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Abstract

Over the past two decades, the epidemiology of chronic liver disease has changed with an increase in the
prevalence of nonalcoholic fatty liver disease in parallel to the advent of curative treatments for hepatitis C. Recent
developments provided new tools for diagnosis and monitoring of liver diseases based on ultrasound (US),
computed tomography (CT), and magnetic resonance imaging (MRI), as applied for assessing steatosis, fibrosis, and
focal lesions. This narrative review aims to discuss the emerging approaches for qualitative and quantitative liver
imaging, focusing on those expected to become adopted in clinical practice in the next 5 to 10 years. While
radiomics is an emerging tool for many of these applications, dedicated techniques have been investigated for US
(controlled attenuation parameter, backscatter coefficient, elastography methods such as point shear wave
elastography [pSWE] and transient elastography [TE], novel Doppler techniques, and three-dimensional contrast-
enhanced ultrasound [3D-CEUS]), CT (dual-energy, spectral photon counting, extracellular volume fraction,
perfusion, and surface nodularity), and MRI (proton density fat fraction [PDFF], elastography [MRE], contrast
enhancement index, relative enhancement, T1 mapping on the hepatobiliary phase, perfusion). Concurrently, the
advent of abbreviated MRI protocols will help fulfill an increasing number of examination requests in an era of
healthcare resource constraints.
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Key points e Abbreviated MRI protocols will help fulfill an
increasing number of examination requests.
e Technical advances in liver imaging have been
observed for ultrasound, computed tomography, and
magnetic resonance imaging (MRI). Background
¢ Quantitative liver imaging biomarkers are promising ~ Over the past two decades, we have witnessed the high
to measure disease severity and reduce interoperator ~ prevalence of nonalcoholic fatty liver disease (NAFLD),

variability. the advent of curative treatments for hepatitis C, the
e Quantitative liver imaging biomarkers have the emergence of quantitative imaging, and the need for
potential to be increasingly adopted in clinical earlier detection of liver malignancies [1, 2]. These
practice. changes in the epidemiology of chronic liver disease and

clinical needs have encouraged radiologists to adopt new
imaging techniques.
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qualitative and quantitative liver imaging based on US,
CT, and MRI. While some of these techniques are not
yet validated, we have focused on those that are ex-
pected to become adopted within the next 5 to 10 years
in clinical practice for the assessment of diffuse liver dis-
eases and focal liver lesions in cirrhotic, oncologic, or
otherwise healthy patients. Diffuse liver diseases encom-
pass a wide range of viral, metabolic, cholestatic, or
autoimmune as well as vascular diseases. Briefly, these
diffuse liver diseases may present fat, iron, inflammation,
biliary, vascular, or fibrosis changes at histopathology.
Significant research has been performed on imaging-
based quantification of liver steatosis and fibrosis and
will be discussed in this narrative review.

Clinical needs

Assessment of hepatic steatosis

Steatosis is characterized by an abnormal accumulation
of lipids within the hepatocytes, leading to an overall
hepatic-fat content greater than 5% of liver weight. At
pathology, steatosis is graded from 0 to 3 based on the
proportion of hepatocytes presenting macrovesicular
steatosis: grade 0 (normal) < 5%; grade 1 (mild) = 5-
33%; grade 2 (moderate) = 34—66%; and grade 3 (severe)
> 67% [3]. NAFLD is nowadays the most frequent cause
of hepatic steatosis and may evolve into nonalcoholic
steatohepatitis (NASH) with development of inflamma-
tion and fibrosis [4]. The reference standard for quantifi-
cation of hepatic steatosis is liver biopsy. However,
biopsy is invasive and vulnerable to sampling bias, espe-
cially when steatosis is distributed heterogeneously [5,
6]. The American Association for the Study of Liver Dis-
eases guidance recommends considering liver biopsy in
patients with NAFLD at increased risk of having steato-
hepatitis and/or advanced fibrosis [7]. Therefore, nonin-
vasive biomarkers are needed to quantify hepatic
steatosis particularly at those early stages where lifestyle
changes may have a significant impact to avoid progres-
sion to fibrosis.

Assessment of hepatic fibrosis

Hepatic fibrosis is characterized by an excessive accumu-
lation of extracellular matrix proteins due to activation
of hepatic stellate cells. This fibrotic scarring process
may be observed in all causes of chronic liver diseases.
The diagnosis and staging of hepatic fibrosis is crucial
for the management of patients with chronic liver dis-
ease because early-stage fibrosis is potentially reversible
with prompt treatment, and advanced fibrosis is an inde-
pendent predictor of overall mortality [8]. Biopsy is the
reference standard for staging fibrosis [9]; however, be-
cause it is invasive, several imaging-based methods have
been investigated for detection and differentiation of fi-
brosis stages [10, 11].

