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ABSTRACT 
 
Energy harvesting (EH) powered wireless sensor systems (WSSs) are gaining 

increasing popularity since they enable the system to be self-powering, long-

lasting, almost maintenance-free, and environmentally friendly. However, the 

mismatch between energy generated by harvesters and energy demanded by 

WSS to perform the required tasks is always a bottleneck as the ambient 

environmental energy is limited, and the WSS is power hunger.  

 

Therefore, the thesis has proposed, designed, implemented, and tested the 

energy-aware approaches for wireless sensor motes (WSMs) and wireless 

sensor networks (WSNs), including hardware energy-aware interface (EAI), 

software EAI, sensing EAI and network energy-aware approaches to address this 

mismatch. 

 

The main contributions of this thesis to the research community are designing the 

energy-aware approaches for EH Powered WSMs and WSNs which enables a 

>30 times reduction in sleep power consumption of WSNs for successful EH 

powering WSNs without a start-up issue in the condition of mismatch between 

the energy generated by harvesters and energy demanded by WSSs in both mote 

and network systems. 

 

For EH powered WSM systems, the energy-aware approaches have (1) enabled 

the harvested energy to be accumulated in energy storage devices to deal with 

the mismatch for the operation of the WSMs without the start-up issue, (2) 

enabled a commercial available WSMs with a reduced  sleep current  from  28.3 

µA to 0.95 µA for the developed WSM, (3) thus enabled the WSM operations for 



a long active time of about 1.15 s in every 7.79 s to sample and transmit a large 

number of data (e.g., 388 bytes), rather than a few ten milliseconds and a few 

bytes.  

 

For EH powered WSN systems, on top of energy-aware approached for EH 

powered WSM, the network energy-aware approaches have presented additional 

capabilities for network joining process for energy-saving and enabled EH 

powered WSNs. Once the EH powered WSM with the network energy-aware 

approach is powered up and began the network joining process, energy, as an 

example of 48.23 mJ for a tested case, has been saved in the case of the attempt 

to join the network unsuccessfully. Once the EH-WSM has joined the network 

successfully, the smart programme applications that incorporate the software EAI, 

sensing EAI and hardware EAI allow the EH powered WSM to achieve (4) 

asynchronous operation or (5) synchronised operation based on the energy 

available after the WSM has joined the network. 

 

Through designs, implementations, and analyses, it has been shown that the 

developed energy-aware approaches have provided an enabled capability for EH 

successfully powering WSS technologies in the condition of energy mismatch, 

and it has the potential to be used for wide industrial applications.   

 

Index Terms— Energy-aware approaches, hardware energy-aware interface, 

software energy-aware interface, sensing energy-aware interface, network 

energy-aware approaches, energy harvesting powered wireless sensor system 

(WSS), wireless sensor mote (WSM), wireless sensor network (WSN) 
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task including sampling, transmitting and resetting the hardware 
EAI 

𝐸𝑐𝑜𝑛 the remaining energy in the capacitor 

𝐸𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 the average energy required for the WSM to complete the 
connecting process 

𝐸𝐶𝑆 the total energy that has been outputted by the PMM from the 
time beginning at 𝑡𝑖 to the end at 𝑡𝑛 

𝐸effective the effective energy stored in the capacitor 

𝐸𝑚𝑎𝑥−𝑙𝑜𝑤 the maximum consumed energy of the WSM by staying in the 
low-voltage search process 

𝐸𝑛𝑒𝑔𝑜 the average energy required for the WSM to complete the 
negotiating process 

𝐸𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 the energy required for the next operation of the WSM 

𝐸𝑟𝑒𝑠𝑒𝑡 the energy required for resetting the voltage supervisor 

𝐸𝑠 the accumulated energy stored in the storage device 

𝐸𝑠𝑎𝑚𝑝−1 the energy required for sampling one byte of data 

𝐸𝑡𝑥−𝑠𝑎𝑚𝑝  the energy required for taking one pre-set cycle sensor reading 
and transmitting all the data 

𝐸𝑡𝑥−1 the energy required for transmitting one byte of data 

𝐸𝑤 the whole energy consumption of the WSM in a period of time 

𝐼𝑎𝑣𝑒 the average current of the WSM measured within a fixed 
timeframe of  𝑇  

𝐼𝐶𝑆 the input current to the storage device 

𝐼w the current through the WSM 

𝑀 the number of the WSM sampling cycles 

𝑛 the number of data points 

𝑃𝑎𝑣𝑒 the average power over the time period  𝑇  

𝑃𝑙𝑜𝑤−𝑣 the average power consumed by the WSM in the low-voltage 
search process 

𝑃𝑤 the instantaneous power consumption of the WSM 

𝑇  a fixed timeframe for calculating 𝐼𝑎𝑣𝑒  and 𝑉𝑎𝑣𝑒  
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𝑇max−low the maximum time that the WSM is able to stay in the low-voltage 
search process 

𝑇reportms   the pre-set time for the WSM synchronously repeating 
acceleration measurements in the SAM application 

𝑇sec the number of seconds since midnight of January 1, 1970, 
represented in the SAM application 

𝑇usec the number of microseconds since the beginning of the current 
second in the SAM application 

𝑇waitms  the waiting time for the WSM start the next acceleration 
measurements in the SAM application 

𝑡𝑖 beginning time when calculate 𝐸𝑤 

𝑡𝑘 The instantaneous time 

𝑡𝑛 end time when calculate 𝐸𝑤  

𝑉𝑎𝑣𝑒 the average voltage of the WSM measured within a fixed 

timeframe of  𝑇  
𝑉𝐶𝑆 voltage across the storage device 

𝑉cs−sample the measured voltage across the super-capacitor after WSM 
completing the accelerometer sampling function in the basic 
sampling application 

𝑉cs−schedule the measured voltage across the super-capacitor after WSM 
synchronously transmit the data to the network manager in the 
SAM application 

𝑉𝐸𝑁𝐷 the voltage that is used to judge whether the capacitor has 
enough effective energy to supply the WSM to perform the next 
tasks 

𝑉𝐻−𝑜𝑛  defined turn-on threshold voltage of the voltage supervisor circuit 

𝑉𝐻−𝑜𝑓𝑓  defined turn-off threshold voltage of the voltage supervisor circuit 

𝑉judge a pre-set voltage to determine if WSM does the next sampling 
process at Chapter 6 

𝑉𝑀𝐼𝑁 the minimum operating voltage of the WSM 

𝑉min the pre-set minimum operating voltage of the WSM  

𝑉min−schedule the minimum voltage across the super-capacitor to meet the 
energy requirement for the WSM implementing one measurement 
cycle  

𝑉𝑆−𝑜𝑓𝑓 the voltage that is used to judge whether the capacitor has 
enough effective energy to supply the WSM to perform the next 
tasks 

𝑉w the voltage across the WSM 

∆𝑡 the sampling time interval set by the source meter 
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Chapter 1 Introduction  
 

1.1 Background   
 

Traditionally, sensors are wired where cables are essential for their power supply 

and data transmission. As the technologies advance, in the last decade there has 

been an increasing interest in the development of wireless sensor systems 

(WSSs), since they offer an attractive wireless solution to various monitoring 

applications for many industrial sectors, such as: aerospace [1], agriculture [2], 

building automation [3], health and medical cares [4], industrial process control 

[5], infrastructure and structures [6], oil and gas [7], and railway [8]. 

 

The significant advantage of WSSs over wired systems is that WSSs are easier, 

more flexible, and cheaper to be installed due to without the need for cables, and 

therefore, there are much fewer restrictions on the WSS installations[9]. The 

benefits of using WSS in industrial applications can be: reducing the weight and 

installation complexity by eliminating extensive cabling, reducing the chance of 

an entire system failure due to a common cable fault, enabled predictive 

maintenance as more sensors can be easily installed, and allowed more 

measurements to take. 

 

The WSSs can be typically classified into wireless sensor motes (WSMs) and 

wireless sensor networks (WSNs).  Generally, a WSM consists of three basic 

blocks: (1) a microcontroller unit for controlling the system and processing data, 

(2) a sensing unit for sampling data from one or more sensors, and (3) a wireless 

communication unit for communicating and sending data to the base station; a 
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WSN system is composed of a number of WSMs and a network manager for 

receiving data and managing the network. 

 

One of the significant problems WSS facing industries today is their energy 

supply [9, 10, 11] since once the energy supply of the WSS is depleted, it will no 

longer play its role in the application unless either the energy supply is replaced 

or  EH devices are built in the system. Currently, the energy source used by most 

of the WSS is batteries, but there are many problems associated with them. 

Firstly, the batteries have a limited capacity and need to be replaced. Secondly, 

the leakage current of the batteries cannot be ignored. Batteries will gradually 

discharge even if they are not used. Thirdly, the damage on the batteries, whether 

caused by internal problems such as short circuits or external problems such as 

extreme weather conditions, can lead to chemical leaks that cause various 

environmental problems. Finally, due to the limited energy capacity of the 

batteries, it may hinder the long-term operation of the WSS [12]. In most WSS 

application scenarios, the lifetime of each WSM is required to range from several 

months to several years, but often their operations have to end prematurely due 

to depleted batteries. Moreover, if the deployment of the WSMs is in hostile and 

challenging terrain or the large number of WSMs is deployed, it is challenging, 

sometimes impossible, to recharge or replace the batteries.  

 

There are, therefore, significant demands of exploring a new type of power source 

to solve the problems above. Energy harvesting (EH) technologies have emerged 

to be a potential solution for the perpetual operation of WSS and can be used to 

generate energy through harvesting ambient surroundings energy of WSS to 

provide power supply for one specific WSM system or the overall WSMs in a 
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WSN system. The EH sources of ambient surroundings generally include radio 

frequency (RF), solar, thermal, flow, mechanical-based, and human-based EH 

sources. 

 

Ambient sources such as solar, thermal, and wind flow are readily available in the 

environment at almost no cost [13]. On the other hand, energy sources such as 

mechanical vibration, structural stress-strain energy, and human motion energy 

are deployed explicitly in the structures and humans, which can be harnessed for 

EH purposes [14].  

 

Compared with batteries, the EH technologies use the ambient energy sources 

without the need of batteries and, therefore, without replacement of batteries, to 

provide energy that is renewable and more environmentally friendly. They can 

harvest the ambient energy that is being wasted, such as vibration, radio waves, 

or simply mechanical energy from people in motion. Moreover, from the point of 

view of the actual applications and working environments of WSS, the EH 

technologies are more suitable than the batteries powered WSS in most cases. 

For example, the embedded WSSs are expected to work in a closed environment 

for several years, so replacing the battery is no longer an option [9].  

 

Therefore, all of the above factors encourage the use of EH technologies in WSS, 

since it enables WSS to be self-powering, long-lasting, almost maintenance-free, 

and also environmentally friendly. However, to date, there are  just a  few 

implementations of EH-WSS e.g., [14, 15, 16, 17, 18]. The main reason is that 

the energy generated by energy harvesters is not high enough for powering the 

WSS as commercially available WSS is power hungry. This means there is a 
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mismatch between the energy generated by the harvesters and the energy 

demanded by the WSS to perform the required tasks. Therefore, there is a need 

to deal with this mismatch by increasing the amount of power that can be 

harvested and/or extracted to WSS and reducing the power consumption of WSS.   

 

To increase the energy harvested to power the WSS, there has been a large 

number of research interests in the world in designing energy harvesters to 

improve the amount of harvested energy, e.g., [19, 20, 21, 22, 23]. Another 

practical approach is to place an efficient and effective power management 

module (PMM) in between the energy harvester and the WSS to deliver as much 

power as possible from the energy harvester to WSS under various conditions 

[24].  

 

To reduce the power consumption of WSS is extremely important for EH enabled 

WSS. It is essential to understand the power consumption characteristics of a 

WSM operating in every process, especially for the sampling and transmission 

processes, but there are just a few types of research working on this, e.g., [25] 

and [26].  Systematic energy consumption analyses of a WSM is, therefore, one 

of the target research in the thesis.   

