7 research outputs found

    Predictive Pre-allocation for Low-latency Uplink Access in Industrial Wireless Networks

    Full text link
    Driven by mission-critical applications in modern industrial systems, the 5th generation (5G) communication system is expected to provide ultra-reliable low-latency communications (URLLC) services to meet the quality of service (QoS) demands of industrial applications. However, these stringent requirements cannot be guaranteed by its conventional dynamic access scheme due to the complex signaling procedure. A promising solution to reduce the access delay is the pre-allocation scheme based on the semi-persistent scheduling (SPS) technique, which however may lead to low spectrum utilization if the allocated resource blocks (RBs) are not used. In this paper, we aim to address this issue by developing DPre, a predictive pre-allocation framework for uplink access scheduling of delay-sensitive applications in industrial process automation. The basic idea of DPre is to explore and exploit the correlation of data acquisition and access behavior between nodes through static and dynamic learning mechanisms in order to make judicious resource per-allocation decisions. We evaluate the effectiveness of DPre based on several monitoring applications in a steel rolling production process. Simulation results demonstrate that DPre achieves better performance in terms of the prediction accuracy, which can effectively increase the rewards of those reserved resources.Comment: Full version (accepted by INFOCOM 2018

    Fairness for Freshness: Optimal Age of Information Based OFDMA Scheduling with Minimal Knowledge

    Full text link
    It is becoming increasingly clear that an important task for wireless networks is to minimize the age of information (AoI), i.e., the timeliness of information delivery. While mainstream approaches generally rely on the real-time observation of user AoI and channel state, there has been little attention to solve the problem in a complete (or partial) absence of such knowledge. In this article, we present a novel study to address the optimal blind radio resource scheduling problem in orthogonal frequency division multiplexing access (OFDMA) systems towards minimizing long-term average AoI, which is proven to be the composition of time-domain-fair clustered round-robin and frequency-domain-fair intra-cluster sub-carrier assignment. Heuristic solutions that are near-optimal as shown by simulation results are also proposed to effectively improve the performance upon presence of various degrees of extra knowledge, e.g., channel state and AoI.Comment: Accepted on 05.06.2021 by the IEEE Transactions on Wireless Communications for publicatio

    Distributed computational model for shared processing on Cyber-Physical System environments

    Get PDF
    Cyber-Physical Systems typically consist of a combination of mobile devices, embedded systems and computers to monitor, sense, and actuate with the surrounding real world. These computing elements are usually wireless, interconnected to share data and interact with each other, with the server part and also with cloud computing services. In such a heterogeneous environment, new applications arise to meet ever-increasing needs and these are an important challenge to the processing capabilities of devices. For example, automatic driving systems, manufacturing environments, smart city management, etc. To meet the requirements of said application contexts, the system can create computing processes to distribute the workload over the network and/or a cloud computing server. Multiple options arise in relation to what network nodes should support the execution of the processes. This paper focuses on this problem by introducing a distributed computational model to dynamically share these tasks among the computing nodes and considering the inherent variability of the context in these environments. Our novel approach promotes the integration of the computing resources, with externally supplied cloud services, to fulfill modern application requirements. A prototype implementation for the proposed model has been built and an application example has been designed to validate the proposal in a real working environment

    Ubiquitous Monitoring for Industrial Cyber-Physical Systems Over Relay- Assisted Wireless Sensor Networks

    No full text

    Driving vivid virtual environments from sensor networks

    Get PDF
    Thesis: S.M., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2018.Cataloged from PDF version of thesis.Includes bibliographical references (pages 89-95).The rise of ubiquitous sensing enables the harvesting of massive amounts of data from the physical world. This data is often used to drive the behavior of devices, but when presented to users, it is most commonly visualized quantitatively, as graphs and charts. Another approach for the representation of sensor network data presents the data within a rich, virtual environment. This thesis introduces the concept of Resynthesizing Reality through the construction of Doppelmarsh, the virtual counterpart of a real marsh located in Plymouth Massachusetts, where the Responsive Environments Group has deployed and maintained a network of environmental sensors. By freely exploring such environments, users gain a vivid, multi-modal, and experiential perspective into large, multi-dimensional datasets. We present a variety of approaches to manifesting data in "avatar landscape", including landscapes generated off live video, tinting frames in correspondence with temperature, or representing sensor history in the appearance and behavior of animals. The concept of virtual lenses is also introduced, which makes it easy to dynamically switch sensor-to-reality mapping from within virtual environments. In this thesis, we describe the implementation and design of Doppelmarsh, present techniques to visualize sensor data within virtual environments, and discuss potential applications for Resynthesizing Reality.by Don Derek Haddad.S.M