Page 2 of 16

Assessment of focal liver lesions

Focal liver lesions encompass a wide range of benign
and malignant lesions that require different manage-
ment. The characterization of focal liver lesions must
take into account the clinical background (i.e., cirrhotic,
oncologic, or nononcologic noncirrhotic patients) be-
cause the epidemiology and imaging presentations can
substantially differ. In the setting of cirrhosis, hepatocel-
lular carcinoma (HCC) must be excluded or diagnosed
promptly [12]. In oncologic patients, high sensitivity and
specificity are required for detection and diagnosis of
liver metastases [13, 14]. In nononcologic noncirrhotic
patients, the pretest probability of a lesion being benign
is high; hence, lesion characterization should be per-
formed at the minimum cost and with high specificity to
avoid unnecessary treatment.

From qualitative to quantitative assessment

Table 1 provides an overview of imaging techniques dis-
cussed in this narrative review. The qualitative radio-
logical assessment has represented the main approach to
liver imaging for years. Qualitative radiological assess-
ment has been expanded with the ability to visualize
microvascular flow on US and the improvement of
image quality on all imaging modalities. Quantitative im-
aging biomarkers are also increasingly adopted in clinical
practice for extraction of quantifiable features to meas-
ure disease severity and reduce inter-operator variability.

Ultrasonography

Brightness-mode (B-mode) US remains the mainstay for
anatomical imaging but several new techniques have
been introduced, such as elastography and quantitative
US parameters for assessment of liver tissue properties
other than echogenicity and new Doppler and contrast-
enhanced (CEUS) modes for vascular assessment.

Assessment of hepatic steatosis

Quantitative US techniques characterize tissue micro-
structure by measuring acoustic parameters. In the last
decades, controlled attenuation parameter (CAP), at-
tenuation imaging coefficient, and sound speed estima-
tion on US showed to be promising for monitoring
steatosis severity in chronic liver diseases with moderate
to high sensitivity and specificity for diagnosing different
grades of steatosis (Fig. 1) [15-17]. CAP is among the
most widely studied quantitative technique for assess-
ment of liver steatosis. CAP measures the attenuation of
ultrasound echoes through the liver and expresses the
acoustic energy attenuation in decibel/meter (dB/m).
CAP software is available on the transient elastography
device (FibroScan, Echosens, France) and measured sim-
ultaneously to liver stiffness [18]. CAP is, however, lim-
ited by the lack of a B-mode guidance to identify the



Vernuccio et al. European Radiology Experimental

(2021) 5:52

Page 3 of 16

Table 1 Previous/current and emerging liver imaging techniques for assessing steatosis, fibrosis, and focal lesions

Imaging modality Purpose

Previous/current techniques

Emerging techniques

Ultrasound Steatosis assessment

Fibrosis assessment

Focal liver lesions assessment

Computed tomography Steatosis assessment

B-mode

B-mode

B-mode
Contrast-enhanced ultrasound (CEUS)

Single-energy

Controlled attenuation parameter (CAP)

Backscatter coefficient
Radiomics

Transient elastography

Shear wave elastography (SWE)
point SWE

Radiomics

Novel Doppler techniques
Three-dimensional CEUS

Dual-energy

Fibrosis assessment

Focal liver lesions assessment

Magnetic resonance imaging Steatosis assessment

Fibrosis assessment

Focal liver lesions assessment

Morphological changes

Multiphasic contrast-enhanced

Spectroscopy

Morphological changes

Multiphasic contrast-enhanced

Spectral photon counting
Radiomics

Hepatic extracellular volume fraction
Perfusion

Surface nodularity

Radiomics

Perfusion
Spectral photon counting
Radiomics

Proton density fat fraction (PDFF)
Radiomics

Elastography

Contrast enhancement index
Relative liver enhancement

T1 mapping on hepatobiliary phase
Perfusion

Abbreviated protocols
Radiomics

sampling area. To overcome this limitation, software for
measuring attenuation imaging coefficient with B-mode
guidance has been proposed by several US vendors [19].
The use of radiomics for staging hepatic steatosis has
been recently investigated. Tang et al. [20] developed a
machine learning model based on quantitative US pa-
rameters combined with elastography in a preclinical
study in rats, and demonstrated moderately high accur-
acy of the model in the differentiation of the different
grades of hepatic steatosis and inflammation grades.