 

There is a growing consensus that a comprehensive approach is needed, one 

that addresses all levels of the system [27]. One of the useful approaches is to 

incorporate energy awareness into the energy harvesting powered wireless 

sensor systems (EH-WSS), which enables the energy-constrained WSM to work 

appropriately with low power consumption in the system [28]. The energy-aware 

approaches are a suite of techniques that is able to reduce the power 
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consumption and perform energy usage optimisation based on the energy level 

while targeting all stages of EH-WSS from the underlying hardware components 

to the application software and communication protocols [28]. For example, in 

addition to using low power consumption hardware components in the EH-WSS 

system, the energy-constrained WSM is required to have the capacity to estimate 

the energy requirement of an application that has to be executed and make 

subsequent decisions about its processing ability based on the energy it has at 

that moment. 

 

This thesis focuses on developing the energy-aware approaches for EH powered 

WSS, and the energy-aware approaches will be realised by the use of combined 

hardware and software methods. The thesis will use commercially available 

WSMs for the research. The developments of energy harvesters and power 

management solutions are out of the scope of the thesis.  

 

1.2 Aim and Objectives 
 

1.2.1 Aim 

 
The research aim is to develop smart energy-aware approaches for EH powered 

WSMs or WSNs, enabled the motes and the networks to be powered by EH. The 

research purpose is to achieve self-powered and battery-free WSS for a wide 

range of industry applications, including structural and environmental monitoring. 

1.2.2 Objectives 

 

 To develop an understanding of WSM power consumption for the 

development of EH powered WSMs; 
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 To identify key issues of EH directly powered WSMs  and develop smart 

energy-aware approaches to solve the identified issues, enabled successful  

EH powered WSMs in one-way communication operations; 

 To analyse the energy of network behaviour in EH powered WSN and identify 

issues in the network joining process. 

 To develop network energy-aware approaches to reduce the energy 

consumption of the WSM joining the network for EH powered WSNs enabled 

successful EH powered WSMs in network two-way communication operations. 

 To enable EH powered WSNs for structural and environmental monitoring 

applications. 

1.2.3 Results of the Research 

 
 
The author has proposed, designed, implemented, and tested the energy-aware 

approaches, including hardware energy-aware interface (EAI), software EAI, 

sensing EAI, and network energy-aware approaches to address the EH powered 

WSM and WSN challenges, enabling their successful operations. The main 

contributions of this thesis to the research community are the smart  mote and 

network energy-aware approaches – which enables a >30 times reduction in 

sleep power consumption of WSNs for successful EH powering WSNs without 

the start-up issue in the condition of mismatch between the energy generated by 

harvesters and demanded by WSNs in both mote and network systems. For EH 

powered WSM systems, the energy-aware approaches have (1) enabled the 

harvested energy to be accumulated in the energy storage device to deal with 

the mismatch for the operation of the WSM;  (2) solved the start-up issue and 

enabled a commercial available WSM with a reduced  sleep current  from  28.3 

µA to 0.95 µA; (3) enabled the WSM operations for a long active time of about 
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1.15 s in every 7.79 s to sample and transmit a large number of data (e.g., 388 

bytes), rather than a few ten milliseconds and a few bytes. Moreover, for EH 

powered WSN systems, on top of energy-aware approached for EH powered 

WSM, the network energy-aware approaches have additional capabilities for 

network joining process. The capabilities are explained here. Once the EH 

powered WSM with the network energy-aware algorithm is powered up and 

began the network joining process, energy, as an example of 48.23 mJ for a 

tested case, can be saved when the attempt to join the network failed. Once the 

EH powered WSM has joined the network successfully, the different programme 

applications that incorporate the software EAI, sensing EAI, and hardware EAI 

allow the EH powered WSM to achieve asynchronous operation or synchronised 

operation based on the energy level left after the WSM has joined the network. 

 

1.3 Research Methodology 
 
 
A key research question of EH powered WSS is the mismatch between the 

energy generated by the harvesters and the energy demanded by the WSS, as 

the energy harvested is limited, and the WSS is power hungry. Therefore, the 

thesis is proposed to address this mismatch by using the following research 

methodologies via three steps: 

 

1. Background investigations 

 

 Through (1) reviewing the EH techniques that can be used to extract 

energy from different available sources, focusing on the power output that 

can be harvested by the different available energy sources to date; (2) 
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reviewing the wireless communication technologies and the off-the-shelf 

commercial chips, focusing on the energy consumption of transmission 

and receive processes, (3) comparing the energy generated by the 

harvesters and the energy demanded by the WSS, a key research 

question of EH powered WSS is proposed, which is the mismatch between 

the energy generated by the harvesters and the energy demanded by the 

WSS, as the energy harvested is limited, and the WSS is power hungry; 

 

 Determine reducing the energy consumption of WSS to deal with the 

mismatch and then determine the scope of thesis is energy-aware 

approaches for EH powered WSS by reviewing the energy-saving 

mechanisms for WSS; 

 

 By reviewing the energy-aware approaches for EH powered WSS, the 

detailed research gaps to be addressed in the thesis are analysed. 

 

a) Lack of available information focusing on energy consumption of EH 

powered WSM and WSN;    

b) Lack of an interface between EH and WSS able to be efficient energy 

management and energy storage in the context of track condition 

monitoring user cases; 

c) Lack of the energy-saving approaches that focus on enabling the EH 

powered WSS to sample, transmission, commutation, and joining the 

network with the limited energy, since most of the previous energy-

saving approaches on the WSM and WSN are powered by batteries;   
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d) Lack of a comprehensive energy-aware approach that considers 

energy-saving or maximum energy utilisation during the active phase 

of the EH powered WSS; 

e) Lack of energy efficient hardware and software approaches to 

decrease current consumption for sleeping and for transmission in 

computing, sensing and communication to achieve ultra-low-power 

consumptions for implementation of EH powered WSS. 

 

2. Preliminary experiments and analyse the causes of issues 

 

 Through reviewing the energy consumption of wireless communication 

technologies and the off-the-shelf commercial chips, select the suitable 

commercially available wireless commutation, microcontrollers, wireless 

transceivers and sensors for the development of EH powered WSS. The 

choices are mainly based on the low energy consumption, especially in 

the transmission and receive processes; 

 

 Implement a battery powered WSM with one-way communication and 

analyse the energy consumption of the WSM through the experimental 

testing to develop an understanding of power consumption of  every 

process of the WSM; 

 

 Replace the battery with EH power supply, and analyse the causes of 

issues that the WSM is not able to be powered to wake up:  (1) the 

mismatch between the energy generated by the harvesters and the energy 

demanded by the WSMs to carry out required tasks  and (2) the WSM 

start-up issue; 
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 Develop EH powered WSN systems with two-way communication, 

analyse the energy consumption of the developed system and analyse the 

causes of issues of the network joining process in power demanding, 

especially for search processes, and in randomness that the undetermined 

energy consumption of WSM joining the network. 

 
 

3. Propose the approaches to solve the issues based on the analysed 

causes 

 

 Propose energy-aware concepts and implement the energy-aware 

approaches for EH powered WSM, including hardware EAI, software 

EAI and sensing EAI, which aim to manage the energy flow from the 

energy storage capacitor to the WSMs to deal with the mismatch and 

the start-up issues; 

 

 In order to solve the problem of the uncertainty of the EH powered 

WSM joining the network in the EH powered WSN, network energy-

aware approaches are designed to trace the energy consumption of 

every EH powered WSM in the EH powered WSN during the targeted 

joining network processes especially for those with high power 

consumption and a long, uncertain time. 
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1.4 Paper Publications     
 

Journal Articles: 
 
1. Ruan T., Chew Z. J. & Zhu M. (2017). Energy-aware approaches for 

energy harvesting powered wireless sensor nodes. IEEE Sensors 
Journal, 17(7), 2165–2173. 
 

  Ruan T: propose, design, implement and test the energy-aware 
approaches; 

 Chew Z. J: Propose, design, implement the PMM circuit. 
  

  One of the 25 most downloaded IEEE Sensors Journal papers in 
the months of March 2017, August, September, October, 
November and December 2018, and January 2019. 

 

2. Chew Z. J, Ruan T. & Zhu M (2018). Power Management Circuit for 
Wireless Sensor Nodes Powered by Energy Harvesting: On the Synergy 
of Harvester and Load. IEEE Transactions on Power Electronics (Volume: 

34, Issue: 9, Sept. 2019，Page(s): 8671 - 8681).  

 
  Ruan T: propose, design, and implement the energy-aware 

approaches; 

 Chew Z. J: propose, design, implement the PMM circuit and test its 
performance.  

  

3. Chew Z. J, Ruan T. & Zhu M (2017). Strain Energy Harvesting Powered 
Wireless Sensor System Using Adaptive and Energy-Aware Interface for 
Enhanced Performance. IEEE Transactions on Industrial Informatics 

(Volume: 13, Issue: 6, Dec. 2017，Page(s): 3006 - 3016).  

 
  Ruan T: propose, design, implement energy-aware approaches 

and test the system with the energy-aware approaches； 

 Chew Z. J: propose, design, implement the PMM circuit and test 
the performance of whole system from energy harvester to WSM. 
 

  

4. Chew Z. J, Ruan T., Zhu M, Bafleur M. & Dilhac J.-M (2017). Single 
piezoelectric transducer as strain sensor and energy harvester using time-
multiplexing operation. IEEE Transactions on Industrial Electronics 
(Volume: 64, Issue: 12, Dec. 2017, Page(s): 9646 - 9656).  
 

  Ruan T: propose, design and implement energy-aware 
approaches. 

 Chew Z. J: propose, design, implement the PMM circuit and design 
the sensor algorithm. 

 

https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8736077
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8167035
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8082391
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5. Kuang Y., Ruan T., Chew Z. J. & Zhu M. (2017). Energy harvesting during 
human walking to power a wireless sensor node. Sensors & Actuators A: 
Physical, 254, 69–77.  
 

  Ruan T: propose, design and implement energy-aware 
approaches; 

 Chew Z. J: propose, design, implement the PMM circuit； 

 Kuang Y: design and implement the energy harvester. 
  

 
Conference Papers: 
 
1. Chew Z. J, Ruan T. & Zhu M (2019). Energy Harvesting Powered Wireless 

Sensor Nodes With Energy Efficient Network Joining Strategies. For IEEE 
International Conference on Industrial Informatics, INDIN’19    
 

  

2. Chew Z. J., Ruan T., Zhu M., Bafleur M. & Dilhac J-M. (2017). “A 
multifunctional device as both strain sensor and energy harvester for 
structural health monitoring”. IEEE Sensors 2016, Orlando, Florida, USA, 
30 October–3 November, DOI:10.1109/ICSENS.2016.7808554. 
  

  

3. Kuang Y., Ruan T., Chew Z. J. & Zhu M. (2016). Energy autonomous 
wireless sensing system enabled by energy generated during human 
walking. Journal of Physics: Conference Series, 773(1), 012050.  
 

  

4. Chew Z. J., Ruan T. & Zhu M. (2016). Strain energy harvesting powered 
wireless sensor node for aircraft structural health monitoring. Procedia 
Engineering, 168, 1717–1720.  
 

  

5. Somov, A., Chew, Z. J., Ruan, T., Li, Q., & Zhu, M. (2016, April). 
Piezoelectric energy harvesting powered WSN for aircraft structural health 
monitoring. In Information Processing in Sensor Networks (IPSN), 2016 
15th ACM/IEEE International Conference on (pp. 1-2). IEEE.  
 

  

6. Somov, A., Chew, Z. J., Ruan, T., Zhu, M., & Platt, S. P. (2016, October). 
Ultra-low-power RADFET sensing circuit for wireless sensor networks 
powered by energy harvesting. In SENSORS, 2016 IEEE (pp. 1-3). IEEE.  
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1.5 Thesis Structure 
 

The thesis consists of seven chapters in total. This section provides a general 

overview of the thesis and summarises the content of each chapter.  

 

Chapter 1 gives an introduction to this thesis. This chapter opens by describing 

the background and motivation of the thesis.  Following this, the aim and 

objectives, and the thesis structure are described.  

