if there exists an
accepting run of A over ¢t. The language of an automaton A (denoted L(A)) is the set of
trees accepted by A. A set of trees over an alphabet A is called regular if it is recognised
by a non-deterministic parity tree automaton. For a detailed introduction to the theory of
automata over infinite trees, see [18].

An automaton A is unambiguous if for every tree t there exists at most one accepting
run of A over ¢. An automaton A is deterministic if I = {q1} is a singleton and for every

q € @ and kary letter a € A it has at most one transition of the form (¢, a, qo, - - -, qx—1) in A.

A language is unambiguous (resp. deterministic) if it can be recognised by an unambiguous
(resp. deterministic) automaton. Clearly each deterministic automaton is unambiguous but
the converse is not true. Due to [6] we know that there are regular tree languages that are
ambiguous (i.e. not unambiguous).

Games. A game with players 1 and 2 is a tuple G = (V, E, v, W) where: V = V; U Vs is
a set of positions split into the 1-positions Vi and 2-positions Vo; E C V x V is a set of
edges; vr € V is an initial position; and W C V¥ is a winning condition. We will denote
by P the players, i.e. P € {1,2}, P is the opponent of P. For v € V by v - E we denote
the set of successors {v’ | (v,v') € E}. We assume that for each v € V the set v - E is
non-empty. A non-empty finite or infinite sequence I € V=¥ is a play if II(0) = v; and for
each 0 < ¢ < |II| there is an edge (II(i—1),1I(:)). Notice that if (V, E) is a tree then there is
an equivalence between finite plays and positions v € V. An infinite play II is winning for 1
if IT € W; otherwise II is winning for 2.

A non-empty and prefix-closed set of plays ¥ with no <-maximal element (i.e. no leaf) is
called a behaviour. We call a behaviour P-full if for every play (vo,...,v,) € ¥ with v, € Vp
and all v’ € v- E we have (vg, ..., v,,v") € ¥. We call a behaviour P-deterministic if for every
play (vo,...,vy) € ¥ with v, € Vp there is a unique v’ € v - E such that (vg,...,v,,v") € X.

140:3

ICALP 2018

140:4

Unambiguous Languages Exhaust the Index Hierarchy

A quasi-strategy of a player P is a behaviour that is P-full. A strategy of P is a quasi-stra-
tegy of P that is P-deterministic. A quasi-strategy is positional if the fact whether a play
(v, -+, Un,Upt1) belongs to ¥ depends only on v,,.

A partial strategy of P is a P-deterministic behaviour—it defines the unique choices of P
but may not respond to some choices of P. We say that a play (v, ...,Vn,Uni1) ¢ 3 is not
reachable by a partial strategy ¥ if (vo,...,v,) € ¥ and v, € V. If X is a (partial) strategy
of P and (vq,...,v,,v") € 3 with v, € Vp then we say that 3 moves to v’ in (vg,...,v,).

A strategy ¥ of P is winning if every infinite play of ¥ (i.e. II such that Vn € w. II[n € X)
is winning for P. A game is (positionally) determined if one of the players has a (positional)
winning strategy. We say that a position v of a game G is winning for P (resp. losing for P)
if P (resp. P) has a winning strategy in the game G with vy := v.

Topology. In this work we use only basic notions of descriptive set theory and topology,
see [13, 19] for a broader introduction. The space Tr4 with the product topology is homeo-
morphic to the Cantor space. One can take as the basis of this topology the sets of the form
{t € Tra | t(u1)=a1,t(uz)=as,...,t(u,)=a,} for finite sequences (u1, a1, ua, ag,...,Un, ap).
The open sets in Try are obtained as unions of basic open sets. A function f: X — Y is
continuous if the pre-image of each basic open set in Y is open in X.

3 The languages

Let us fix a pair of numbers ¢ < k. Our aim is to encode a general parity game with players
1 and 2 and priorities {i,...,k} as a tree over a fixed ranked alphabet A;). That alphabet
consists of: unary symbols [i], [i4+1],...,[k] indicating priorities of positions; and binary
symbols (1) and (2) which leave the choice of the subtree to the respective player.

The game induced by a tree t € Tra,, , is denoted G(t). The set of positions of G(t)
is dom(t) and the edge relation contains pairs father—child. The initial position is e and
a position v € dom(t) is a 1-position iff ¢(v) = (1). An infinite play of that game is won by
1 if and only if the minimal priority j that occurs infinitely often during the play is even!.
Since the graph of G(t) is a tree, we identify finite plays in G(t) with positions v € dom(t).
Therefore, (quasi / partial) strategies in G(¢) can be seen as specific subsets ¥ C dom(¢) and
infinite plays of these strategies as branches of t.

For a player P € {1,2} the language Wp (; 1) contains a tree ¢ if P has a winning strategy
in G(t). It is easy to see that Wy (;) is homeomorphic (i.e. topologically equivalent) to W;
from [21] (the case of P = 2 is dual, we put W41 541 then).