Assessment of hepatic fibrosis

US elastography provides a widely available, noninvasive,
low cost, and repeatable method to assess liver fibrosis,
and it is recommended in diagnostic work-up of chronic
liver diseases [21]. It enables quantitative assessment of
liver stiffness by applying an external force by means ei-
ther of a mechanically induced impulse (as in transient
elastography, TE) or US-induced focused radiation force
impulse (as in point shear wave elastography, pSWE)
and measuring the velocity of propagated US waves axial
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Fig. 1 40-year-old man with hepatic steatosis. Multiparametric ultrasound assessment includes (a) hepatorenal index, (b) shear wave elastography
imaging, and (c) attenuation imaging coefficient and sound speed estimation
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(in TE) or perpendicular (in pSWE quantification) to the
US beam pathway [21]. Depending on the implementa-
tion, various parameters related to tissue stiffness such
as shear wave speed or young elastic modulus are re-
ported as biomarkers of liver fibrosis (Fig. 2) [22]. Recent
developments of US elastography include volumetric as-
sessment of liver stiffness and its variation in real time.
One limitation impeding the clinical use of US elastogra-
phy is that cutoff values for fibrosis staging vary across
US systems from different vendors. In general, however,
a Young modulus of less than 7 kPa (1.5 m/s) (pSWE
and 2D SWE) can help rule out significant fibrosis [23].

The use of radiomics for staging hepatic fibrosis on
US, CT, or MRI has been investigated in the last decade,
with most studies including patients with hepatitis C or
B infection as etiology of the chronic liver disease and
only few patients with NAFLD [24-26]. In regard to
radiomics applied to 2D-SWE, a prospective study in-
cluding 398 patients with chronic hepatitis B identified a
predictive radiomics model with excellent area under the
ROC curve (AUC) for both cirrhosis and advanced
fibrosis [24].

Assessment of focal liver lesions

CEUS is the most economically appropriate second-line
imaging modality for the characterization of focal liver
lesions after inconclusive baseline US in nononcologic
noncirrhotic patients [27, 28]. The main feature
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indicating benignity is a sustained and prolonged con-
trast enhancement with lack of washout in the portal
venous and late phases (Fig. 3) [27]. The main caveat to
this observation is that well-differentiated HCC may
show prolonged and sustained contrast-enhancement
too, although the clinical setting is different. In cirrhotic
patients, CEUS allows characterization of contrast en-
hancement patterns of HCC with good sensitivity and
specificity, without the use of ionizing radiation and with
a much higher temporal resolution than CT or MRI
[29]. CEUS can also be used to guide locoablative ther-
apies and to assess treatment response [30]. In oncologic
patients, CEUS provides higher sensitivity compared to
unenhanced US for the detection of liver metastases and
for characterization of liver lesions deemed indetermin-
ate on CT and MRI [31]. In patients treated with antian-
giogenic therapies for solid tumors, data show
encouraging results in the use of dynamic CEUS to dis-
tinguish responders from non-responders [32]. In
addition, microbubbles are being actively studied not
only as US contrast agents but also for local drug deliv-
ery under US triggering in animal studies [33].

Novel Doppler techniques assess microvascular flow
by differentiating the signal of slow or small vessels from
clutter artifacts. US manufacturers have introduced tech-
niques such as superb microvascular imaging (SMI,
Canon Medical Systems, Otawara, Japan), microflow im-
aging (MFI, Philips Healthcare, Best, The Netherlands),
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Fig. 2 Ultrasound shear wave elastography for assessment of hepatic fibrosis. a Brightness-mode image with a 1.0-cm circular region of interest
indicating a mean stiffness of 7.2 kPa. b Shear wave imaging mode indicating the liver stiffness with a color parametric map along a scale from 0
to 42 kPa
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Fig. 3 Contrast-enhanced ultrasound for assessment of focal nodular hyperplasia. Dual-display images with brightness-mode (left) and contrast-
enhanced ultrasound images (right). a Images in arterial phase (28 s after the iv. injection of contrast agent) show homogeneous and strong
enhancement (white arrows) with a central hypoechoic scar (black arrow). b In the portal venous phase (86 s after the injection), the lesion is still
slightly hyperechoic to the adjacent liver parenchyma (white arrows) and the central scar remains hypoechoic (black arrow)

and microvascular flow imaging (MVFI) (MV-FlowTM,
Samsung Medison Co., Ltd., Seoul, Korea). These new,
third-generation Doppler-based techniques enable the
depiction of slow blood flow at a high spatial resolution
and frame rate by using advanced clutter suppression,
thus improving sensitivity and accuracy of Doppler US
in the detection of vascularity in liver tumors with a safe,
inexpensive, and readily available modality (Fig. 4) [34,
35]. Dynamic three-dimensional CEUS allows the evalu-
ation of tumor perfusion in three orthogonal planes and
the detection of flow in vessels as tiny as 40 um with

quantification of tumor contrast enhancement from
time-intensity curves.