 

Chapter 2 presents the literature review, which begins by reviewing the EH 

techniques that can be used to extract energy from different available sources 

and focusing on the power output that can be harvested by the different available 

energy sources to date. After that, wireless communication technologies, 

protocols, and the off-the-shelf commercial chips are reviewed and compared in 

performance for the EH powered WSS requirements, especially in the energy 

consumption of transmission and receive processes. Based on the reviews of the 

EH and wireless sensor technologies, a research challenge in the mismatch 

between energy harvested by harvesting methods and energy demanded by 

wireless sensor technology is identified. After that, the energy-saving 

mechanisms in the WSS are reviewed with a particular focus on the energy-

aware approach. 

 

Chapter 3 presents the experimental study of a battery powered WSM for 

understanding energy consumption. The chapter opens by describing a typical 

battery powered WSM system and the implementations of the hardware, 
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software, and communication implementation, followed by describing the testing 

set-up and methods. The experimental results are then presented in multiple 

cycles of the WSM operation and one cycle of the WSM operation. The former is 

to analyse the overall energy consumption during active and sleep time, and the 

latter is to analyse the energy consumption during the active time accurately. The 

chapter ends with a discussion and conclusions of the work. 

 

Chapter 4 is about the development of energy-aware approaches for EH 

powered WSM. It begins by describing a typical EH powered WSM system and 

then identifying the key issues of the EH powered WSM system through the 

experimental measurements using the custom developed piezoelectric vibration 

powered EH powered WSM system. The experimental results are then presented 

with a focus on the discussions on the start-up issue and the energy mismatch 

issue in the system. Following this, energy-aware approach concepts are 

proposed, and the implementation methods are developed to solve the problems 

above, including hardware EAI, software EAI and sensing EAI. After that, a 

description of how these combined energy-aware approaches were tested by the 

use of the same piezoelectric vibration powered EH powered WSM system as 

mentioned above. The experimental results on the system performance were 

presented, discussed, and concluded. Finally, this chapter ends with a 

conclusion.  

 

Chapter 5 presents the study of energy analyses of the WSM during the network 

joining process in the EH powered WSN. It begins by describing the studied star 

structure of EH powered WSNs. After that, the implementation, the overview, and 

the operation of the studied WSN are given. And then, an experimental analysis 
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of the energy consumption during the WSM network joining process is given. 

Furthermore, the effects of duty cycle and storage capacitor size on the EH 

powered WSM joining the network process are studied. The results are then 

presented, and discussed and a critical issue of uncertainty in the energy 

consumption of the network joining process is identified.  

 

Chapter 6 presents the development of the network energy-aware approach for 

EH powered WSNs to trace and manage the available energy in the WSM to 

solve the uncertainty problem identified in Chapter 5. It begins by describing the 

proposed network energy-aware approaches concepts and algorithms. After that, 

the implementation and experimental study of the network energy-aware 

methods using the developed WSN system powered by multiple EH sources are 

described. The results on the system performance were presented, discussed 

and concluded. 

 

Chapter 7 presents a summary of the research performed in this thesis. The 

structure of the discussion follows the objectives set out by this thesis. It explains 

how each objective is achieved with its primary outcomes and the resulting 

contributions to the research community. Following this, the thesis is concluded. 

Finally, based on the limitations of this thesis, recommendations for further work 

are suggested. 
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Chapter 2 Literature Review 
 
 
This Chapter provides background and state-of-the-art researches that are 

related to this thesis. Section 2.1 describes an overview of the power output 

capability of standard EH techniques for EH powered WSS. Section 2.2 presents 

typical wireless communication technologies and compares the performance of 

wireless communication protocols that have the potential to suit EH powered 

WSS. Section 2.3 overviews the energy-saving mechanisms in the literature that 

may be suitable for the EH powered WSS. Section 2.4 overviews the energy-

aware approaches that have been studied for the EH powered WSS. Section 2.5 

concludes the chapter with a summary of the key findings. 

 

2.1 Energy Harvesting Techniques  
 
 
For EH powered WSS, the energy generated by the energy harvesters is 

important to determine whether or not the chosen energy harvesters can provide 

the required power output for the WSM or WSN. The power output capability of 

RF, solar, thermal, and mechanical EH methods are presented below. 

 

2.1.1 Radio Frequency Energy Harvesting  

 
 
Radio frequency EH converts RF signals into electrical energy using the antenna. 

The frequency range of the radio signals is usually from 3 kHz to 300 GHz [29].  

However, RF EH typically has low output power. For example, there are five 

typical frequency bands for Digital television (DTV), Global system for mobile 

communications (GSM) 900, GSM 1800, 3G, and Wi-Fi, and they are 470-

610MHz, 925-960 MHz, 1805-1880 MHz, 2110-2170 MHz, and 2400-2500MHz 
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frequencies, respectively around 270 London Underground stations have been 

measured and analysed [30]. The average power density generated by RF is 0.89 

nW / cm2, 36 nW / cm2, 84 nW / cm2, 12 nW / cm2 and 0.18 nW / cm2, respectively. 

 

2.1.2 Solar Energy Harvesting   

 
 
Solar EH is one of the most established techniques [31]. It can generate energy 

from microwatt to milliwatt range per square millimetre, depending on the surface 

area of the solar cell and the amount of illumination [32]. For example, it has been 

reported that the solar system is able to produce a typical power density of 75 

mW/mm2 for outdoor solar cell operation and a typical power density of 100 

μW/mm2 for indoor lighting [33]. There is much more potential for solar EH 

technology to improve as currently solar cells only have an efficiency of around 2 

to 15%. If the technology of solar cells can be further improved and matured, 

more power will be available to the WSS.  

 

2.1.3 Thermal Energy Harvesting   

 
 
Thermal EH relies on the temperature gradient between the two surfaces of 

thermoelectric generators and converts it into electrical energy using a 

thermoelectric generator (TEG) that operates based on Seebeck effect that is a 

phenomenon in which a temperature difference between two dissimilar electrical 

conductors or semiconductors produces a voltage difference between the two 

substances. The output power of TEG can be very high if the temperature 

gradient is considerable. For example, by using a TEG with an area of 3136 mm2, 
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an output power of 10.3 W can be obtained at a temperature gradient of 200 oC 

[34].  

 

Even at a lower temperature gradient, an output power of milliwatt range can be 

obtained. For instance, some designers have obtained about 23.9 mW power at 

a 22.5 °C temperature difference with a flexible thermoelectric generator using 

special N-type and P-type thermoelectric materials [35]. However, TEG has a low 

efficiency of about 5-6% [36].  

 

2.1.4 Mechanical Energy Harvesting   

 
 
Mechanical EH has the most varied EH sources and methods. Energy sources 

that can be considered as mechanical energy can be fluid flow, vibrations, 

pressure, stress-strain, and motions from virtually anything, including humans. 

 

Due to the breadth of a variety of mechanical EH sources and methods, the range 

of power that can be harvested is widely dispersed. The choice of transducer 

design mainly depends on the environment of the application. For example, 

harvesting energy from fluid flow using an electromagnetic mechanism is likely to 

obtain more power. The output power from fluid flow EH using cantilever based 

piezoelectric transducer and electromagnetic transducer are in the microwatt 

range [37] and milliwatt range [38], respectively. Other types of transducer 

designs, such as the turbine, could provide a high output power of around 26 mW 

to 140 mW at an air speed of 10 to 18 m/s [39]. On the other hand, piezoelectric 

or electrostatic generators are able to provide the highest density of power for the 

pressure variations [14]. Patch type piezoelectric transducers that were bonded 
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on the surfaces of structures have been used to directly convert the strain 

experienced by the structures into electrical energy, with the power of 3.2 mW 

power generated by a piezoelectric energy harvester under an emulated aircraft 

wing strain loading of 600 με at 10 Hz [40]. 

 
Energy can also be harvested from humans in a variety of ways, such as through 

locomotion or changes in finger position, walking, and knee-joint. In some cases, 

power can reach watt levels. For example, a backpack instrumented with an 

electromagnetic generator that is driven by a rack and pinion gear is able to 

generate a maximum power of approximately 7.37 W [41]. At body parts such as 

fingers and knee, smaller transducers based on piezoelectric mechanisms may 

be more common due to their more compact size than electromagnetic 

transducers. For example, a polyvinylidene fluoride film attached to a curved 

substrate in a piezoelectric shell shape is able to generate an output power of 

0.21 mW from the slow and irregular motion of elbow and fingers [42]. Another 

example is a magnetically plucked piezoelectric bimorph knee-joint energy 

harvester, which is able to generate an average power of 2.72 mW when the 

wearer was walking at a speed of 4km/h [43]. 

 

2.1.5 Summary   

 

A summary of the power output generated from different EH is given in Table 2.1 

[21-35]. It can be seen that the power output varied a lot, depending on the energy 

sources and transduction mechanisms. It should also be noted that the power 

output from energy harvesters is not the exact amount of power that is usable by 

a WSS. The energy output will be conditioned by the power management circuit 

and stored in energy storage devices. Therefore, the realistic amount of power 
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for use by the WSS is much lower than the energy harvested as the power 

management consumes energy. 

Table 2.1: The output power from different energy harvesting techniques [21-35] 

 
EH Techniques Performance Energy Harvester Conditions 

RF 0.18 nW / cm2 Antenna Wi-Fi (2400-2500MHz) 

RF 84 nW / cm2 Antenna GSM 1800(1805-1880 

MHz) 

Solar 75 mW/mm2 Solar cell Outdoor solar 

Solar 100 μW/mm2 Solar cell Indoor lighting 

Thermal 10.3 W 

with3136 mm2 

Thermoelectric generator 200 °C temperature 

difference 

Thermal 23.9 mW Thermoelectric generator 22.5 °C temperature 

difference 

Mechanical 26 mW to 140 

mW 

Turbine Air speed of 10 to 18 m/s 

Mechanical 3.2 mW Patch type piezoelectric 

transducers 

An emulated aircraft wing 

strain loading of 600 με at 

10 Hz 

Mechanical 7.37 W A backpack instrumented 

with an electromagnetic 

generator 

Walked at speeds ranging 

from 2.5 to 4.0 mph while 

carrying 38kg loads when 

walking up a 10% incline 

Mechanical 0.21 mW A polyvinylidene fluoride film 

attached to a curved 

substrate in a piezoelectric 

shell shape 

The slow and irregular 

motion of elbow and 

fingers 

Mechanical 2.72 mW A magnetically plucked 

piezoelectric bimorph knee-

joint 

Walked at a speed of 

4km/h 
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2.2 Wireless Communication Technologies  
 
 
The standardised wireless transmission technologies have shown a potential for 

development of EH powered WSS, and they mainly comprise ZigBee, Bluetooth 

low energy (BLE), Ultra-wide band (UWB), and Long Range Radio (LoRa). The 

power consumption of WSS mainly depends upon the intended applications, 

which define requirements for the wireless transmission technologies such as 

transmission rate and distance required to complete the tasks. Currently, there 

are several commercially available modules based on different wireless 

communication technologies for developing EH powered WSS. Due to 

differences in applications and advances in fabrication technologies used, the 

modules may exhibit different performances in terms of energy usages even if 

they are using the same communication technology. Therefore, this section 

reviews these low-power wireless communication technologies to understand 

their operation, which directly relates to energy requirements and compares 

different popular wireless communication modules concerning different 

parameters, especially for the energy consumption of transmission and receive 

process. 

 

2.2.1 ZigBee  

 
 
ZigBee is a wireless technology developed as an open standard to address the 

requirements of low-cost, low-power devices [44, 45]. ZigBee defines the upper 

layer communication protocols based on the IEEE 802.15.4 standard. It has three 

types of devices. The first is the ZigBee end-device that corresponds to an IEEE 

Reduced Function Devices (RFD) or Full Function Devices (FFD), acting as a 
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simple device. The second is the ZigBee router, which is an FFD with routing 

capabilities. The third is the ZigBee coordinator, which is the Personal Area 

Network (PAN) coordinator to manage the whole network. It is able to support 

three main network topologies: star, tree, and mesh network topologies, as shown 

in Fig. 2.1, and to connect hundreds to thousands of devices [46].  