As it turns out, the languages Wp (; 1) are not expressive enough to allow enrichment of
a tree t into f(t), see Proposition 22. To enlarge their expressive power we will extend the
alphabet with a unary symbol ~ that will correspond to a swap of the players in G(t). The
enhanced alphabet will be denoted A& k)" We will say that a tree t over the alphabet Aa’k)
is well-formed if there is no branch with infinitely many symbols ~.

Consider a node u € dom(¢) in a well-formed tree ¢ over A 1y~ We will say that u is
switched if there is an odd number of nodes w < u such that t(w) = ~. Otherwise u is kept.
These notions represent the fact that each symbol ~ swaps the players in G(t).

1 We restrict our attention to the trees in which every second symbol on each branch is a unary symbol
representing a priority (i.e. [j] for j € {4,...,k}); every tree can implicitly be transformed into that
format by padding with the maximal priority k& (such a padding does not influence the winner of G(t)).

M. Skrzypczak

If a tree ¢ is well-formed then the game G(t) is well-defined in a similar way as above,
a kept position v € dom(t) is a 1-position iff t(v) = (1); a switched position v € dom(t) is
a 1-position iff ¢(v) = (2). The language W3 (i.r) contains a well-formed tree ¢ over Af
if P has a winning strategy in G(t). The games G(¢) have a parity winning condition and
therefore are determined [9, 14], so we obtain:

» Fact 3. Ift e TrAZ-k is well-formed then t € WP(”C ifft ¢ W3 (k) iff ~(t) e W3 k)’

The additional information added by f will be kept under third children of new ternary
variants of the symbols (1) and (2), denoted (1+) and (2+). Let the alphabet A+~ be A7 1)
where instead of the symbols (1) and (2) we have (1+) and (2+) respectively.

Consider a tree r over the extended alphabet A(ey By shave(r) we denote the tree over
the non-extended alphabet A} ,), where instead of each subtree of the form (14)(tL, tr, t2) one
puts the subtree (1)(¢r,%z); the same for (2+) and (2). Notice that dom(shave(r)) C dom(r)
and the labels of shave(r) correspond to the labels of r in the respective nodes (up to the
additional 4 in 7). We will say that a tree r over the alphabet A+N) is well-formed if for
every its subtree ' = r|u the tree shave(r’) is well-formed in the standard sense. In other
words, r is well-formed if there is no branch of r that contains infinitely many symbols ~ but
only finitely many directions 2 (the direction 2 corresponds to moving outside shave(r’)).

We are now in position to define the witnesses proving Theorem 1. For that we will define

an unambiguous automaton U recognising certain language of trees over the alphabet Az;;).

In this section we will prove that ¢/ is unambiguous. In the rest of the article we show that
U (with a restricted set of initial states) recognises a language high in the index hierarchy.

» Definition 4. The set of states of U is {0,...,k+2} x {1,2} x {p,1,r}. Let Q(j, P,d) = j.

The transitions of U are depicted in Figure 2. The set of initial states of &/ contains all the
states of the form (0, *,*) (recall that as in Figure 2, * represents all the possible choices).

Intuitively, the first coordinate of a state g of U is its priority; the second coordinate is the
winner for G(shave(r’)) for the current subtree 7’; while the third coordinate indicates the
actual strategy if there is ambiguity and b otherwise. The transition over ~ represents that
~ swaps the players; the next two transitions correspond to positions that are not controlled
by a (claimed) winner P over a given subtree; and the last two transitions correspond to
a position that is controlled by P. In the lower two transitions the choice of a direction t or
r depends on the declared winner P in the third child of the current node.

Consider a run p of U over a tree r, let u € dom(r), and assume that p(u) is of the form
(%, P,*). In that case one can extract from the third coordinates of p a strategy 3 of P in
G(shave(r|u)) that will be called the p-strategy in w. This strategy is defined inductively,
preserving the invariant that for each w € ¥ the node w is kept in shave(r[u) if and only
if p(u - w) is of the form (%, P,x). We start with ¥ containing the initial position e. Now
consider a position w in ¥. If w is controlled by P (i.e. r(u-w) = (P+) for w kept and (P+)
for w switched) then the strategy ¥ moves to the position w -0 (resp. w - 1) if the state
plu-w) = (x,*,d) satisfies d =1 (resp. d = r). In the positions w € ¥ not controlled by P
the strategy ¥ has no choice and contains all the children of w in shave(r[u). It is easy to
check that the transitions of U guarantee that the invariant is preserved.

» Lemma 5. Let p be a run of U over r. Then p is accepting if and only if r is well-formed
and for every u € dom(r) the p-strategy in u is winning in G (shave(r|u)).