Radiomics of US images may be also a promising tech-
nique for assessment of focal liver lesions. Liu D et al.
[36] recently proposed a radiomic-based CEUS learn-
ing model to predict response of HCC patients to their
first transarterial chemoembolization session by quanti-
tatively analyzing their preoperative CEUS examinations.
However, prospective multicenter studies on large study
populations with validation cohorts are still needed be-
fore considering the clinical adoption.

Fig. 4 Microvascular flow imaging in a young woman with focal nodular hyperplasia. a Brightness-mode ultrasound demonstrates a 2.8-cm focal
nodular hyperplasia (arrow) lacking any vascularization at conventional color Doppler. b Microvascular assessment with microvascular flow
imaging clearly depicts an intralesional vessel (arrowhead)
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Computed tomography

CT represents a mainstay for liver assessment, with the
vast majority of acquisitions performed with single-
energy CT scans. The great benefit in identifying a reli-
able method to quantify hepatic steatosis or fibrosis on
CT would be the far wider adoption of CT compared to
MRI for many clinical purposes. Contrast-enhanced CTs
in portal venous phase are commonly performed in on-
cologic patients while multiphase CTs with late arterial,
portal venous, and delayed phases are performed for
characterization of focal liver lesions. Quantification on
single-energy CT images has been based for years on
size and density measurements [37]. Emerging tech-
niques include dual-energy CT (DECT), post-processing
software, perfusion CT (pCT), and photon-counting de-
tector CT (PCD-CT).

Assessment of hepatic steatosis

DECT overcomes a key limitation of single-energy CT
which relies on Hounsfield units for quantification.
DECT is based on CT data acquisition at two different
energy spectra [38]. Post-processing of DECT data yields
several types of images including monochromatic image
reconstructions that are particularly useful to improve
iodine contrast visualization, attenuation maps of differ-
ent elements such as iodine (Fig. 5), calcium, and water
on the basis of their atomic number, and virtual unen-
hanced series—obtained by virtually removing the iodine
from enhanced images—which may obviate the need for
acquisition of an unenhanced series [38]. The spectral
curve for hepatic steatosis increases in the attenuation of
fat with an increase in tube potential due to the de-
creased attenuation at lower energy levels in presence of
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fat content [38]. However, material decomposition with
DECT does not seem to improve the accuracy of fat
quantification over single energy CT on unenhanced
CT, while the adoption of the multimaterial decompos-
ition algorithm on contrast-enhanced DECT might be
promising for quantification of fat volume fraction from
the contrast-enhanced scan eliminating the need for a
separate unenhanced CT scan [38, 39].

Few radiomics studies have been performed for assess-
ment of hepatic steatosis on CT so far. In patients with-
out suspicion of fibrosis, unenhanced CT texture
analysis may predict NASH with an AUC of 94%, but
this AUC drops to 60% in patients with suspected fibro-
sis [40]. Deep learning-based automated segmentation
tools at unenhanced and contrast-enhanced CT have
been used for quantifying liver fat at a population level
demonstrating objective correlation with manual meas-
urement of fat attenuation, but with lack of pathology or
MRI PDFF as reference standard [41].

Assessment of hepatic fibrosis
Quantification of hepatic extracellular volume fractions
on the equilibrium phase in routine liver contrast-
enhanced CT is an emerging technique for assessment
of liver fibrosis, but still needs extensive validation [42].
Liver pCT is theoretically a good technique to stage fi-
brosis because it captures perfusion changes occurring
during fibrosis [43]. Liver pCT is performed through ac-
quisition of serial images at high temporal resolution
after intravenous administration of a bolus of iodinated
contrast agent [43]. Images are then post-processed to
compute quantitative or semiquantitative tissue perfu-
sion parameters, such as blood flow, blood volume,