 

 

Figure 2.1: Network topologies in ZigBee [46] 

 

A star network consists of an FDD and several RFDs. The FDD is used to manage 

and control all functions of the network and all the RFDs directly connected to an 

FDD, which are used to collect data from the environments and then transmit it 

to the FDD. The RFDs are not able to communicate with each other. A tree 

network is a hybrid network topology in which star networks are interconnected 

via the bus network, which is the network topology in which motes directly 

connected to a standard linear. Tree networks are hierarchical, and each FDD 

can have an arbitrary number of child motes (FFDs or RFDs).  Mesh topology is 

a more complex and expensive network than the star network, where all motes 

cooperate to distribute data amongst each other. It consists of a self-forming 

multi-hop mesh of motes and an access point mote that connects the motes to 
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the network manager. Motes are capable of two way communication and collect 

and relay data. The data is propagated along a path by hopping from one mote 

to another mote until it reaches its destination. 

 

It should be noted that, in every network topologies, an RFD may connect to a 

cluster tree network as a leave mote at the end of a branch, because it may only 

associate with one FFD at a time. Any of the FFDs may act as a coordinator and 

provide synchronisation services to other devices or other coordinators. Only one 

of these coordinators can be the overall PAN coordinator, which may have more 

significant computational resources than any other device in the PAN. 

 
Table 2.2 presents four popular ZigBee wireless communication modules: 

JN5148 [47]  from NXP,  EM260 [48] from Ember, CC2430 [49] from Texas 

Instruments, and XBee-S1 [50] from Digi International. XBee-S1 has the highest 

current consumption of transmission and receiver processes, which are about 45 

mA and 50 mA, respectively. JN5148 has the lowest current consumption of 

transmission and receiver processes, which are about 15 mA and 17.5 mA, 

respectively. The current consumption of EM260 and CC2430 for both 

transmission and receiving are about the same at around 27 mA. JN5148 has a 

32-bit processor with 128 kB RAM, which has enough capacity to store sampled 

data. EM 260 has a 16-bit processor while CC2430 and XBee-S1 have an 8-bit 

processor. These three modules have relatively low RAM, which is no more than 

8 kB.  

 

It should be noted that, the sleep mode, mentioned in the Chapter 2, means that 

the devices turn off most functions, including the radio and internal regulator, and 

leave only the critical chip functions powered, including RAM retention. 
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Furthermore, all output signals are maintained in a frozen state and upon waking 

from sleep mode, the internal regulator is re-enabled. The devices can wake on 

both an internal timer and an external signal from the sleep mode. Therefore, the 

sleep mode result in the low current consumption.  

 

Moreover, the devices are able to control enabling and configuration of the 

oscillator sources to optimize energy consumption in sleep mode by minimizing 

power dissipation in unused peripherals and oscillators. In detail, the clock 

system of the devices normally has three kinds of oscillator sources: (1) a high 

frequency Resistor and Capacitor (RC) oscillator,  which is available for the clock 

system, when crystal accuracy is not required.  (2) a low frequency 32.768 kHz 

RC oscillator for low power operation where high accuracy is not required; (3) an 

ultra-low frequency 1 kHz RC oscillator  which is available to provide a timing 

reference at the lowest energy consumption in the sleep mode. It should be noted 

that, compared with the low accuracy of oscillator sources, the clock system 

normally has two kinds of crystals: (1) the high-frequency crystal oscillator and 

integrated 38.4 MHz crystal, which provide a precise timing reference for the 

MCU and radio; (2) the low-frequency crystal oscillator and integrated 32.768 kHz 

crystal, which provide an accurate timing reference for low energy modes and the 

real-time-clock circuits. 

 

Therefore, when all these modules go to sleep, the current consumption is 

typically less than 10 μA. In detail, JN5148 has 1.3 μA current consumption in 

sleep mode with 32.753 kHz RC oscillator. EM260 has about 1 μA in sleep mode 

with 1 kHz RC oscillator. CC2430 has about 0.5 μA in sleep mode with 32.753 
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kHz RC oscillator. XBee-S1 has less than 10 μA in sleep mode with 32.753 kHz 

RC oscillator. 

 

Table 2.2: Typical IEEE 802.15.4 and ZigBee wireless communication modules and parameters 
 

Chipset JN5148  [47] EM 260 [48] CC2430 [49]  XBee-S1 [50] 

Manufacturer NXP Ember Texas 
Instruments 

 

Digi International 

Testing 
Conditions 

3.0V supply at 
25°C of ambient 

temperature 

3.0V supply at 
25°C of ambient 

temperature 

3.0V supply at 
25°C of ambient 

temperature 

3.3V supply at 
25°C of ambient 

temperature 
 

Supply Voltage 2.3-3.6 V 2.1-3.6 V 2.0-3.6 V 2.8-3.4 V 

MCU 32-bit  16-bit  8-bit 8-bit 

RAM 128 KB 5 KB 8 KB 4 KB 

TX 15 mA at +2.5 

dBm 
 

24 mA at +0 

dBm 

27 mA at +0 

dBm 

45 mA at +0 dBm 

RX 17.5 mA 28 mA 27 mA 50 mA 

Data rates 250 kbps 250 kbps 250 kbps 250 kbps 

Sleep 1.3 μA 1 μA 0.5 μA <10 μA 

 
 

2.2.2 Bluetooth Low Energy 

 
Bluetooth Low Energy (BLE) [51] is a developed energy-efficient short-range 

wireless communication protocol and is an extension of the Bluetooth technology 

that allows communication on every major operating system that enables 

development for a broad range of connected devices. The transmission distance 

of BLE is normally within 10 m but is able to go up to 100 m. Furthermore, BLE 

devices can operate either in a master role that is able to control other devices or 

a slave role that advertises and waits for connections [52]. A master can manage 

multiple simultaneous connections with a number of slave devices and provide 

the synchronisation reference. Moreover, a device is able to be a slave or a 
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master to another operating Bluetooth network in the surroundings, which means 

it able to be a mote or a base station. Master and slaves have a common clock 

and frequency hopping pattern.  

 

Table 2.3 presents three typical BLE wireless communication modules: BGM13P 

[53] from Silicon Labs, CC2540F256 [54] from Texas Instruments, and RN4871 

[55] from Microchip. BGM13P has the lowest current consumption of the receiver 

process which is about 9.6 mA at +0 dBm while has the lowest current 

consumption of receiver process, which is about 9.9 mA. CC2540F256 has the 

highest current consumption of transmission, which is about 13 mA at +0 dBm. 

In addition, BGM13P has a 32-bit processor with 64 kB RAM, which has enough 

capacity to store sampled data. CC2540F256 and RN4871 have an 8-bit 

processor. These two modules have relatively low RAM, which is no more than 8 

kB.   

 

In sleep mode, BGM13P integrates an low frequency 32.768 kHz RC oscillator 

and an ultra-low frequency 1 kHz RC oscillator to control system clocks to 

optimize energy consumption in any specific application by minimizing power 

dissipation in unused peripherals and oscillators. Where the high accuracy is not 

required, it is able to have about 1.5 μA current consumption with RAM retention 

and running from 32.768 kHz RC oscillator. Moreover, BGM13P is able to have 

as low as 1.14 μA current consumption with full RAM retention and running from 

1 kHz RC oscillator. CC2540F256 has about 0.9 μA current consumption in sleep 

mode with RAM retention and running from 32.768 kHz RC oscillator. Moreover, 

it has a special sleep mode for quickly wake up the system through keeping the 

digital regular on, which is able to wake up the system with about 4 μs, compared 
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with about 120 μs wake up time with the digital regular off. But the current 

consumption of this quick wake up mode is about 235 μA, which is much higher 

than the normal sleep mode. Similarly, RN4871 has about 2.9 μA in sleep mode 

with 32.768 kHz RC oscillator thus reducing power consumption, which is higher 

than 1.5 μA current consumption and 0.9 μA current consumption in the BGM13P 

and CC2540F256 with the same RC oscillator.     

 
Table 2.3: Typical BLE wireless communication modules and parameters 

 
Chipset BGM13P [53] CC2540F256 [54] RN4871 [55] 

Manufacturer Silicon 
Laboratories 

 

Texas 
Instruments  

Microchip 

Testing 
Conditions 

3.3 V supply at 
25°C of ambient 

temperature 
 

3.0 V supply at 
25°C of ambient 

temperature 

3.0 V supply at 
25°C of ambient 

temperature 

Supply Voltage   1.8-3.8 V 
 

2 V–3.6 V 1.9-3.6 V 

 MCU 32-bit 
 Processor 

 

8-bit 
 processor 

8-bit 
processor 

RAM 64 KB 
 

8 KB 8 KB 

TX   9.6 mA at +0 dBm 
 

21 mA at +0 dBm 13 mA at +0 dBm 

RX   9.9 mA 
 

15.8 mA 13 mA 

Data rates 2 Mbps 
 

1 Mbps 10 kbps 

Sleep 1.5 μA, 1.14 μA 235 μA, 0.9 μA 2.9 μA 

 
 

2.2.3 Ultra-wide Band 

 
 
Ultra-wide band (UWB) [56] is a radio technology that aims to be used for short-

range, high-bandwidth communications over a large portion of the radio spectrum 

with a very low energy level, which belongs to the standardisation group IEEE 

802.15.3a. This standard is able to provide data rates from 11 to 55 Mbps at 

distances of greater than 70 m. In addition, this standard is designed to provide 

simple, ad-hoc connectivity that allows devices to exchange information without 
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a direct intervention of users automatically. Typically, the individual essential cells 

of the UWB for more complex network structures is Peer-to-peer (P2P), which is 

a networking distributed application architecture that partitions tasks or workloads 

among peers [57].   

 

Table 2.4 presents the two most common UWB wireless communication 

transceiver modules: DWM1000 [58] from Decawave and XS110 from Freescale 

[57, 59].  Both of them have high current consumption of transmission and 

receiver process. DWM1000 consumes about 140 mA at +9.3 dBm current for 

transmission and 160 mA for receiving. XS110 consumes about 227 mA at +20 

dBm for transmission and 227 mA for receiving. Despite the lower current 

consumption, DWM1000 has a much superior transmission distance of up to 300 

m than XS110 that can only transmit up to 10 m.  However, the data rate of 

DWM1000 is only up to 6.8 Mbps, while XS110 can go up to 114 Mbps.  

 

Table 2.4: Typical UWB wireless commutation transceiver modules and parameters 

 
Chipset  DWM1000 [58] 

 
XS110  [57],[59] 

Manufacturer  Decawave 
 

 Freescale 

Testing 
Conditions 

3.3V supply at 25°C of 
ambient temperature 

 

3.3V supply at 25°C of 
ambient temperature 

TX 140 mA at +9.3 dBm   
 

227 mA at +20 dBm   

RX 160 mA 
 

227 mA 

Data rates 110 kbps, 

850 kbps, 6.8 Mbps  
 

29, 57, 86 and 114 Mbps 

Transmission 
Distance 

up to 300 m 10 m 
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2.2.4 LoRa  

 
LoRa is a low-power wide-area network (LPWAN) protocol for Internet of Things 

applications based on spread spectrum technology with a broader band, which is 

defined by the LoRa Alliance [60]. The main advantage is that demodulation is 

possible with a noise level of less than 20dB, which allows LoRa to achieve a 

long transmission distance of up to a few kilometre ranges. LoRa transceivers 

use sub-GHz frequencies for their communication, which include 433 MHz, 868 

MHz (Europe), and 915 MHz (North America) industrial, scientific, and medical 

(ISM) radio bands [61]. The LoRa modulation between the physical and Media 

Access Control (MAC) layer [62] is a Semtech proprietary technology that 

includes two basic techniques: forward error correction techniques of code rate 

to further increase the receiver sensitivity and multiple orthogonal spreading 

factors to provide a trade-off between data rate and range. Moreover, LoRa 

utilizes a wider band, usually of 125 kHz or more, to broadcast the signal, which 

allows the usage of scalable bandwidth of 125 kHz, 250 kHz, or 500 kHz  [63].  

 

 
The basic network architecture of a LoRaWAN consists of LoRa end devices, 

LoRa gateways, and a LoRa network server [64], as shown in Fig. 2.2. The 

network makes use of star topology in which LoRa gateways are transparent 

bridges. 
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Figure 2.2: LoRa network architecture [64] 

 

The LoRa end devices communicate with gateways that employ LoRa with 

LoRaWAN. LoRa gateways pass raw LoRaWAN packets from the end devices 

to a LoRa network server with a high throughput based on the backhaul interface, 

which is typically the third generation (3G) of a wireless mobile 

telecommunications network or Ethernet. LoRa gateways also act as a 

bidirectional communication or protocol adapter with the LoRa network server. In 

this case, the LoRa network server takes charge of decoding the data packets 

transmitted by the LoRa devices and creates the frames that would be directed 

back to the devices. The LoRa gateway collects data from LoRa motes to 

construct the topology of a star network and may communicate with a cloud 

server over a long communication range and with high scalability. 