    Energy-aware Approaches for Energy Harvesting Powered Wireless Sensor Systems

    Get PDF
    Energy harvesting (EH) powered wireless sensor systems (WSSs) are gaining increasing popularity since they enable the system to be self-powering, long-lasting, almost maintenance-free, and environmentally friendly. However, the mismatch between energy generated by harvesters and energy demanded by WSS to perform the required tasks is always a bottleneck as the ambient environmental energy is limited, and the WSS is power hunger. Therefore, the thesis has proposed, designed, implemented, and tested the energy-aware approaches for wireless sensor motes (WSMs) and wireless sensor networks (WSNs), including hardware energy-aware interface (EAI), software EAI, sensing EAI and network energy-aware approaches to address this mismatch. The main contributions of this thesis to the research community are designing the energy-aware approaches for EH Powered WSMs and WSNs which enables a >30 times reduction in sleep power consumption of WSNs for successful EH powering WSNs without a start-up issue in the condition of mismatch between the energy generated by harvesters and energy demanded by WSSs in both mote and network systems. For EH powered WSM systems, the energy-aware approaches have (1) enabled the harvested energy to be accumulated in energy storage devices to deal with the mismatch for the operation of the WSMs without the start-up issue, (2) enabled a commercial available WSMs with a reduced sleep current from 28.3 μA to 0.95 μA for the developed WSM, (3) thus enabled the WSM operations for a long active time of about 1.15 s in every 7.79 s to sample and transmit a large number of data (e.g., 388 bytes), rather than a few ten milliseconds and a few bytes. For EH powered WSN systems, on top of energy-aware approached for EH powered WSM, the network energy-aware approaches have presented additional capabilities for network joining process for energy-saving and enabled EH powered WSNs. Once the EH powered WSM with the network energy-aware approach is powered up and began the network joining process, energy, as an example of 48.23 mJ for a tested case, has been saved in the case of the attempt to join the network unsuccessfully. Once the EH-WSM has joined the network successfully, the smart programme applications that incorporate the software EAI, sensing EAI and hardware EAI allow the EH powered WSM to achieve (4) asynchronous operation or (5) synchronised operation based on the energy available after the WSM has joined the network.Through designs, implementations, and analyses, it has been shown that the developed energy-aware approaches have provided an enabled capability for EH successfully powering WSS technologies in the condition of energy mismatch, and it has the potential to be used for wide industrial applications

    Scaling Laws for Vehicular Networks

    Get PDF
    Equipping automobiles with wireless communications and networking capabilities is becoming the frontier in the evolution to the next generation intelligent transportation systems (ITS). By means of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, information generated by the vehicle-borne computer, vehicle control system, on-board sensors, or roadside infrastructure, can be effectively disseminated among vehicles/infrastructure in proximity or to vehicles/infrastructure multiple hops away, known as vehicular networks (VANETs), to enhance the situational awareness of vehicles and provide motorist/passengers with an information-rich travel environment. Scaling law for throughput capacity and delay in wireless networks has been considered as one of the most fundamental issues, which characterizes the trend of throughput/delay behavior when the network size increases. The study of scaling laws can lead to a better understanding of intrinsic properties of wireless networks and theoretical guidance on network design and deployment. Moreover, the results could also be applied to predict network performance, especially for the large-scale vehicular networks. However, map-restricted mobility and spatio-temporal dynamics of vehicle density dramatically complicate scaling laws studies for VANETs. As an effort to lay a scientific foundation of vehicular networking, my thesis investigates capacity scaling laws for vehicular networks with and without infrastructure, respectively. Firstly, the thesis studies scaling law of throughput capacity and end-to-end delay for a social-proximity vehicular network, where each vehicle has a restricted mobility region around a specific social spot and services are delivered in a store-carry-and-forward paradigm. It has been shown that although the throughput and delay may degrade in a high vehicle density area, it is still possible to achieve almost constant scaling for per vehicle throughput and end-to-end delay. Secondly, in addition to pure ad hoc vehicular networks, the thesis derives the capacity scaling laws for networks with wireless infrastructure, where services are delivered uniformly from infrastructure to all vehicles in the network. The V2V communication is also required to relay the downlink traffic to the vehicles outside the coverage of infrastructure. Three kinds of infrastructures have been considered, i.e., cellular base stations, wireless mesh backbones (a network of mesh nodes, including one mesh gateway), and roadside access points. The downlink capacity scaling is derived for each kind of infrastructure. Considering that the deployment/operation costs of different infrastructure are highly variable, the capacity-cost tradeoffs of different deployments are examined. The results from the thesis demonstrate the feasibility of deploying non-cellular infrastructure for supporting high-bandwidth vehicular applications. Thirdly, the fundamental impact of traffic signals at road intersection on drive-thru Internet access is particularly studied. The thesis analyzes the time-average throughput capacity of a typical vehicle driving through randomly deployed roadside Wi-Fi networks. Interestingly, we show a significant throughput gain for vehicles stopping at intersections due to red signals. The results provide a quick and efficient way of determining the Wi-Fi deployment scale according to required quality of services. In summary, the analysis developed and the scaling laws derived in the thesis provide should be very useful for understanding the fundamental performance of vehicular networks
    corecore