~

Fig. 5 Dual-energy computed tomography (DECT). a-d 58-year-old man with 39-mm hepatocellular carcinoma (arrows) imaged with DECT.
Arterial phase hyperenhancement is better visualized on iodine map (a) than on the standard late hepatic arterial phase (b). Lesion also shows
washout on portal venous (c) and delayed phase (d). e-h 79-year-old man with hepatocellular carcinoma treated with microwave ablation
(arrows) and imaged with DECT. lodine map (e), standard late hepatic arterial phase (f), portal venous (g), and delayed phase (h) demonstrate no
residual enhancement consistent with complete tumor treatment
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mean transit time, portal liver perfusion, arterial liver per-
fusion, and hepatic perfusion index [43]. The main limita-
tions of liver pCT are related to radiation exposure, for
which different technical solutions and protocols aimed at
reducing radiation dose are still under investigation [44],
to the wide variability of image acquisition protocols and
analysis methods which limit the comparison of perfusion
parameters between vendors and to the need for signifi-
cant post-processing. All these limitations have limited
the adoption of liver pCT in clinical practice.
Postprocessing software has been developed to extract
quantitative data from CT scans for liver imaging to quan-
tify the hepatic morphologic fibrotic changes occurring in
chronic liver diseases. Several promising CT techniques
have been proposed for staging hepatic fibrosis with post-
processing software, including quantitative measures of
liver surface nodularity and the liver segmental volume ra-
tio as well as the combination of laboratory values, liver
surface nodularity, and radiomics (Fig. 6) [45-48]. These

Page 7 of 16

techniques will require further investigation to ensure re-
peatability across different CT acquisition and reconstruc-
tion parameters, different CT scanners, and in patient
populations prior to clinical validation [46, 48, 49]. Among
all these techniques, liver surface nodularity is most likely
to be adopted soon given the promising results reported,
rapid image processing, absence of requirement for pa-
tient fasting or for additional hardware, very low technical
failure rate, and vendor-neutral results which allow applic-
ability with all CT scanners already available. We antici-
pate that some of these tools will be integrated into CT
workstations or PACS systems to provide multiparametric
quantitative assessment of liver parenchyma [50].

In regard to radiomics, Choi et al. [48] developed a
deep learning system on portal venous phase CT images
in 7461 patients achieving an AUC of 0.96, 0.97, and
0.95 for = F2, > F3, and F4 respectively. The results of
radiomics studies are, therefore, very promising for non-
invasive staging of hepatic fibrosis but still not

pixel intensities within the segmented region of interest

Fig. 6 79-year-old man with nonalcoholic fatty liver disease and histopathologically proven advanced fibrosis (stage F3). Contrast-enhanced CT in
portal venous phase (a) shows a dysmorphic liver with mild lobulations. Whole liver segmentation was performed (b), excluding major hepatic
vessels, to extract radiomics features using a free software (LIFEx, www lifexsoft.org). The corresponding histogram (c) shows the distribution of
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generalizable due to dependencies on scanner, vendor,
acquisition, and reconstruction protocol. Hence, external
validation in larger cohorts with different causes of
chronic liver disease will be required [47, 49].

Assessment of focal liver lesions

Contrast-enhanced CT  may  permit  definite
characterization of benign liver lesions that are indeter-
minate at US in nononcologic noncirrhotic patients. In
cirrhotic patients, contrast-enhanced CT and MRI are
the current recommended techniques for diagnosis and
post-treatment follow-up of HCC [12]. However, CT is
commonly preferred to MRI in clinical practice due to
access and time constraints, despite its lower sensitivity
[51]. In oncologic patients, CT is widely used for staging
and follow-up of many malignancies, with the main
diagnostic limitations represented by detection and
characterization of small hypoattenuating liver lesion
and detection of lesions in hepatic steatosis, which may
be primary or secondary to chemotherapy [52, 53].
DECT improves diagnostic accuracy for both detection
and characterization of small hypoattenuating indeter-
minate liver lesions as compared to single-energy CT
through iodine quantification [54].

The adoption of liver pCT has been investigated in on-
cologic and cirrhotic patients for early detection of tu-
mors, assessing disease prognosis based on tumor
vascularity, monitoring therapeutic effects of various
treatment regimens including antiangiogenic drugs, and
early identification of tumor recurrence after treatment
[55]. This is because liver pCT parameters correlate well
with the presence and extent of tumor vessels [55].
However, as stated above, the presence of many limita-
tions of liver pCT has limited its adoption in clinical
practice.

Spectral PCD-CT has recently become technologically
feasible for true multi-energy CT scanning, including for
liver imaging [56]. The adoption of photon-counting de-
tectors enables the analysis of each photon by dividing
them into multiple energy bins, thus simultaneously
sampling the energy spectrum at multiple regions. This
allows obtaining K-edge imaging to generate maps to
differentiate several elements or contrast agents at once
[56]. As an example, spectral PCD-CT could allow for a
dual-contrast single-scan liver protocol thus potentially
improving  focal liver lesion  detection and
characterization, with a reduced radiation exposure [56].
Despite its theoretical advantages, PCD-CT is still in its
infancy, limited to preclinical or small in vivo studies in
volunteers. Adoption in clinical practice for liver im-
aging will require clinical studies and validation over a
longer time horizon.