 
Table 2.5 presents three typical LoRa wireless communication transceiver 

modules: RN2483 [65] from Microchip, SX1273 [66] from SEMTECH, and eRIC-

LoRa [67] from LPRS. Both SX1273 and eRIC-LoRa have the same current 

consumption for its transmission with the output power of +20 dBm and +17 dBm 

at 125 mA and 90 mA, respectively. RN2483 has a limited transmission power of 

no more than+15 dBm. The maximum current consumption for its transmission is 

38.9 mA at +14.1 dBm. However, its current consumption for transmitting at +6.9 

https://en.wikipedia.org/wiki/Wireless
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dBm is 30.0 mA, which is much higher than that of SX1273 at 18 mA when 

transmitting at +7 dBm. SX1273 and eRIC-LoRa both have about 10 mA current 

consumption for receiving, which is lower than that of RN2483 as well (14.2 mA). 

The maximum effective data rates of RN2483, SX1273, and eRIC-LoRa are 

10.937 kbps, 37.5 kbps, and 37.5 kbps, respectively. Although all of them have 

high current consumption of transmission and lower data rates than other 

technologies, they have a long transmission distance, which can be more than 

10 km. 

  
Table 2.5: Typical LoRa wireless communication transceiver modules and parameters 

 

Chipset RN2483 [65] 
 

SX1273 [66] eRIC-LoRa [67] 

Manufacturer Microchip SEMTECH 
 

LPRS 

Testing 
Conditions 

3.3 V supply at 25°C of 
ambient temperature 

 

3.3 V supply at 25°C of 
ambient temperature 

5.0 V supply at 20°C of 
ambient temperature 

Supply Voltage 2.1-3.6 V 

 

1.8-3.7 V 2.5-6.0 V 

TX 38.9 mA at +14.1dBm; 

33.7 mA at +10.4 dBm; 

30.0 mA at +6.9 dBm. 

 

125 mA at +20 dBm; 

90 mA at +17 dBm; 

18 mA at +7 dBm. 

125 mA at +20 dBm; 

90 mA at +17 dBm; 

40 mA at +10 dBm. 

RX 14.2 mA 

 

10 mA 10 mA 

Effective Data 
rate 

 

Up to 10.937 kbps 0.24 - 37.5 kbps Up to 37.5 kbps 

Transmission 
Distance 

Up to 15 km coverage at 
suburban; up to 5 km 

coverage at urban area 
 

Line of sight range of up to 
48 km; more than 3 km in 

dense urban environments 

Line of sight range of up to 
10 km 
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2.2.5 Performance Comparison of Wireless Communication 
Protocols 

 

Table 2.6 summaries and compares the aforementioned wireless communication 

technologies of ZigBee, Bluetooth, UWB, and LoRa based on the literature 

reviewed [36-62]. It can be seen that ZigBee, Bluetooth, UWB wireless protocols 

are suitable for working with short range, where the transmission distance is up 

to 100 m, whereas LoRa wireless protocol is considered for long range 

communication since it is able to communicate over a distance of more than 48 

km in some cases. UWB has the highest transmission data rate, which is up to 

110 Mb/s while the maximum transmission data rates of ZigBee, Bluetooth, and 

LoRa are 250 kbps, 2 Mb/s, and 50 kbps, respectively. ZigBee has higher network 

elasticity than Bluetooth, UWB, and LoRa since the basic network topologies of 

it are able to be star, tree, and mesh, which permits the formation of various 

network topologies. 

 
Table 2.6: Comparison of different wireless communication technologies [36-62] 

 
Wireless 

communication 
technologies 

 

ZigBee Bluetooth UWB LoRa 

Standard 
 

IEEE 802.15.4 IEEE 802.15.1 IEEE 802.15.3a IEEE 802.15.4g 

Frequency band 868/915 MHz 
and 2.4 GHz 

 

2.4 GHz 3.1–10.6 GHz 433/869/915 

MHz 

Channel bandwidth 0.3/0.6 MHz;2 

MHz 

 

Up to 2 MHz 500 MHz-7.5 

GHz 

<500 KHz 

Data rate 20, 40, and 

250 kbps 
 

2 Mb/s 110 Mb/s 50 kbps 

Communication 
range 

 

Up to 100 m Up to 100 m Up to 100 m Up to kilometre 

Max number of cell 
motes 

 

> 65000 8 and BLE 
have more 

8 10000 

Basic Network 
Topologies 

 

Star, tree, 
mesh 

Scatternet 
 

P2P Star-of-stars 
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Moreover, Table 2.7 summaries and compares the energy consumption of those 

mentioned above off-the-shelf commercially available wireless chips based on 

the communication technologies of ZigBee, Bluetooth, UWB, and LoRa [36-62]. 

It should be noted that all the data of Table 2.7 is based on the datasheet in the 

given ideal manufacturers’ test environment. Furthermore, JN5148 that uses 

ZigBee, RN4871 that uses BLE, DWM1000 that uses UWB and SX1273 that uses 

have been specifically chosen for comparison since they have the best 

performance in terms of current consumption for their wireless communication 

among their competitors. It should be noted that SX1273 will be compared in two 

different modes, which are with short transmission distance and long 

transmission distance. 

 

The power consumption for transmission and receiving of ZigBee, BLE, and LoRa 

in short range is comparable. However, ZigBee and BLE are better than LoRa for 

their much superior data rates. If long distance communication in the range is 

required, LoRa wireless protocol is the only option. It preserves the same data 

rate but consumes a much higher power for its transmission. On the other hand, 

UWB is suitable for high data rate because of its low normalised energy 

consumption, but the power consumption of both transmission and receiving 

processes are much higher than ZigBee and BLE. Therefore, ZigBee and BLE 

are suitable for applications with limited power supply due to their low power 

consumption and adequate data rate.  
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Table 2.7: Energy consumption of chipsets for each protocol [36-62] 

 
Standard 

 
ZigBee Bluetooth UWB LoRa LoRa 

Chipset 
 

JN5148 RN4871 DWM100
0 

SX1273 SX1273 

Range (m) Up to 100 
m 
 

Up to 100 
m 

Up to 100 
m 

Up to 100 
m 

More 
than 30 

km 

Supply Voltage (V) 3 
 

3.3 3.3 3.3 3.3 

Transmission (TX) (mA) 15 
 

13 160 18 125 

Receive (RX) (mA) 17.5 
 

13 140 10 10 

TX (mW) 45 
 

42.9 528 59.4 412.5 

RX (mW) 52.5 
 

42.9 462 33 33 

Maximum Data rate (Mb/s) 0.25 
 

1 6.8 0.0375 0.0375 

The average energy 
consumption of transmitting 

1 Mb data (mJ/Mb) 
180 42.9 77.65 158.4 1100 

 

2.2.6 Selected Wireless Communication Module for Thesis 

 
Based on the above studies, ZigBee and BLE are considered to be appropriate 

candidates for the development of EH powered WSN. However, the network 

elasticity of ZigBee makes it a better choice. Therefore, the wireless MCU of 

Jennic JN5148-001-M00 that comes with an integrated 2.4 GHz IEEE802.15.4 

transceiver communicating using ZigBee protocol was chosen as the studied 

case in this thesis. Also, JN5148 has high performances and low power 

consumption [47]. In detail, it features an enhanced 32-bit Reduced Instruction 

Set Computing (RISC) processor offering high coding efficiency through variable 

width instructions, a multistage instruction pipeline and low power operation with 

programmable clock speeds. It also includes 128kB RAM, 4Mbit flash memory, 

and 4-input 12-bit ADC pins, which enables the WSMs to have enough data 

storage memory and 4 channels of sampling output from the sensors. The current 

consumption of the MCU for keeping on and sleeping with active sleep timer is 
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about 7 mA and 2.6 μA, respectively. The current consumption of transmitting 

and receiving data is about 17.5 mA and 15 mA, respectively, which is lower than 

other state-of-the-art wireless chips. Moreover, the JN5148 chip is a viable choice 

for the implementation of EH powered WSM, where it was used as a WSM 

microcontroller powered by an aero-acoustic EH device, meant to be installed on 

an aircraft outside skin [69]. The task was to measure the temperature and send 

the data every 6 s, while consuming a mean power of 181 μW. 

 

Moreover, the 2.4 GHz IEEE802.15.4 wireless LTC5800 chip also features a 

highly-integrated and low power radio design [70], which is considered to use in 

Chapter 5 and Chapter 6. It has an enhanced ARM Cortex-M3 32-bit 

microprocessor, 72 kB SRAM, 512 kB flash memory, and four input 12-bit ADC 

pins. The current consumption of transmitting at 8 dBm and receiving a packet is 

about 9.7 mA and 4.5 mA, respectively [70].  

 

2.3 Energy-saving mechanisms for Wireless Sensor 
Systems 
 

Based on the above studies, it can be known that there is a mismatch between 

the energy required by the WSS and the energy that can be provided by energy 

harvesters. Increment of the output power of energy harvesters might require 

innovation in the materials, mechanical designs, and electronic circuits, which 

involves a vast breadth of expertise in the multidisciplinary field and, last but not 

least, more energy from the ambient environments, which is beyond our control. 

One the other hand, manipulation of a WSS in terms of the software and 

hardware to achieve energy saving is more approachable and likely to benefit the 
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wider community as the energy harvesters have to be specific to the environment 

or applications while the WSS could be applied everywhere with different EH 

technologies to perform the sensing and monitoring tasks. 

 
Several energy saving mechanisms for WSS have been proposed in recent years. 

These include sleep/wakeup schemes, data-driven, radio optimisation, and 

energy-efficient routing [11, 27]. In this section, these approaches that exist in 

literature will be reviewed to identify suitable schemes that are suitable for EH 

powered WSS. 

 

2.3.1 Sleep/Wakeup Schemes 

 

Sleep/wakeup schemes aim to adapt mote activities to save energy by placing 

the WSM in low power sleep mode since idle states of the WSM where the 

transceiver is active but without any communication activities are major sources 

of energy consumption especially for keeping the radio component on. The main 

approaches of the Sleep/wakeup schemes include adaptive duty cycling, passive 

wake-up radios, and topology control protocol technology. 

 

Duty cycling is a mainly focused method for energy-saving mechanism during the 

operation of WSMs powered by batteries and EH methods. It is the fraction of 

one period in which a signal or system is active. The most efficient power-saving 

operation is to place the radio transceiver in a low-power sleep mode when no 

communication is required. For example, an adaptive duty cycling algorithm has 

been proposed where it attempts to predict the future energy availability so that 

EH powered sensor motes can autonomously adjust their duty cycle according to 

the predicted energy availability in the environment through periodically sampling 
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of the power from the energy harvester and consumed by the mote [71]. In terms 

of hardware-only implementation, an energy-aware hardware interface that 

controls the WSM to be active only when the voltage across its energy storage 

exceeds a fixed turn-on voltage threshold has also been presented [72]. 

 

Similarly, passive wake-up radios aim to make the WSM wakes up only when it 

is required to transmit or receive the data to reduce the energy wastage during 

the idle states. However, the implementation is slightly different from duty cycling, 

where another circuit such as an RF identification (RFID) tag is used as a wake-

up receiver [73]. The RFID harvests the energy from transmitted signals and 

produces a wake-up signal to trigger an interruption that wakes up the mote. 

However, the energy cost of the wake-up transmitter is high, which makes it 

challenging to implement in networks that involve a multi-hop scheme, and the 

wake-up range is short. 