Proof. First observe that U uses states of priority 0 and 1 to deterministically verify that r
is well-formed. Consider a well-formed tree r and a run p. On the branches following the

140:5

ICALP 2018

140:6

Unambiguous Languages Exhaust the Index Hierarchy

(%, P,p) (%, P,p) (%, P D)

l

i [J]
[] AR

(1, P, %) (j+P+1, P, %) (k+2, P *) (K42, P, %) (0,%,%)
(%, P,L) (%, P R)
l
(k+2,P,x) (2,%,%) (0,1,%) (2, %, %) k+2 P,x) (0,2,%)

Figure 2 The transitions of the automaton U, where P € {1, 2} stands for a player; j € {i,...,k}
is a priority; and * represents all the possible choices on a given coordinate.

p-strategies, the priorities of p correspond to the priorities visited in Q(shave(r[u)) (up to
a shift by 1 or 2 depending on the current second coordinate of p). Thus, p satisfies the
parity condition on all the branches of r if and only if all the p-strategies are winning. <«

The following fact follows directly from the above lemma.

» Fact 6. Assume that p is an accepting run of U over a tree r, u € dom(r), and p(u) is of
the form (x, P,x). Then P wins Q(shave(r[u)). In particular, if p and p' are two accepting
runs of U over the same tree r then the second coordinates of p and p' are equal.

» Lemma 7. If p and p’ are two runs of U (possibly not accepting) over a tree r and the
second coordinates of p and p' are equal then p = p'.

Proof. The third coordinate of a run in u € dom(r) depends on r(u), the second coordinate
of the run in w, and (if one of the lower two transitions from Figure 2 is used) the second
coordinate of the run in « - 2. Thus, the third coordinates of p and p’ must agree.

The first coordinates of p and p’ in the root are 0. Consider a node u and its child
u’ € dom(r). The first coordinate of a run in «’ depends on r(u) and the last two coordinates
of the run in u. Therefore, also the first coordinates of p and p’ must agree. |

» Definition 8. Take P € {1,2} and let Lp ;) be the language recognised by the auto-
maton U with the set of initial states restricted to the states of the form (0, P,*).

Fact 6 together with Lemma 7 imply that the languages Lp,(; x) are unambiguous. Thus,
to complete the proof of Theorem 1, one needs to prove that the languages Lp, (; x) climb up
the index hierarchy. This will be done using Corollary 2 in the next section.

4 Construction of f

Fix a pair i < k. In this section we will prove the following proposition.

» Proposition 9. There exists a continuous function f: TrA7 o Tr 4+~ such that:
ik (i,%)

If t is well-formed then f(t) is also well-formed.
For a well-formed t and a player P we have: t € W;’(i,k) if and only if f(t) € Lp (i)

M. Skrzypczak

Before proving that proposition, notice that a tree over the alphabet A(; 1y can be seen
as a well-formed tree over Aa,k) and W;’(iyk) NTra,,, = Wi x which is topologically
equivalent to W; . Therefore, the above proposition implies that f[Try4, , satisfies the
assumptions of Corollary 2. As i < k are arbitrary, Theorem 1 follows.

To properly define f we first need to introduce a notion that allows to compare how
much a player P prefers one tree over another. This is achieved by assigning to each tree its
P-signature and proving that moving to a subtree with an optimal signature guarantees that
the player wins whenever possible. The theory of signatures comes from [17] and results of
Walukiewicz, e.g. [20, 21]. The notion of signatures used here is more demanding than the

classical ones, as we require equalities instead of inequalities in the invariants from Lemma 10.

We say that a number j € w is P-losing if i < j < k and j is odd (resp. even) if

P =1 (resp. P =2). A number j € {i,...,k} that is not P-losing is called P-winning.

A P-signature is either co or a tuple of countable ordinals (6,0, 42, ...,0%), indexed by
P-losing numbers—i’ is the minimal and %’ is the maximal P-losing number. P-signatures
that are not oo are well-ordered by the lexicographic order <y, in which the ordinals with
smaller indices are more important. Let co be the maximal element of <jey.

A 1-signature o1 (t) = (42) with ¢ = 0 and k& = 2 means that the best what player 1 can
hope for is to visit at most 42 times a [1]-node (possibly interleaved with nodes of priority 2)
before the first [0]-node is visited (if ever). After visiting a [0]-node, the 1-signature of
the subtree may grow, starting again a counter of nodes of priority 1 to be visited. The
1-signature (w) means that 2 can choose a finite number of [1]-nodes that will be visited;
however the choice needs to be done before the first such node is seen.

The following two lemmas express the crucial properties of the signatures.

