985 research outputs found

    Application of Artificial Intelligence to Ultrasonography

    Get PDF
    The use of artificial intelligence (AI) technology in medicine has gained considerable attention, although its application in ultrasound medicine is still in its infancy. Deep learning, the main algorithm of AI technology, can be applied to intelligent ultrasound picture detection and classification. Describe the application status of AI in ultrasound imaging, including thyroid, breast, and liver disease applications. The merging of AI and ultrasound imaging can increase the accuracy and specificity of ultrasound diagnosis and decrease the percentage of incorrect diagnoses

    Recent Advances in Machine Learning Applied to Ultrasound Imaging

    Get PDF
    Machine learning (ML) methods are pervading an increasing number of fields of application because of their capacity to effectively solve a wide variety of challenging problems. The employment of ML techniques in ultrasound imaging applications started several years ago but the scientific interest in this issue has increased exponentially in the last few years. The present work reviews the most recent (2019 onwards) implementations of machine learning techniques for two of the most popular ultrasound imaging fields, medical diagnostics and non-destructive evaluation. The former, which covers the major part of the review, was analyzed by classifying studies according to the human organ investigated and the methodology (e.g., detection, segmentation, and/or classification) adopted, while for the latter, some solutions to the detection/classification of material defects or particular patterns are reported. Finally, the main merits of machine learning that emerged from the study analysis are summarized and discussed. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Computer-Assisted Algorithms for Ultrasound Imaging Systems

    Get PDF
    Ultrasound imaging works on the principle of transmitting ultrasound waves into the body and reconstructs the images of internal organs based on the strength of the echoes. Ultrasound imaging is considered to be safer, economical and can image the organs in real-time, which makes it widely used diagnostic imaging modality in health-care. Ultrasound imaging covers the broad spectrum of medical diagnostics; these include diagnosis of kidney, liver, pancreas, fetal monitoring, etc. Currently, the diagnosis through ultrasound scanning is clinic-centered, and the patients who are in need of ultrasound scanning has to visit the hospitals for getting the diagnosis. The services of an ultrasound system are constrained to hospitals and did not translate to its potential in remote health-care and point-of-care diagnostics due to its high form factor, shortage of sonographers, low signal to noise ratio, high diagnostic subjectivity, etc. In this thesis, we address these issues with an objective of making ultrasound imaging more reliable to use in point-of-care and remote health-care applications. To achieve the goal, we propose (i) computer-assisted algorithms to improve diagnostic accuracy and assist semi-skilled persons in scanning, (ii) speckle suppression algorithms to improve the diagnostic quality of ultrasound image, (iii) a reliable telesonography framework to address the shortage of sonographers, and (iv) a programmable portable ultrasound scanner to operate in point-of-care and remote health-care applications

    Radiomics analysis in gastrointestinal imaging: a narrative review

    Get PDF
    Background and Objective: To present an overview of radiomics radiological applications in major gastrointestinal oncological non-oncologic diseases, such as colorectal cancer, pancreatic cancer, gastro- oesophageal cancer, gastrointestinal stromal tumor (GIST), hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and non-oncologic diseases, such as liver fibrosis, nonalcoholic steatohepatitis, and inflammatory bowel disease. Methods: A search of PubMed databases was performed for the terms “radiomic”, “radiomics”, “liver”, “small bowel”, “colon”, “GI tract”, and “gastrointestinal imaging” for English articles published between January 2013 and July 2022. A narrative review was undertaken to summarize literature pertaining to application of radiomics in major oncological and non-oncological gastrointestinal diseases. The strengths and limitation of radiomics, as well as advantages and major limitations and providing considerations for future development of radiomics were discussed. Key Content and Findings: Radiomics consists in extracting and analyzing a vast amount of quantitative features from medical datasets, Radiomics refers to the extraction and analysis of large amounts of quantitative features from medical images. The extraction of these data, integrated with clinical data, allows the construction of descriptive and predictive models that can build disease-specific radiomic signatures. Texture analysis has emerged as one of the most important biomarkers able to assess tumor heterogeneity and can provide microscopic image information that cannot be identified with the naked eye by radiologists. Conclusions: Radiomics and texture analysis are currently under active investigation in several institutions worldwide, this approach is being tested in a multitude of anatomical areas and diseases, with the final aim to exploit personalized medicine in diagnosis, treatment planning, and prediction of outcomes. Despite promising initial results, the implementation of radiomics is still hampered by some limitations related to the lack of standardization and validation of image acquisition protocols, feature segmentation, data extraction, processing, and analysi

    Advances in liver US, CT, and MRI: moving toward the future

    Get PDF
    Over the past two decades, the epidemiology of chronic liver disease has changed with an increase in the prevalence of nonalcoholic fatty liver disease in parallel to the advent of curative treatments for hepatitis C. Recent developments provided new tools for diagnosis and monitoring of liver diseases based on ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI), as applied for assessing steatosis, fibrosis, and focal lesions. This narrative review aims to discuss the emerging approaches for qualitative and quantitative liver imaging, focusing on those expected to become adopted in clinical practice in the next 5 to 10 years. While radiomics is an emerging tool for many of these applications, dedicated techniques have been investigated for US (controlled attenuation parameter, backscatter coefficient, elastography methods such as point shear wave elastography [pSWE] and transient elastography [TE], novel Doppler techniques, and three-dimensional contrast-enhanced ultrasound [3D-CEUS]), CT (dual-energy, spectral photon counting, extracellular volume fraction, perfusion, and surface nodularity), and MRI (proton density fat fraction [PDFF], elastography [MRE], contrast enhancement index, relative enhancement, T1 mapping on the hepatobiliary phase, perfusion). Concurrently, the advent of abbreviated MRI protocols will help fulfill an increasing number of examination requests in an era of healthcare resource constraints

    Medical Radiology: Current Progress

    Get PDF
    Recently, medical radiology has undergone significant improvements in patient management due to advancements in image acquisition by the last generation of machines, data processing, and the integration of artificial intelligence. In this way, cardiovascular imaging is one of the fastest-growing radiological subspecialties. In this study, a compressive review was focused on addressing how and why CT and MR have gained a I class indication in most cardiovascular diseases, and the potential impact of tissue and functional characterization by CT photon counting, quantitative MR mapping, and 4-D flow. Regarding rectal imaging, advances in cancer imaging using diffusion-weighted MRI sequences for identifying residual disease after neoadjuvant chemoradiotherapy and [18F] FDG PET/MRI were provided for high-resolution anatomical and functional data in oncological patients. The results present a large overview of the approach to the imaging of diffuse and focal liver diseases by US elastography, contrast-enhanced US, quantitative MRI, and CT for patient risk stratification. Italy is currently riding the wave of these improvements. The development of large networks will be crucial to create high-quality databases for patient-centered precision medicine using artificial intelligence. Dedicated radiologists with specific training and a close relationship with the referring clinicians will be essential human factors

    Ultrasound Elastography

    Get PDF
    The comparison between methods, evaluation of portal hypertension and many other questions are still open issues in liver elastography. New elastographic applications are under evaluation and close to being used in clinical practice. Strain imaging has been incorporated into many disciplines and EFSUMB guidelines are under preparation. More research is necessary for improved evidence for clinical applications in daily practice. The Special Issue published papers on recent advances in development and application of Ultrasound Elastography
    corecore