Quantitative imaging features extracted through CT
texture analysis (Fig. 7) could provide a more robust
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classification of indeterminate focal liver lesions or help
in the response prediction after locoregional treatments.
In the setting of cirrhosis and oncologic patients, deep
learning radiomics CT-based models proved useful for
different outcomes such as increasing the accuracy for
lesion detection (HCC in cirrhosis and occult metastases
in oncologic patients) as well as to predict response after
treatments and overall survival [57-59]. Of note, most
radiomics studies on oncologic patients focused on the
use of radiomics for colorectal liver metastases on
contrast-enhanced CT. In the nononcologic and noncir-
rhotic patient, one of the main challenges is represented
by the differential diagnosis between hepatocellular ad-
enomas and focal nodular hyperplasia and texture ana-
lysis seems to improve it [60]. Although the clinical
application of radiomics and artificial intelligence for
focal liver lesions is expected in the future, there are still
many limiting factors, including the dependency of the
radiomics analysis from vendor, equipment, imaging ac-
quisition, or reconstruction algorithms, as well as the
need for prospective validations of artificial intelligence
algorithms in different study populations, which high-
lights the need for a cooperative worldwide effort to join
clinical and imaging data [47, 49, 61].

Magnetic resonance imaging

An adequate MRI liver protocol has to be short, com-
prehensive, standardized, and must guarantee reproduci-
bility and consistency of image quality and diagnostic
information (Fig. 8) [53, 54]. Extracellular and hepato-
biliary contrast agents may both be used for multiphase
imaging. However, hepatobiliary contrast agents provide
the additional ability to acquire images in a hepatobiliary
phase [62—-64].

Assessment of hepatic steatosis

MRI is considered the gold standard imaging technique
for hepatic fat quantification. MRI techniques estimate
the signal fat fraction by exploiting the differences in
resonance frequency of water and fat proton signals.
Hepatic fat quantification is achievable with MRI-based
techniques that measure the proton density fat fraction
(PDFF) which represents the fraction of mobile protons
in liver attributable to fat. To measure the uncon-
founded PDFF, MRI techniques must account for T1
bias, T2 relaxation, T2* bias, and spectral complexity of
fat [65]. MR spectroscopy (MRS) was previously consid-
ered the noninvasive reference standard for liver fat
quantification [66]. However, MRS is time consuming
and limited to one voxel which can lead to misinterpret-
ation in cases of heterogeneous steatosis. To address
these limitations, multi-echo gradient-recalled echo se-
quences that may cover the entire liver within one
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intensities within the region of interest (e)

Fig. 7 Computed tomography (CT) texture analysis in a 34-year-old man with chronic hepatitis B and 50-mm hepatocellular carcinoma. Contrast-
enhanced CT shows hyperenhancement in the late arterial phase (a, white arrow), washout in portal venous phase (b, white arrowhead), and in

delayed phase (c); a capsule is visible in delayed phase (c). The tumor was segmented on the portal venous phase by manually drawing a region
of interest within the lesions margin (d), using a free software (LIFEx, www lifexsoft.org), the corresponding histogram shows distribution of signal

breath-hold have emerged as an accurate MRI alterna-
tive for PDFF quantification [67].

Nowadays, MRI-PDFF with multi-echo chemical-shift-
encoded sequence is routinely used at different centers
to quantify hepatic steatosis with excellent diagnostic
value for classification of histologic steatosis in patients
with NAFLD (Fig. 9) [67, 68]. The clinical usefulness of
MRI PDEFF has been demonstrated also in the context of
bariatric surgery because radiology may help to identify
those patients that will more likely benefit from bariatric
surgery. Indeed, as demonstrated by Pooler et al. [69],
bariatric patients with marked hepatic steatosis at

baseline as quantified by MRI PDFF may have substan-
tial improvement in liver PDFF regardless of starting an-
thropometrics or degree of weight loss following
surgery. In addition, MRI-PDFF seems an adequate fat
quantification biomarker in living liver donor candidates
with sufficient negative predictive value for excluding
clinically significant hepatic steatosis obviating the need
for liver biopsy [70].

To date, not many studies assessed the role of radio-
mics applied to MRI for assessment of hepatic steatosis.
From a prospective study by Gutmann et al. [71], it is
evident that MRI radiomics applied to T1-weighted
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dual-echo Dixon relative fat water content may help in
the prediction of type 2 diabetes mellitus and metabolic
syndrome. Further research studies are expected to pro-
vide very good results in the next few years related to
the use of radiomics and artificial intelligence for hepatic
fat quantification, and once validated in multiple differ-
ent large cohorts and across different vendors and acqui-
sition protocols, it is expected that these techniques will
be integrated in clinical routine in the long term.