  

The topology control protocol aims to reduce redundancy of coverage area by 

dynamically adjust the connectivity among the motes so that the number of active 

motes in the same coverage area can be minimised while maintaining a 

maximum area coverage A set number is assigned to each mote by the network 

coordinator. The motes are grouped into different sets based on the criteria that 

all the sets are able to maintain the desired area of coverage when their motes 

become active. Only the motes with the same set number will be activated at a 

time while other motes go to sleep to save energy. The different sets of motes 

will take turn to sleep or become active  [74]. 
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2.3.2 Data-driven 

 
 
Data-driven approaches aim to reduce the amount of sampled and transmitted 

data by keeping the sensing accuracy just within an acceptable level for the 

application to reduce the energy consumption of WSS since the sampling and 

transmission processes are entirely power hungry, as can be seen in Section 2.2. 

 
Event-driven methods aim to enable the WSM to automatically change the 

amount of sampled data and determine whether to transmit the data based on 

current event requirements [11]. For example, apart from the normal operating 

mode, an emergency mode for a solar-powered WSM system has been designed 

[75]. The WSM reports a sensed data to the base station with a certain time 

interval in the normal mode when the WSM is active. In this case, the WSM does 

not have to send a lot of data every time, which reduces the power requirement. 

Once the WSM detects an emergency event such as a fire nearby, it enters the 

emergency mode, where the WSM continuously samples the data and transmits 

it until the supply energy is depleted. Some other examples include an EH 

powered WSM system that only begins sampling and transmitting the data to the 

base station when there is an earthquake [76], and a vibration EH powered WSM 

system that autonomously monitors the amplitude of vibration of interest when it 

reaches a pre-set threshold, and wirelessly transmits an alarm signal when the 

vibration lasts for a considerable period of time [77]. Moreover, more energy is 

expected to be generated during these alarming events, which can take 

advantage to power and support the more frequent data transmission rate of the 

WSS. 
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Transmission data reduction aims to reduce the amount of transmitted data to 

reduce the energy consumption of transmission. It should be noted that this 

method does not reduce the number of samples or sampled data, but focuses on 

transmitting the least amount of data through analysing the sampled data based 

on the application requirements. Transmission data reduction can be achieved 

through data aggregation techniques [78] and data comparison techniques [79]. 

Data aggregation techniques [78] are aimed to gather and aggregate data in an 

energy-efficient method to reduce energy consumption during the transmission 

process. In a data aggregation scheme, the mote is required to analyse the 

sampled data and then chooses the critical information to transmit to the base 

station. For example, a mote may only send the average data or maximum of 

sampled data.  However, data aggregation techniques may reduce the accuracy 

of the data collected. In fact, depending on the aggregation function, the receiver 

may not be able to recover the original data where information accuracy may be 

lost. Data compression techniques are aimed to reduce the size of transmitted 

packets through information coding performed in the WSM to save energy [79]. 

The information decoding can be performed in the base station. However, 

existing compression algorithms are not applicable to sensor nodes because of 

their limited resources. Therefore, specific techniques are required to be further 

developed to adapt to the limited computational and power capabilities of wireless 

motes [79]. 

 

2.3.3 Radio Optimisation 

 
 
Radio optimisation approaches aim to reduce energy dissipation due to wireless 

communications through optimising the radio parameters such as coding and 

modulation schemes, power transmission and antenna direction since the radio 
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module is the main component that causes energy depletion of WSS. The main 

approaches of radio optimisation include modulation optimisation, cooperative 

communication schemes, transmission power control method, and directional 

antennas technology. 

 
 
Modulation optimisation aims to find the optimal modulation parameters that 

result in the minimum energy consumption of the radio. For instance, energy 

depletion is caused by the circuit power consumption and the power consumption 

of the transmitted signal. For short distances, circuit consumption is higher than 

the transmission power, while for longer ranges, the signal power becomes 

dominant. Existing research tries to find a good trade-off between the 

constellation size (number of symbols used), the information rate (number of 

information bits per symbol), the transmission time, the distance between the 

motes and the noise. Cui et al. [80] reported that the system that optimises the 

transmission time and the modulation parameters is able to save up to 80% 

energy consumption compared to the non-optimised systems. Costa and Ochiai 

[81] studied the energy efficiency of different modulation schemes and reported 

that selecting the suitable modulation scheme is able to reduce the energy 

consumption of transmission. For example, M-ary Quadrature Amplitude 

Modulation (MQAM) which is a modulation scheme that conveys data by 

modulating the data transmission onto the amplitude via two carrier signals has 

poor performance for long distances, since it consumes much energy on the 

circuit while has better performance for short distances, since it consumes much 

energy on signal. 
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Cooperative communication schemes improve the quality of received signals by 

exploiting several collaborated single-antenna devices to create a virtual multi-

antenna transmitter, which is to reduce the energy wastage caused by overheard 

from neighboring motes [67, 68]. 

 

Transmission power control methods enhance energy efficiency at the physical 

layer by adjusting the radio transmission power [82, 83]. An algorithm known as 

cooperative topology control with adaptation (CTCA) has been proposed to 

regularly adjust the transmission power of every mote in order to take the uneven 

energy consumption profile of the sensors into consideration [84]. A mote with 

higher remaining energy may increase its transmission power, which will 

potentially enable other motes to decrease their transmission power for saving 

energy. However, transmission power control strategy has an effect not only on 

energy but also on delays, link quality, interference, and connectivity. When 

transmission power decreases, the risk of interference also decreases as fewer 

nearby nodes are subjected to overhearing. On the contrary, the delay is 

potentially increased, because more hops will be needed to forward a packet. 

Therefore, alternating the transmission power will influence the network because 

the potential connectivity between sensors will vary. 

 

Conventional antennas are omnidirectional, where signals are transmitted in all 

the directions. In contrast, directional antennas send a signal in a unidirectional 

manner towards the intended target, and therefore require less power for a given 

range [85, 86]. The use of directional antennas also improves transmission range 

and throughput and limits overhearing. However, if the antennas were not 

properly oriented, some problems that are specific to directional antennas have 
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to be considered such as deafness, in which the transmitter fails to communicate 

with its intended target and signal interference, in which collision occurred when 

more than one signals were sent in a path [87]. 

 

2.3.4 Energy-efficient Routing 

 
 
Energy-efficient routing approaches are primarily designed for motes in a multi-

hop scheme that is closer to the path because they have to route more packets, 

which results in more energy. Cluster architectures are used to organise the 

network into clusters, where each cluster will have a cluster head to manage and 

coordinate activities and communications of slaved motes, with the aim to reduce 

the energy consumption of transmission by reducing the communication range of 

the slaved motes inside the cluster and limiting the number of transmissions by 

performing data aggregation and/or fusion [88, 89]. The cluster heads, which are 

the motes with the highest energy resources, will then relay the data among them 

until the data is sent to the PAN. A new mote in each cluster will be elected as 

the new cluster head after a predefined number of transmission rounds so that 

the energy of the motes that were acting as the cluster head will not be quickly 

drained.        
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2.3.5 Discussions 

 
 
Sleep/wakeup schemes aim to reduce the energy consumption of WSS by 

adapting mote activity. However, passive wake-up radio is not suitable for the EH 

powered WSS since it has a short wake-up range. This means each mote has to 

be equipped with a transmitter, which requires a lot of energy to be able to relay 

the signal across the network. Most EH powered WSNs are likely to have low 

redundancy in a given area since the activation of each mote is determined by 

the energy availability from the environment. Therefore, the topology control 

protocol is not suitable as well. The adaptive duty cycle is a suitable solution for 

EH powered WSS because it enables WSM to reduce the energy consumption 

controlled by itself rather than other motes such as network managers. Moreover, 

the energy-aware approaches enable the energy harvested is able to accumulate 

in the storage device, since it avoids the energy consumption of the WSM during 

the voltage across the storage device is charged up to the stable operating 

voltage of the WSM. 

 

Data-driven approaches aim to reduce the energy consumption of WSS in the 

sampling and transmission of processes. Radio optimisation approaches aim to 

reduce energy dissipation due to wireless communications through optimising the 

different radio parameters which are specific to the applications in most cases. 

Both of them are suitable for EH powered WSS to reduce the energy consumption 

of WSS. However, they are developed based on the requirements and 

environment of the specific application, such as with the given range of 

transmission distance in most cases.  
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Energy-efficient routing approaches are primarily designed for motes in a multi-

hop scheme, which are suitable for complex and expensive networks. However, 

the complex and expensive networks, especially for multi-hop networks, need 

several motes to be in the active state at the same time, which is difficult in the 

EH powered WSN system since the active time of the motes is unpredictable and 

very limited due to energy limitation. In most cases, only a few motes are active 

and remain in the network for a short time. Moreover, in a multi-hop network, the 

motes have to undertake not only the tasks of sampling and communicating 

directly with the network manager, but also need to communicate with other 

motes, which cost more energy than the motes where the network manager 

controls the network function. Therefore, star topology is considered here to be 

able to meet better the condition of EH powered WSN. 

 

The advantage of star topology is that all the complexity in the network is given 

to a network manager, so all the other motes only need to perform a given task 

and communicate in their given time or frequency slot, which is helpful to reduce 

their energy consumption. In addition, it is able to reduce the impact of a 

transmission line failure by independently connecting each mote to the network 

manager. The failure of a transmission line linking any mote to the network 

manager will result in the isolation of that mote from all others, but the rest of the 

network will be unaffected. Therefore, energy-efficient routing approaches are not 

considered in the thesis. 

 

Therefore, among the different proposed energy-saving mechanisms for WSS, 

energy-aware approaches are the most appropriate method for EH powered 

WSS, which will be further discussed in the next section.  
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2.4 Energy-aware Approaches for Energy Harvesting 
Powered Wireless Sensor Systems 
 

Energy-aware approaches can be implemented via software and hardware. 

However, the hardware EAI between the WSS and energy harvesters or power 

management module (PMM) circuit in the EH powered WSS plays a more 

prominent role since it enables the generated energy to be stored in the storage 

device and system to have a low sleep power. A system without the hardware 

EAI will never provide the WSS with the required voltage supply to work properly 

in most cases [72].  

 
Detailed power consumption measurements of the WSM are very important for 

reducing the energy consumption of the EH powered WSS, by designing the 

suitable energy-aware approaches based on a full picture of the WSM behaviour 

at different modes, including wake-up, active, sampling and transmission modes 

[90]. The WSM will consume more energy and behave unpredictably when the 

supply voltage is below its specified voltage range [72]. This increased power 

usage would cause a drop in the voltage of the energy storage devices such as 

super-capacitors. Furthermore, the energy storage devices will turn off the 

microcontroller again since the voltage drop. The voltage across the energy 

storage devices will never reach the stable operating voltage of the 

microcontroller.  The experimental results show that without the cold start circuit, 

the super-capacitor could only be charged to 0.9 V, and the system never became 

fully functional, shown in Fig. 2.3.  Therefore, a cold start circuit, which used a 

Torex XC61C voltage level detector to control an N-MOSFET switch to control 

the power supply to the microcontroller, as shown in Fig. 2.4. The cold start circuit 

was designed to ensure that the microcontroller will only begin to draw power 
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once a certain minimum supply voltage has been reached. When the voltage 

across the super-capacitor reaches a pre-set threshold of 2 V, the voltage level 

detector generates a high signal to connect the negative terminal of the 

microcontroller to the ground to form a closed circuit so that the microcontroller 

is able to draw the energy from the super-capacitor.   

 

Figure 2.3: Super-capacitor voltage with and without cold start circuit [72] 
  

 

Figure 2.4: WSM subsystem schematic in the system [72] 

 

To save the energy during the active time, software-based energy-aware 

approach is used where the microcontroller is programmed to operate in a low 

power sleep mode where it periodically samples the super-capacitor voltage until 

the super-capacitor voltage reaches 2.2 V. Once this threshold is reached, 

indicating that sufficient power is available, the microcontroller switches on the 

accelerometer. The microcontroller then takes 16 measurements at a sampling 
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rate of 1.25 kHz from the accelerometer and records the peak acceleration value. 

The transmitter module is then switched on to transmit a 17 bit packet consisting 

of a synchronisation bit, 8 identification bits and the 8 bit acceleration data value. 

It should be noted that there are many hardware interfaces with similar designs 

or functionality in terms of the control to start up the EH powered WSS that have 

been reported [72, 75, 28, 91, 92, 93]. The main purpose of these interfaces is to 

allow energy to be accumulated in the super-capacitor as it is clear that the output 

power from energy harvesters is insufficient to power a WSM directly [91, 92]. 