» Lemma 10. There exists a unique point-wise minimal pair of assignments t — o p(t) for
P € {1,2} that assign to each well-formed tree t over A7, a P-signature op(t) such that:
1. op(t) = o0 if and only if P loses G(t);

2. op(~(t)) =(0,...,0) if P wins G(~(t)) (i.e. P wins G(t));

3. Up([j](t)) =(0y,...,0;-1,0,0...,0) ifop(t) = (0y,...,0k) and j is P-winning;
4. Jp([j](t)) =(0i,...,0-2,0;+1,0,...,0) if op(t) = (Bsr,...,0k) and j is P-losing;
5. op((P)(tL,ta)) = min {op(t),0p(ta) };

6. Jp((P)(tL,tR)) = max{ap(tL),Up(tR)}.

Let us fix the functions op for P € {1, 2} as above. Consider a well-formed tree ¢ over the
alphabet Aa,k)' We say that a strategy X of a player P in G(t) is optimal (or o-optimal) if:

In a position u € dom(t) that is kept in ¢t and tJu = (P) (tL, tR) the strategy ¥ moves to

a subtree of a minimal value of op; i.e. ¥ can move to u -0 if op(tL) <jex op(tr) and to

u-1if op(tL) >1ex op(tr). If the values op(t1) and op(tg) are equal then ¥ can move in

any of the two directions.

In a position u that is switched in t and tJu = (P) (tL, tR) the strategy ¥ uses the same

rule as above but uses the function o5 to compare the P-signatures of the subtrees.

Notice that according to the above definition there might be more than one optimal strategy.

» Lemma 11. Ift € W3 (i) and X is an optimal strategy of P in G(t) then X is winning.
The following lemma claims the combinatorial core of this article: it shows that one can

compare the P-signatures using a continuous reduction to the languages W (i)

» Lemma 12. There exists a continuous function cp: (TrAF k))Q — TI"A; o such that if t.

and ty are well-formed then so is cp(ty,tr) and additionally

cp(ty, tg) € W1k if and only if op(tL) <iex op(tr)-

140:7

ICALP 2018

140:8

Unambiguous Languages Exhaust the Index Hierarchy

The rest of this section demonstrates Proposition 9. Lemma 12 is proved in the next section.
Consider a function f: Tr A, Tr At defined recursively as:
i, i,k)

F(PY(tu,ta)) = (P4} (F(t2), £(ta). f (cp(te.ta)) for P € {1,2},
F(~ (1) =~(£()),
() = W) for j € {i,....k}.

Clearly by the definition of f we know that shave (f (t)) = ¢. Additionally, f(¢) is defined
recursively using cp which is continuous, therefore f is also continuous. As cp maps
well-formed trees to well-formed trees, so does f.

First assume that f(t) € Lp ;) as witnessed by an accepting run p of U over f(t) with
p(€) = (x, P,*). Fact 6 says that P wins G (shave(f(t))) = G(t), sot € W k)

For the converse assume that Py wins G(t) for a well-formed tree ¢ over Al k-

» Lemma 13. Ift is well-formed then there exists a unique run p of U over f(t) such that
for every u € dom(f(t)) we have

p(u) = (%, P,x) if and only if P wins G(shave(f(t)|u)). (1)
Moreover, all the p-strategies are winning for the respective players.

Proof. The construction of p is inductive from the root preserving (1). The only ambiguity
when choosing transitions of ¢/ is when we reach a node w € dom(f(t)) such that p(w) is of
the form (x, P,*) and f(t)]w = (P+)(f(t), f(tz), f(cp(tr,tr))). We choose either the left or
the right of the two lower transitions of & depending on the winner in G (shave(f(t)|w - 2))
in such a way to satisfy (1) for v = w - 2. By the symmetry assume that we used the left
transition. This leaves undeclared the second coordinate of p(w - 1) (resp. p(w-0) in the case
of the right transition). Again we declare this coordinate accordingly to (1). We need to check
that (1) is also satisfied for u = w- 0 (resp. u = w- 1) i.e. that P wins G(shave(f(t)]w -0)).
To see that, we notice that the following conditions are equivalent (¥):

p(w) = (%, *,1) [by the form of the transitions of U]
plw-2) = (x,1,%) [by the definition of p]
1 wins in G (shave(f(t)[(w - 2))) [by the form of f(¢)[(w - 2)]
1 wins in G (shave(f(cp(tr,tr))) [by the equality shave(f(t')) =¢']
1 wins in G(cp(te, tr)) [by Lemma 12]

op(tL) <iex op(tr).

Thus, if we choose the lower left transition of U, we know that o p(t.) <jex op(tr). By the
inductive invariant we know that co >iex o p(shave(f(t)|w)) = op((P)(t,tr)). Therefore,
Item 5 of Lemma 10 implies that o p(t) <jex 00 so in fact P wins G(t.) = G (shave(f(t.))) =
G (shave(f(t)[w - 0)). Thus, the invariant (1) is also preserved for u = w - 0. This concludes
the inductive definition of p. Lemma 7 implies uniqueness.