Assessment of hepatic fibrosis

MRI-based techniques for assessment of liver fibrosis in-
clude magnetic resonance elastography (MRE),
diffusion-weighted imaging (DWI), MRI with gadoxetate
disodium (Primovist in Europe, Eovist in the USA, Bayer
HealthCare), MRI perfusion, and quantitative T1, T2, T1
rho mapping, which are still being investigated in re-
search environments.

The leading MRI technique for staging hepatic fibro-
sis is MRE [72]. MRE measures liver stiffness that is
directly related to the stage of fibrosis [73] allowing to
differentiate the various stages with moderately high ac-
curacy (84-92%) [74]. This technique, requires a driver
to generate mechanical waves, a phase-contrast pulse
sequence with motion-encoding gradients and post-
processing software to obtain wave images, and inver-
sion algorithms to generate quantitative maps of liver
stiffness measurements known as elastograms [73].

MRE is commercially available on clinical scanners.
Failure of MRE is known to potentially occur in pa-
tients with hepatic iron deposition secondary to the low
parenchymal signal, or when using 1.5-T MRI scanners,
in patients with massive ascites or high body mass
index or in uncooperative patients who cannot hold
their breath [73, 74].

In regard to DWI, the two most common approaches
for the assessment of liver fibrosis include the quantifi-
cation through ADC values extracted using a monoex-
ponential model or an intravoxel incoherent motion
analysis [75]. However, conflicting results for accuracy of
DWT in staging liver fibrosis have been obtained so far,
with this sequence having many technical limitations
(e.g, ADC values dependency on MRI scanner field
strength, DWI signal being affected by hepatic iron de-
position, and image quality being lowered in uncoopera-
tive patients or in patients with ascites).

The assessment of hepatocellular function in the hepa-
tobiliary phase on gadoxetate disodium-enhanced MRI
has been investigated as a surrogate biomarker for esti-
mation of liver fibrosis and outcomes in patients with
chronic liver disease [76, 77]. This may be obtained by
using different quantitative parameters such as contrast
enhancement index, relative liver enhancement, and T1
mapping of hepatobiliary phase images [76, 77]. Indeed,
progressive fibrotic changes in hepatic uptake of the
hepatobiliary contrast may result from either decreased
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Fig. 9 Liver fat detection and quantification in patients with nonalcoholic steatohepatitis undergoing in- and out-of-phase magnetic resonance
imaging sequences (first and second columns, respectively), and proton density fat fraction (PDFF, third column). Top row: 78-year-old man
without hepatic steatosis. Note the lack of signal drop on out-of-phase image and PDFF of only 3-4%. Middle row: 39-year-old woman with
moderate hepatic steatosis. Note the minimal signal drop on out-of-phase image and PDFF from 8 to 16%. Bottom row: 48-year-old man with
severe hepatic steatosis. Note the marked signal drop on out-of-phase image and PDFF from 45 to 49%
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expression of hepatic organic anion transporters due to
hepatocyte dysfunction or degeneration or prolongation
of liver enhancement due to decreased biliary excretion.
Perfusion MRI refers to imaging of tissue blood flow
typically performed using T1-weighted MRI sequences
after contrast agent injection employing a high temporal
resolution technique that allows for repeated imaging of
the same area in the liver about every 4 s [43]. Perfusion
MRI might be useful for staging fibrosis with preliminary
good results, but this technique is still limited by breath
motion artifacts, variability dependent on acquisition
protocols, reconstruction methods, and of course the
software used for quantitative analysis, so that there is
still not a unique validated acquisition protocol [43]. T1,
T2, and T1 rho mapping technology is being also inves-
tigated because with progressive hepatic fibrosis, exces-
sive accumulation of extracellular matrix proteins occurs
and oftentimes is associated with coexistent

inflammation and high water content, leading to pro-
longation of T1 and T2 relaxation times in fibrotic tis-
sues [78].

Finally, in regard of radiomics, a predictive MRI model
of Park et al. [25] obtained on hepatobiliary phase im-
ages from 329 patients demonstrated an AUC of 0.89—
0.91 for staging advanced hepatic fibrosis.