Energy-aware approaches that combine both the software and hardware 

implementation will be further discussed. 

 

Similar cold start interface between the super-capacitor and the WSM, as shown 

in Fig. 2.5 has also been proposed [75]. The cold start interface is built with a 

BD4835G voltage detector IC series circuit [94]. If the voltage level of the super-

capacitor is less than 3.5 V, the BD4835G IC will shut down the WSM to avoid 

the unexpected behaviour of the microcontroller. If the super-capacitor voltage 

level becomes 3.675 V, the reset IC restarts the WSM. 

 

Figure 2.5: Block diagram of the solar biscuit WSM [75] 

 

Moreover, three operational modes, namely the bootstrap mode, ordinary mode, 

and emergency mode, were designed as the basic states for the WSM, 
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depending on its energy level. When the voltage across the super-capacitor is 

below 3.675 V, the system is in bootstrap mode, which means the WSM is turned 

off by the cold start interface. In ordinary mode, the microcontroller wakes up at 

3.675 V and then enters sleep mode until the supply voltage level increase to the 

pre-set voltage threshold of 4 V before enabling the WSM to perform the sensing 

and communicational tasks. When the WSM detects an emergency event, it 

enters emergency mode. In this mode, the WSM continuously sample the data 

and then transmit it until the supply voltage drops to 3.5 V, and then go to 

bootstrap mode as controlled by the cold start interface. 

 

Another similar EAI to manage the energy flow between the storage capacitor 

and the WSM was also proposed [28]. The EAI is built with a voltage monitoring 

circuit which is used to monitor the voltage across the storage capacitor. The 

output of the energy-aware interface may be connected to an N-MOSFET for 

similar operation as previously discussed or to the RESET pin of a 

microcontroller, acting as an external interrupt to wake up the microcontroller from 

deep sleep mode when the voltage across the storage capacitor reaches the turn-

on threshold, as shown in Fig. 2.6. However, if the supply voltage is outside of 

the specified voltage range, the deep sleep mode is not allowed in the 

microcontroller since it is a software-controlled mechanism that requires a valid 

operating condition to function properly. Therefore, the microcontroller will still 

consume energy during the deep sleep mode and is not able to avoid the 

unpredictable behaviour in this case.    
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Figure 2.6: Block diagram of the vibration EH powered WSM with the EAI [28] 

 

Some EAIs have been designed in different architectures and serve other 

purposes too. For example, apart from the usual monitoring of the threshold 

voltage of the energy storage capacitor for powering the WSM, the EAI is also 

used to disconnect the energy harvester from the power management circuit to 

prevent charging the capacitor to a high voltage level that exceeds the voltage 

rating of the capacitor [91]. Some designs eliminate the need of an additional 

voltage monitoring circuit for the implementation of the hardware EAI, achieved 

by using the inherent function within the power management chips. 

 

For example, a Seiko S-882Z charge pump DC-DC converter was used to collect 

the low voltage from a micro electromagnetic generator and enable the harvested 

energy to be accumulated in the super-capacitor until it reaches the turn-on 

threshold of Seiko S-882Z itself [92]. Then, the super-capacitor will be discharged 

by an external load that was connected to the output of Seiko S-882Z, which in 

this case, is the MAX757CPA DC-DC boost converter, as shown in Fig. 2.7. The 

MAX757CPA provides a steady 3.3 V output the load, which is a WSM until the 

S-882Z turns off its output as the capacitor voltage reaches the turn-off threshold 

of S-882Z. Although an additional voltage monitoring circuit is eliminated, two 



50 
 

DC-DC converters are required for the charging and discharging purposes as 

shown in the energy flow chart in Fig. 2.8. It may not save energy during the 

discharging phase of the system as the MAX757CPA DC-DC boost converters 

requires about 10 mA of high current consumption when it becomes active. 

 

Figure 2.7: Schematic diagram of the power management circuits [92] 

 

 

Figure 2.8: The energy flows during the charging process, and discharging process in the EH 
powered WSM system [92] 

 

Another design relies on the “PGOOD” pin of the LTC3588 power management 

circuit to achieve the energy-aware functionality in a WSN that is powered by a 

piezoelectric patch bonded to a low-frequency vibrating beam [93]. The LTC3588 

circuit integrates a full-wave bridge rectifier, a DC-DC converter, and a voltage 

comparator into a single chip where the PGOOD pin is controlled by the voltage 

comparator, as shown in Fig. 2.9. The PGOOD pin outputs a HIGH signal when 

the output voltage of the LTC3588 circuit is more than 92% of the target value 

[95]. An ISL43L210 switching circuit was used to manage the energy flow from 
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the LTC3588 circuit to the WSM. The switching circuit is directly controlled by the 

PGOOD signal, as shown in Fig. 2.10, where it will turn on the WSM when 

PGOOD is HIGH and turn off the WSM when PGOOD is LOW. 

 

Figure 2.9:  Block diagram of the EH module based on the LTC3588 and output capacitor [93] 

 

 

Figure 2.10: The switching interface between the EH module and a WSM [93] 
  

 
 
In [96], the piezoelectric energy harvester is used to power the storage capacitor 

through the rectified circuit. As shown in Fig. 2.11, the charge management and 

regulation circuit is used to give a 2.5 V regulated supply voltage to the WSM. 

Moreover, the buck regulator and comparator LTC1540 circuit are used to turn 

on the WSM when the voltage across the storage capacitor reaches the pre-set 

threshold (5.3 V) and turn off the WSM when the voltage across the storage 

capacitor reaches falling threshold voltage varies between 2.8 V and 3 V, 

depending on the instantaneous current drawn.  This is because the power saving 

quiescent current of the buck converter is much smaller than the current of WSM 

keeping on. 
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Figure 2.11: Schematic of the EH powered WSM in [96] 

 

Among the different proposed energy-aware approaches for EH powered WSS, 

the hardware EAI between the WSS and energy harvesters or PMM circuit in the 

EH powered WSS is particularly important since it enables the generated energy 

to be stored in the energy storage device and has a low sleep energy 

consumption through turning off the connection between the WSS and energy 

harvesters or PMM circuit when there is not enough energy for the WSS during 

the active time. The system without the hardware EAI will never attain the 

required voltage supply that makes the WSS work properly in most cases. 

However, they can only turn on and turn off the WSS based on a single pre-fixed 

threshold voltage with very limited hysteresis. Apart from some straightforward 

algorithms for the microcontrollers to enter different modes based on the energy 

level as discussed earlier, there is a lack of energy-aware software that works in 

synergy with the hardware EAI to achieve energy saving or maximise the energy 

utilisation for meaningful tasks. There are three main drawbacks of the currently 

available energy-aware approaches. Firstly, if the WSS finishes the tasks early 

before the capacitor voltage drops to the pre-set threshold voltage, energy could 

be wasted as the WSS is still on in its idle state without doing anything 

meaningful. Secondly, if the WSM is still in the process of executing an operation 
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as the turn-off voltage threshold is reached, this would cause the WSS to be 

unable to finish the required tasks and waste the energy as well. Finally, the 

single threshold voltage of the EAIs limits the operation of the WSS to a short 

duration as the WSS will be turned off very soon after it has been turned on, which 

might not suit some tasks that require the WSS to be turned on for as long as 

possible. Given that energy-aware approaches have been proven to be widely 

applicable to different types of EH powered WSS, this thesis will research more 

sophisticated energy-aware approaches that would be practical for a wide range 

of real-world applications. Therefore, there is a lack of a comprehensive energy-

aware method that considers energy-saving or maximum energy utilisation during 

the active phase of the WSS. 

 

2.5 Summary 
 
 
This chapter has discussed the following: (1) EH techniques, (2) wireless 

communication technologies and protocols, (3) energy-saving mechanisms for 

WSS, and (4) energy-aware approaches. Through these studies, the key 

research question of EH powered WSS has been obviously emerged, that is, 

there is a mismatch between the energy generated by the harvesters and the 

energy demanded by the WSS, as the limited energy is harvested and the WSS 

is power hungry.  

 

Based on the literature review, the main research gaps that the thesis is 

addressing: 
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 Lack of available information focusing on energy consumption of EH 

powered WSM and WSN, not focusing on WSM and WSN technologies 

themselves;  

 

 Lack of an interface between EH and WSS able to be efficient energy 

management and energy storage in the context of track condition 

monitoring user cases; 

 

 Lack of the energy-saving approaches that focus on enabling the EH 

powered WSS to sample, transmission, commutation, and joining the 

network with the limited energy, since most of the previous energy-saving 

approaches on the WSM and WSN are powered by batteries;   

 

 Lack of a comprehensive energy-aware approach that considers energy-

saving or maximum energy utilisation during the active phase of the EH 

powered WSS; 

 

 Lack of energy efficient hardware and software approaches to decrease 

current consumption for sleeping and for transmission in computing, 

sensing and communication to achieve ultra-low-power consumptions for 

implementation of EH powered WSS. 

Therefore, the thesis will develop a method to deal with this mismatch through 

the design, implementation, characterisation of the WSS, and WSN powered by 

batteries and EH to identify the key issues and then to propose a combined 

energy-aware approach for EH powered WSM and WSN. 
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Moreover, based on the literature review, the following conclusions can be drawn: 

 Compare with the performance among typical wireless communication 

technologies and protocols, ZigBee that is compliant to the IEEE 802.15.4 

protocol, is selected for the development of EH powered WSS in the thesis 

since it has a low energy consumption, suitable transmission data rate, 

suitable transmission distance, and flexible network structure. 

 

 The Jennic JN5148-001-M00 wireless module is selected for the 

development of EH powered WSM here since it has the lowest energy 

consumption of transmission and receiver process if compared with other 

commercially available modules.    

 

 In order to reduce the energy consumption of the WSS in the EH powered 

WSS, understanding of power consumption of the WSM is the first task 

since it is helpful for designers to design the suitable approaches based 

on the energy level of every process of the WSS. 

 

 Among the different proposed energy-saving mechanisms for WSS, 

energy-aware approaches are the most appropriate method for EH 

powered WSS. The hardware EAI between the WSS and PMM circuit of 

energy harvesters in the EH powered WSS is particularly important since 

it enables the generated energy to be stored in the energy storage device 

and has a low sleep energy consumption through turning off the 

connection between the WSS and PMM circuit of energy harvesters when 

there is not enough energy for the WSS during the active time. The system 

without the hardware EAI will never attain the required voltage supply that 

makes the WSS work properly in most cases. 
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Chapter 3 Experimental Analyses of Battery Powered 
Wireless Sensor Mote 
 
 
The design of EH powered WSMs requires the knowledge of the energy 

consumption of WSMs. However, there is little information available on the 

energy consumption of WSMs. Understanding of the power consumption of 

battery powered WSMs is the first task for designing the EH powered WSMs. 

Therefore, a battery powered WSM is used to study the power consumption in 

the operational cycle of the WSM in this chapter. 

 

The rest of the chapter is organised as follows: Section 3.1 describes a typical 

battery powered WSM system; Sections 3.2 to 3.4 describe a battery powered 

system implementation, including the hardware, the communication method, and 

the software for the power consumption study, respectively. Section 3.5 and 3.6 

describe the experimental setup and results, respectively. Section 3.7 concludes 

the chapter. 

 

  

 

 

 

 

 

 

 



57 
 

3.1 Typical Battery Powered Wireless Sensor Mote 
 

 

Figure 3.1: Block diagram of a battery powered WSM 

 

The block diagram of a typical battery powered WSM [97] is presented in Fig. 3.1. 

The batteries are directly used to power the WSM. The WSM includes a 

Microcontroller Unit (MCU), a sensing unit, and a wireless transceiver. MCU is 

used to control the WSM operation, especially for the control of data reading from 

sensors and data transmission. The sensing unit may include at least one or 

several sensors with their peripheral circuits, which is used to measure the 

environmental and structural conditions. The transceiver transmits the measured 

data to the base station with a chosen wireless protocol.   