Take u € dom(f(t)) with p(u) = (%, P,*). Let & be the p-strategy in u and 1’ = f(¢t)[u.
Consider a node w € dom (shave(r’)) such that shave(r’)(w) = (P') with P’ = P if w is kept
and P’ = P if w is switched. In both cases f(t)(u-w) = (P'+). By the above equivalence (%)
and the definition of a p-strategy, ¥ makes a o-optimal move in w. Therefore, ¥ is optimal.
Invariant (1) says that P wins G(shave(r’)), so Lemma 11 implies that ¥ is winning. <

Fix the run p given by the above lemma. Since G(t) = G(shave(f(t))), p(€) = (x, Po,*).
Since all the p-strategies are winning, p is accepting by Lemma 5 and f(t) € Lp,(;). This
concludes the proof of Theorem 1 assuming that Lemma 12 holds.

M. Skrzypczak

5 Comparing signatures

We will now prove Lemma 12 by defining, given two trees p and s over A& k)» & game Cp(p,s).
To indicate the difference between the games Cp and G, we denote the players of Cp as 3 =1
and V = 2. The purpose of the game Cp will be to ensure that 3 wins Cp(p, s) if and only if
op(p) <jex op(s). The winning condition of the game Cp will be a parity condition, however,
the game will allow certain lookahead (see steps (EL) and (AL) in the definition of Cp). Then,
the function c¢p will just unravel the game Cp(p, s) into a tree over the alphabet Aa’k).

If ¢/ and k' are the minimal and maximal P-losing numbers; j is a P-losing number;
and 0 = (07,042, ...,0k) is a P-signature then o[j is the tuple (6;/,60;42,...,0;). For
completeness let cofj e . Clearly o]k’ = 0. Notice that o[j is also a P-signature (with
k = j) and moreover if o <jox 0’ then olj <jex o’[].

A position of the game Cp is a triple (p, s,f) where p, s € TYAZ-,M and /¢ is a P-losing
number. As Cp(p, s) we denote the game Cp with the initial position set to (p, S, k’). The
game is designed in such a way to guarantee the following claim.

» Claim 14. A position (p,s,f) is winning for 3 in Cp if and only if
UP(Z’)M <lex UP(S)M' (2)

A single round of the game Cp consists of a sequence of choices done by the players. It is
easy to encode such a sequence using additional intermediate positions of the game. For the
sake of readability, we do not specify these positions explicitly. Instead, a round moves the
game from a position (p, S, é) into a new position according to the following sequential steps:
(EL) 3 can claim that P loses G(s). If she does so, the game ends and 3 wins iff s ¢ W3 ;).
(AL) V can claim that P loses G(p). If he does so, the game ends and V wins iff p ¢ W3 ;1.
(El) 3 can modify ¢ into another P-losing number ¢/ < ¢. In that case the round ends and

the next position is (p/, s,¢’) where p' = [¢'](p).

(Al) V can modify ¢ into another P-losing number ¢ < ¢. In that case the round ends and
the next position is (p, s, ¢').

() Ifp=1[0(p) and s = [£](s’) then the round ends and the next position is (p/, s, ¢).

(Ip) If p is not of the form [£](p”) then a step called Step3(p) is done, resulting in an imme-
diate win of 3 or a new tree p’. The round ends and the next position is (p’, s, £).

(4s) Otherwise p is of the form [f](p’) and a step called StepV(s) is done, resulting in
an immediate win of V or a new tree s’. The round ends and the next position is (p, s’, £).

The result p’ of Step3(p) depends on the form of p as follows:

If p = (P)(pr, pr) then 3 chooses to set p’ = pr. or p’ = py.

If p = (P)(pr,pa) then V chooses to set p’ = py or p' = pa.

If p = [j](p’) and j > ¢ then p’ is defined and that round of Cp has priority j+1—P.

Otherwise 3 immediately wins.

Dually, the result s’ of StepV(s) depends on the form of s as follows:

If s = (P)(s, sg) then V chooses to set s’ = s, or s’ = s.

If s = (P)(sg, sg) then 3 chooses to set s’ = s or 5" = s5.

If s = [j](s") with j > £ then s’ is defined and that round of Cp has priority j—2+P.

Otherwise V immediately wins.

The rounds of Cp which priority is not declared above have priority k. An infinite play II
of Cp is won by 3 if the least priority seen infinitely often during II is even.

140:9

ICALP 2018

140:10

Unambiguous Languages Exhaust the Index Hierarchy

» Lemma 15. The game Cp(p,s) can be unravelled as a tree cp(p,s) over the alphabet Al
in such a way that for well-formed trees p, s, the tree cp(p,s) is well-formed and 3 wins
Cp(p, s) if and only if 1 wins g(CP(p, s)) Moreover, the function cp is continuous.

Proof. Notice that in both cases when a round of Cp has an explicitly declared priority, that
priority is j or j—1 with ¢ < ¢ < j < k. Therefore, the priorities of Cp are within {i,...,k}.