Assessment of focal liver lesions
MRI is particularly helpful for the differential diagnosis
between focal nodular hyperplasia and hepatocellular ad-
enoma in nononcologic noncirrhotic patients, and has a
higher sensitivity than CT in cirrhotic and oncologic pa-
tients [51, 79]. To overcome the issue of long acquisition
times required by MRI, abbreviated MRI strategies have
been investigated for cirrhotic and oncologic patients.
Three abbreviated MRI strategies have been investi-
gated for HCC screening in cirrhotic patients: (1)
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unenhanced, (2) dynamic contrast-enhanced, and (3)
hepatobiliary phase contrast-enhanced MRI. Different
types of abbreviated protocols have been suggested, in-
cluding axial contrast-enhanced T1 weighted with fat
saturation in the hepatobiliary phase at 20 min after
gadoxetate disodium and either axial T2-weighted single
shot sequence or DWI and axial T1 weighted with fat
saturation in the unenhanced, arterial, portal venous,
and delayed phases (Fig. 4) [80, 81]. Although it seems
that the diagnostic accuracy for HCC remains acceptable
for clinical practice when using abbreviated liver MRI
protocols [82], the differentiation between HCC and
non-HCC malignancies and the identification of tumor
in vein may be challenging with abbreviated protocols.
Additional imaging features are being investigated to im-
prove the differential diagnosis between HCC and non-
HCC malignancies [83, 84].

MRI in oncologic patients is often a problem-solving
tool in case of focal liver lesions deemed indeterminate
on CT, allowing to characterize almost 60% of the cases
[85, 86]. Abbreviated liver MRI protocol including DWI
and hepatobiliary phase have been investigated for the
routine follow-up of some oncologic patients, such as
those with colorectal cancer [80, 86]. We anticipate that
abbreviated liver MRI protocols will be increasingly used
in an oncologic setting to shorten the MRI examination
time and to leverage the higher detection sensitivity of
MRI compared to other imaging modalities. It is our be-
lief that the objectives of detecting liver metastases early
during preoperative planning and monitoring the size of
liver metastases in response to chemotherapy can both
be achieved with abbreviated MRI protocols.

Similarly to CT, quantitative imaging features ex-
tracted through MRI texture analysis could provide a
more robust classification of indeterminate focal liver le-
sions or help in the response prediction after locoregio-
nal treatments and some studies have been published for
this purpose so far [47, 87-89]. However, most of the lit-
erature is limited to single center retrospective cohorts
with insufficient number of included patients and le-
sions, and, therefore, the use of MRI based radiomics re-
mains investigational.

Clinical application of liver imaging biomarkers:
open issues

Clinical application of imaging biomarkers in routine
practice is still at its beginning. Most research studies on
radiomics and other advanced liver imaging techniques
are limited by lack of standardization and validation,
thus, considered as proof-of-concept, preclinical, or ex-
ploratory studies [90, 91]. Several factors may slow the
clinical adoption of imaging biomarkers including con-
cerns about reproducibility, such as segmentation repro-
ducibility (to be assessed with  multireader
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segmentation), imaging data reproducibility (to be
assessed with phantom studies and test-retest analysis),
computational and statistical reproducibility (evaluating
overfitting, controlling outliers), and research reproduci-
bility (not easy to assess due to limited access to open
data sets and to the model equation or code) [90, 92,
93]. Quantitative imaging techniques and radiomics are
affected by acquisition and reconstruction settings, to
the point of being not reproducible. Therefore, there is
the need of identification of stable, standardized radio-
mic features that can be used with different scanners
and imaging protocols [49].

The universal adoption of the Hounsfield scale on
every CT scanner worldwide (except cone beam CT)
provides a template for successful standardization,
thanks to a clear definition and availability of calibration
phantoms. A similar standardization should be achieved
with most recent quantitative imaging techniques for the
quantification of steatosis and fibrosis.

Reproducibility must be investigated in different set-
tings and populations [94]. As in the case of other bio-
metric data, what is considered normal for one
population, might not be applicable in another popula-
tion. Therefore, external validation in a different popula-
tion is a prerequisite, but it is still lacking in many
studies. One of the ways to overcome this issue may be
to require the inclusion of the dataset along with the
manuscript as a prerequisite for publication. Ensuring
reproducibility, standardization, and external validation
of emerging quantitative imaging biomarkers will facili-
tate their clinical adoption.

Conclusions

Several advances in liver imaging have improved acquisi-
tion techniques, introduced new tissue contrast mecha-
nisms, and provided an emerging role for quantitative
biomarkers in US, CT, and MRI. The advent of abbrevi-
ated MRI protocols will help fulfill an increasing number
of examination requests in an era of healthcare resource
constraints. New imaging biomarkers such as PDFF are
already adopted in clinical practice, and others are al-
most ready to be implemented with the possibility to be
available in the routine clinical assessment in the near
future of liver imaging. We anticipate that radiomics and
artificial intelligence will enhance many clinical use sce-
narios in diffuse and focal liver diseases.
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