The condition s ¢ W1 ik from (EL) boils down to checking if 1 wins G(~(s)). Similarly,
s ¢ W3 (i, if and only if 1 wins G(s). The same for the condition p € W5 ik from (AL).
Continuity and well-formedness follow directly from the definition. |

Notice that the rules of the game Cp do not allow to move from a position with a tree
(either p or s) of the form ~(t) to a position with the respective tree being ¢. Therefore, we
never need to swap the considered player P into P.

Claim 14 together with Lemma 15 prove Lemma 12. Thus, the rest of this section is
devoted to a proof of Claim 14. Since the winning condition of Cp is a parity condition, that
game is positionally determined. Thus, to prove Claim 14 it is enough to show that none of
the following two cases is possible for a position (p, s,) of Cp:

(2) is true and V has a positional winning strategy Yy from (p, s, ¢),

(2) is false and 3 has a positional winning strategy X3 from (p, s, ¢).

In both cases we will confront the assumed strategy with a specially designed positional
quasi-strategy of the opponent (XF and X respectively). The quasi-strategy X3 will be
defined only in positions that satisfy (2) and the quasi-strategy ¥y in the remaining positions.

The quasi-strategy XJ (resp. 33) of a player 3 (resp. V) in a round starting in a posi-
tion (p, s, ¢) performs the following choices in sub-rounds (EL) to (AI):

In (EL) X3 claims that P loses G(s) if and only if he really does.

In (AL) X3 claims that P loses G(p) if and only if he really does.

In (EI) X3 modifies ¢ into ¢ if ¢/ < /¢ is the minimal P-losing number such that

op(p)[l' <iex op(s)[€. If there is no such number, 33 does not declare ¢'.

In (AI) ¥y modifies ¢ into ¢ if ¢/ < ¢ is the minimal P-losing number such that

op(p)[l' >1ex op(s) €. If there is no such number, 33 does not declare ¢'.

Moreover, in Step3(p) when p = (P)(pL,pr) the quasi-strategy X3 chooses to set p’ = pp
if and only if op(pL) <iex op(pr). Dually, in StepV¥(s) when s = (P)(s., sg) the quasi-stra-
tegy X chooses to set s’ = s if and only if op(sp) <iex 0p(sg).

Now it remains to define the choices of the quasi-strategies in the steps StepV(s) and

Step3(p) when the given tree is of the form (P)(ty,tz). This is the place where the choices
of ¥3 and Z; are not unique and that is why these are quasi-strategies.

» Definition 16. The quasi-strategies X3 and X3 need to satisfy the following preservation

guarantees. First, in Step¥(s) when s = (P)(sy, sg) then X3 can set s” as any of the two s,

sp that satisfies op(s")[¢ >1ex op(p)[€. Second, in Step3(p) when p = (P)(pL,pr) then LY
can set p’ as any of the two pr, pg that satisfies op(p') [>1ex o p(8)]¥.

» Fact 17. In both cases the preservation guarantee leaves at least one possible choice.

» Lemma 18. Consider a position (p,s,f). If it satisfies (2) and 3 follows her quasi-stra-
tegy X3 then either she immediately wins or the next position also satisfies (2).

Dually, if the position violates (2) and ¥ follows his quasi-strategy ¥y then either he
immediately wins or the next position also violates (2).

Notice that each play of Cp can modify the value of £ only bounded number of times.
Moreover, because of the conditions in steps (), ({p), and ({s) we obtain the following fact.

M. Skrzypczak

» Fact 19. If1I is an infinite play of Cp then exactly one of the following three cases holds:
IT makes infinitely many (L) steps,
from some point on IT makes only ({p) steps,
from some point on II makes only (}s) steps.

Observe that each step of Cp of the form Step3(p) or Step¥(s) (if it doesn’t mean
an immediate win) simulates in fact a round of the game G(p) and G(s) respectively. Moreover,
the quasi-strategies of the players 3 and V simulate optimal strategies of P in these rounds
respectively. Thus, P must win these plays, as expressed by the following lemma.

» Lemma 20. Consider an infinite play consistent with the quasi-strateqy of one of the
players (X3 or X). Then the play only finitely many times makes the ({) step.

Moreover, if the play follows E; and from some point on makes only (Ip) steps then it is
winning for 3. Similarly, if the play follows 3y and from some point on makes only (1s)
steps then it is winning for V.

Proof. First take an infinite play II of the quasi-strategy X3 of 3 starting from a position
(po, S0, £o). The subtrees of the tree pg seen during II follow a (possibly finite) play « of an

optimal strategy of P in G(po). Since II is infinite, 3 does not declare that P loses G(so).

Therefore, op(sg) <jex 00 and by (2) we know that also o p(pg) <jex 00 which implies that
po € W;,(i,k)‘ By Lemma 11 the play « in G(po) follows a winning strategy of P.

We will show that the step ({) occurs only finitely many times in II. Assume contrarily
and let ¢ be the minimal number ¢ that occurs in the play II. Using the above assumptions,

we know that ¢ is the minimal priority that is seen in the tree pg infinitely many times on a.
Therefore, the simulated play « in G(pp) is infinite and losing for P, which is a contradiction.

Therefore, by Fact 19 the play II either makes from some point on only ({p) steps, or
from some point on only ({s) steps. In the first case it follows the play a of G(pg) that is
winning for P. By the choice of priorities in the step Step3(p) we know that 3 wins II.

The case of the quasi-strategy Z; of V is entirely dual: we use the assumption that (2) is
violated to know that op(s) <jex 00 s0 50 € W;,(i,k)‘ Moreover, the choice of priorities in
the step StepV(s) implies that if IT makes StepV(s) infinitely many times then V wins II. <

Now we move to the proof of the first case we need to exclude, i.e. that a position (p, s, é)
of Cp satisfies (2) but V has a positional winning strategy ¥y from that position. We will
prove that such a case is not possible. The second case is dual and the proof is analogous.

By Lemma 18, the positional quasi-strategy X3 always stays within positions satisfying
the invariant (2). Moreover, the quasi-strategy never reaches a position that is immediately
losing for 3. Similarly, ¥y never reaches a position that is immediately losing for V. Thus,
all the plays consistent with both ¥4 and Yy must be infinite.

Notice that the values of £ are non-increasing during the plays of Cp and therefore, there
exists a position that belongs to both ¥4 and Yy such that the value ¢ stays constant during

all the plays from that position. Without loss of generality take this as the starting position.

We can now proceed inductively in the tree obtained by unravelling the intersection of
Y3 and Yy: whenever the currently considered subtree contains anywhere a ({) step, we
change the initial position to the result of that step. By Lemma 20 no play consistent with
Y3 takes the ({) step infinitely many times. Therefore, our inductive procedure has to stop
at some point with no ({) steps in the current subtree. Without loss of generality we can
assume that the initial position (pg, sg,£p) is the last position from the procedure. We know
that the plays consistent with both X3 and Xy never take the ({) step nor modify £ = /.

140:11

ICALP 2018

140:12 Unambiguous Languages Exhaust the Index Hierarchy

r(t) =[] —[0]—t ra(t) = (1)

— st

Figure 3 The pair of trees being the result of the reduction r(t) from Proposition 22.

The structure of Cp guarantees that since the step ({) is not allowed, each play consistent
with both X3 and Xy takes only ({p) steps or takes only ({s) steps. Lemma 20 implies that
in the former case the play would be winning for 3, contradicting the assumption that Yy is
winning. Thus, all the considered plays take only ({s) steps. In particular p = pg is constant.

The intersection of Yy and X induces a partial strategy Xp of P in G(sq)—Xp is partial
because it does not contain positions that cannot be reached by following X3 because of the
preservation guarantees, see Definition 16. The subtrees s’ of sg in such unreachable positions
satisfy op(s')[lo <iex 0p(po)€o by the definition of X3. In the positions on which Xp is
defined it never visits a priority j with j < £y nor a node labelled ~ because such a move is
immediately losing for V¥ in StepV(s). Because of the choice of the priorities in StepV(s) and
since Yy is winning, ¥ p is winning for P on infinite plays.

Notice that since we take only (Is) steps, po must be of the form [{](pj). Therefore,

op(po)llo = (Bir,...,0p, + 1) for (0;,...,04,) o op(ph)1€o. Tt means that whenever

the partial strategy X p cannot reach a position with a subtree s’, we know that in fact
op(s)y <iex (Biry...,0¢,). The following lemma says that the existence of such a partial
strategy X p witnesses the inequality op(so)[€o <iex (0ir-..,0¢,). By the definition of the
ordinals 0; we know that (6,/,...,60.,) <iex op(po)[fo, what contradicts (2) for (po, so, o).

» Lemma 21. Let P € {1,2},t € W;,(i’k), 1’ be the minimal P-losing number, and £ be some
P-losing number. Assume that (0;1,60;12,...,0,) is a tuple of ordinals and Xp is a partial
strategy of the player P in G(t) such that:
Y p never reaches a node u with t(u) = [j] with j < € nor a node u with t(u) = ~,
infinite plays of Xp are winning for P,
if a position u € dom(t) is not reachable by ¥ then op (t [u) M <iex (Biry...,00).
Under all these assumptions op(t)1€ <jex (031 ... ,0¢).

This finishes the proof of Claim 14. We conclude this section with a simple argument
showing that a similar reduction ¢ does not exist when we disallow the swapping symbol ~,
as expressed by the following proposition.

» Proposition 22. There is no continuous function c': (TrA(O,k))2 — Tra,,, such that
A (t,tr) € Wy ok if and only if o1(t1) <iex 01(tr)-

Proof. Assume that such a function ¢ exists. Fix a tree t; € Wy (g) and consider a function
r:Trag,, — (TI‘A(O,k))Z defined as 7(t) = (r1(t),r2(t)) for the pair of trees from Figure 3.
Clearly r is continuous. Let ¢ € Tra, ,, and r(t) = (t,ts). Notice that o1(t.) = (1,0,...).
The value o1 (tg) is either (0,0,...) if t € Wy (o) or (2,0,...) otherwise. Therefore, ¢’ (r(t)) €
Wl,(o,k) iff o1(t1) <jex 01(tg) iff t ¢ Wl,(O,k) iff t € Wz,(O,k)- Thus, ' or: TrA(U,k) — TrA(O,k)
is a continuous reduction of Wy) to Wy (o). This is a contradiction with [2, Lemma 1]
(the assumption of contractivity is redundant there by Lemma 2 from the same paper). <

M. Skrzypczak

6

Conclusions

The main result of this work is the construction of the languages Lp ;1) that solve the
question of index bounds for unambiguous languages. Although the construction is not
direct and relies heavily on an involved theory of signatures, these complications seem to be
unavoidable when one wants to recognise languages like W; ;, in an unambiguous way.

The definition of signatures given in the paper seems to be the canonical one, as witnessed

by the point-wise minimality from Lemma 10. The previous ways of using signatures were
mainly focused on their monotonicity and well-foundedness, thus it was enough to assume
inequalities in the invariants of Lemma 10. Here, we are interested in comparing their actual
values, therefore we insist on preserving these values via equalities.

—— References

1

10

11

12

13
14

15

16

17

18

André Arnold. The mu-calculus alternation-depth hierarchy is strict on binary trees. ITA,
33(4/5):329-340, 1999.

André Arnold and Damian Niwinski. Continuous separation of game languages. Funda-
menta Informaticae, 81(1-3):19-28, 2007.

Marcin Bilkowski and Michal Skrzypczak. Unambiguity and uniformization problems on
infinite trees. In CSL, pages 81-100, 2013.

Julian C. Bradfield. Simplifying the modal mu-calculus alternation hierarchy. In STACS,
pages 39-49, 1998.

Arnaud Carayol and Christof Loding. MSO on the infinite binary tree: Choice and order.
In CSL, pages 161-176, 2007.

Arnaud Carayol, Christof Loding, Damian Niwiniski, and Igor Walukiewicz. Choice func-
tions and well-orderings over the infinite binary tree. Cent. Europ. J. of Math., 8:662—682,
2010.

Thomas Colcombet. Forms of determinism for automata. In STACS, pages 1-23, 2012.
Jacques Duparc, Kevin Fournier, and Szczepan Hummel. On unambiguous regular tree
languages of index (0, 2). In CSL, pages 534-548, 2015.

Allen Emerson and Charanjit Jutla. Tree automata, mu-calculus and determinacy. In
FOCS’91, pages 368-377, 1991.

Yuri Gurevich and Saharon Shelah. Rabin’s uniformization problem. J. Symb. Log.,
48(4):1105-1119, 1983.

Szczepan Hummel. Unambiguous tree languages are topologically harder than deterministic
ones. In GandALF, pages 247-260, 2012.

Szczepan Hummel. Topological Complexity of Sets Defined by Automata and Formulas.
PhD thesis, University of Warsaw, 2017.

Alexander S. Kechris. Classical descriptive set theory. Springer-Verlag, New York, 1995.
Andrzej W. Mostowski. Games with forbidden positions. Technical report, University of
Gdansk, 1991.

Damian Niwiniski and Igor Walukiewicz. Ambiguity problem for automata on infinite trees.
unpublished, 1996.

Richard E. Stearns and Harry B. Hunt. On the equivalence and containment problems for
unambiguous regular expressions, regular grammars and finite automata. SIAM Journal
of Computing, 14(3):598-611, 1985.

Robert S. Streett and E. Allen Emerson. An automata theoretic decision procedure for the
propositional mu-calculus. Information and Computation, 81(3):249-264, 1989.

Wolfgang Thomas. Languages, automata, and logic. In Handbook of Formal Languages,
pages 389-455. Springer, 1996.

140:13

ICALP 2018

140:14

Unambiguous Languages Exhaust the Index Hierarchy

19 Wolfgang Thomas and Helmut Lescow. Logical specifications of infinite computations. In
REX School/Symposium, pages 583-621, 1993.

20 TIgor Walukiewicz. Pushdown processes: Games and model checking. In Rajeev Alur and
Thomas A. Henzinger, editors, Computer Aided Verification, pages 62—74, Berlin, Heidel-
berg, 1996. Springer Berlin Heidelberg.

21 Igor Walukiewicz. Monadic second-order logic on tree-like structures. Theoretical Computer
Science, 275(1-2):311-346, 2002.

	Introduction
	Basic notions
	The languages
	Construction of f
	Comparing signatures
	Conclusions