 

3.2 Hardware Implementation of the Studied Wireless 
Sensor Mote 
 

3.2.1 MCU, Transceiver and Sensors Choices 

 
Based on the considerations described in the literature review, the wireless MCU 

of Jennic JN5148-001-M00 was chosen for the study. The sensors implemented 

in the mote were an ADXL335 3-axis accelerometer (Analog Devices, 
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Massachusetts, USA) [98] and an HIH-5030 low voltage humidity sensor 

(Honeywell, New Jersey, USA) [99]. The ADXL335 is a complete 3-axis 

accelerometer with signal conditioned voltage outputs and is able to measure 

accelerations with a range of ±3 g, including static acceleration of gravity in tilt-

sensing applications and dynamic acceleration resulting from motion, shock, or 

vibration. The HIH-5030 humidity sensor is able to measure relative humidity 

(RH) from 0% to 100% RH. The output pin of all sensors can be directly 

connected to the Analog to Digital Converter (ADC) inputs of the MCU. Moreover, 

both of the sensors are chosen based on the low power consumption, and a small 

amount of signal processing required since the top consideration in the design of 

WSM is low energy consumption. The supply current of the selected 

accelerometer and humidity sensor are 350 μA and 200 μA, respectively. 

 

3.2.2 Hardware Implementation 

 
The simplified circuit diagram of the proposed WSM is shown in Fig. 3.2. The X-

, Y- and Z-axis acceleration outputs of the accelerometer were connected with 

the ADC2, ADC3, and ADC4 pin of the MCU, respectively. It should be noted that 

there is a capacitor in parallel to each of the output pin, which is not shown in the 

figure since they are integrated with the accelerometer circuit. The capacitors are 

used to limit the output bandwidth, for example, to up to 50 Hz in the implemented 

circuit, acting as a low-pass filter for antialiasing and noise reduction. The output 

of the humidity sensor is connected with the ADC1 pin of the MCU. The software 

of the MCU controlled the integrated transceiver. The Joint Test Action Group 

(JTAG) debug is an IEEE1149.1 compliant JTAG port for the sole purpose of 

software code debug with the software development kit of Jennic. The JTAG 
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interface is disabled by default and is enabled under software control. Discrete 

Input / Output (DIO) 4 to DIO7 pins of the MCU are used for the JTAG interface.  
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Figure 3.2: A simplified circuit diagram of the WSM used for the study of the battery powered 

WSM 

 

Moreover, Fig. 3.3 shows the implemented hardware of the studied WSM on a 

breadboard. The humidity sensor circuit and the accelerometer circuit are placed 

on the left and right side of the MCU, respectively, since the ADC 1 pin and ADC2-

4 pins are on those sides of the MCU, respectively. JTAG Debug is in the lower-

left corner of the figure, and the green part at the top of the MCU is the integrated 

transceiver.   
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Figure 3.3: The WSM hardware implemented on the breadboard 

 

3.3 Communication Technology of the Studied Wireless 
Sensor Mote 
 

The integrated transceiver of MCU in the Jennic system uses the ZigBee protocol 

based on the 2.4GHz IEEE 802.15.4 standard. It is of low-cost and low-power. It 

is also targeted for low power consumption and low data rate applications.  

ZigBee Protocol transmission architecture specifies the physical layer, Media 

Access Control (MAC) layer, and network layer [47], as mentioned in the literature 

review. Furthermore, ZigBee-based networks, including mote to mote 

communication applications, have one base station device operating in either 

beacon-enabled or non-beacon enabled operating mode. 
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3.3.1 Network Layer 

 
For the network layer and parts of the MAC layer, all ZigBee based 

communication operates in either beacon-enabled or non-beacon enabled 

operating mode. For the beacon mode, the base station sends out a periodic train 

of beacon signals containing information that allows the WSMs to synchronise 

their communications. A beacon also contains information on the data pending 

for the different nodes of the network. Fig. 3.4 shows the transmission of data 

from the WSM to the base station. When the WSM is required to send the data 

to the base station, it first listens to the beacon. On finding the beacon, it 

synchronises with the base station and then waits for the permission and the 

communication channel available for transmission. Once it gets permission, it will 

transmit the data to the base station. The base station may reply with an 

acknowledgment, which is optional, to confirm that the base station has received 

the data successfully [100].  

Acknowledgement

  Transmission Request

Beacon

WSM Base Station

Sending data Request

Listening beacons

Finding beacons

  Transmission Permission

Data Transmission

 

Figure 3.4: Communication between the WSM and the base station in a beacon enabled 
operating mode 
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However, the need to transmit and receive regular beacons puts certain power 

demands on both devices, especially the WSM, since it is necessary to keep 

listening to the beacon from the base station until it finds the beacon when it has 

the requests to send data. After that, it consumes the valuable energy on waiting 

for the base station response after transmitting the transmission request. Worse, 

it may cause data loss because of the uncertain active time due to the limited 

energy supply in most of the EH powered WSM applications. Therefore, the 

beacon-enabled operating mode is not suitable for EH powered WSM 

applications. 

 

In the non-beacon enabled mode, beacons are not transmitted on a regular basis 

by the base station. Instead, communications are asynchronous, which means 

the WSM communicates with the base station only when it needs to, which may 

be relatively infrequent. Therefore, non-beacon enabled mode is useful in 

situations where the energy supply is limited, and light traffic is expected, 

especially for the mote to mote communication of EH powered WSM. The 

communication of the non-beacon enabled mode is also known as the one-way 

communication from the WSM to the base station.  

 

3.3.2 MAC Layer 

 
 
Fig. 3.5 shows a complete MAC frame format transmitted from the WSM to the 

base station. The frame format is a standard non-beacon enabled IEEE 802.15.4 

packet, and it is composed of a MAC header (MHR), a MAC payload, and a MAC 

footer (MFR) [101]. 
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Figure 3.5: MAC frame format transmitted from the WSM to the base station 

 

The fields of the MHR with the total length of 9 bytes appear in a fixed order. The 

frame control field is 2 bytes of the fixed 0x8841 in length, specifying a data frame. 

The sequence number field is 1 byte in length, specifying a unique sequence 

identifier for the frame. In the case that the frame control field and sequence 

number specify a data frame, it has no security and no acknowledgment involved, 

but it does include a destination Personal Area Network identifier (Dest. PAN ID), 

a destination address (Dest. Address) and a source address. The Dest. PAN ID 

and the Dest. The address field is both 2 bytes in length, specifying the unique 

PAN ID and the address of the intended recipient of the frame, respectively. They 

are set to a broadcast address of 0xFFFF, which is accepted as a valid PAN ID 

by all devices currently listening to the channel. The source address field is 2 byte 

in length, specifying the address of the WSM that sends out that frame. 

 

For the MAC payload, the first field is a 1 byte frame type, which specifies whether 

the frame is the beacon, data, acknowledgment, or MAC command. Then, the 

rest of the payload contains the transmitted data, according to the application 

programmed in the WSM. In this chapter, the payload includes 2 bytes from the 

humidity sensor, and a pre-set number of reading, for example, 96 bytes from the 

accelerometer for a total of 98 bytes of data. The first two bytes are the humidity 
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data and the following data are the X-, Y-, and Z- axes of the accelerometer data 

in turn, which will be described in detail in the next section. 

 

The MFR contains a 2 bytes frame check sequence (FCS), which is used to cyclic 

redundancy check based on the international telecommunications union-

telecommunications standard. 

 

3.3.3 Physical Layer 

 
For the physical layer, the WSM is designed to use one fixed channel to transmit 

the data for saving the energy on searching and determining which channel is 

available before the WSM can transmit the data to the base station. For example, 

channel 26 (2405MHz) is chosen as the fixed channel to transmit the data from 

the WSM to the base station in the study. 

 

3.4 Software Implementation of the Studied Wireless Sensor 
Mote 
 

3.4.1 Implementation 

 

The software is implemented based on the NXP's Jennic development platform, 

including Eclipse IDE (Integrated Development Environment) platform, JN51xx 

compiler for use by the Eclipse platform to build applications and produce binary 

files [102], and JN51xx flash programmer to load built applications into motes.  

In detail, Eclipse IDE platform allows users to describe the application using a set 

of service calls and user functions written in the C/C++ language. It also allows 

users to edit and debug application codes. Moreover, it can be downloaded from 
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JN514x software developer’s kit (SDK) libraries, including stack software and 

libraries of  IEEE 802.15.4 protocols [103] for the software implementation of the 

studied WSM.  

 

Programming application in the Eclipse IDE platform uses a function of the 

JN5148 integrated peripherals application programming interface (API) library to 

control the peripheral from the application, which runs on the WSM. API is a 

collection of C functions that can be incorporated in application codes that runs 

on a JN5148 microcontroller [104].  

 

After the JN51xx compiler compiles the binary file which contains the 

programmed application from Eclipse IDE platform , the JN51xx flash 

programmer is used to load the binary file into the flash memory of the chip in the 

JN5148 microcontroller through a USB-to-serial cable [105].  

 

3.4.2 Application Software Overview 

 

The main operation of the WSM is described in Fig. 3.6. Upon being started, the 

first operation of the application is the initialisation of the hardware, stack, and 

application variables. Once this has been completed, the first sampling task 

begins, which is the MCU takes one reading from the humidity sensor [99].  After 

that, the accelerometer data reading loop is entered. The loop is executed based 

on pre-set iterative times and interval time, driven by events from a count function 

and a wake-up timer, respectively. The application sets the MCU to repeat each 

data reading process, for example, every 10 ms for 16 times. In each time, the 

MCU takes a total of three readings (6 bytes of data), each from x-, y-, and z-axis 
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of the accelerometer. Therefore, the MCU repeatedly takes 48 (16×3) readings, 

which make up 96 bytes of data during the duration of the loop. 

 

Each reading is stored in the internal MCU RAM after each acceleration reading, 

and is transformed into the transmission frame data to will be transmitted after 

the loop ends. It should be noted that the maximum payload size in one 

transmission frame is about 100 bytes based on the 2.4 GHz IEEE 802.15.4 

standard. This also explains the reason of iterating the loop for 16 times since 

this constitutes to a payload size that is within the limit and with sufficient data 

points. After that, the WSM transmits all the data stored in the RAM to the base 

station. Once the WSM finishes the transmission, it goes to the sleep with the 

RAM turned off since it is no longer required after the data has been transmitted, 

and a 32-kHz oscillator turned on to support timing function. The MCU wakes up 

through the time function to repeat the measurement. 

MCU wakes up

MCU takes 1 reading from the 

humidity sensor

MCU takes pre-set number of 

readings from the accelerometer

MCU transmits the data to the 

base station

MCU goes to sleep

Start

 

Figure 3.6 : The flowchart of the main operation of the studied WSM 
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3.4.3 Code and Function Description 

 

This section provides details of codes and functions used in the software 

application. The flowchart of the main programme functions is shown in Fig. 3.7. 

It includes functions of the Initialisation, humidity sensor reading, acceleration 

reading loop, transmission function, and sleeping, which corresponds to the main 

operations shown in Fig. 3.6.  
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Figure 3.7: The flowchart of the main programme and its functions of the studied WSM 
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3.4.3.1 Realisation of Initialisation Function 

 

The initialisation function is the main entry point of the application, called after the 

MCU gets the power to wake up. Upon being started, the function u32AHI_Init () 

is first called to initialise the integrated peripherals API. It is required to be called 

after every wake-up, and before any other, integrated peripherals API functions 

are called.  

 

After that, the function vAHI_ApConfigure () is called to configure common 

parameters for analog resources. Through setting the function vAHI_ApConfigure 

(), in the implemented software, the MCU is programmed to enable the analog 

peripheral regulator, which uses a dedicated power source to minimise digital 

noise, and disable the interrupt after each ADC conversion. The frequency of 

ADC pin reading the input signal is able to up to 10 MHz. The reference voltage 

of ADC reading is set to use the internal voltage of the MCU. 

 

3.4.3.2 Realisation of Reading Humidity Sensor Function 

 

This function is used to control the MCU to take one reading from the humidity 

sensor, called after the Initialisation function is finished. Upon being started, the 

function vAHI_AdcEnable () is first called to configure and enable ADC1 pin to 

perform a single conversion with 2.4V reference voltage. It should be noted that, 

the function vAHI_AdcEnable () is able to set different input sources of the ADC, 

which can be selected from among ADC1 pin input, ADC2 pin input, ADC3 pin 

input, ADC4 pin input, on-chip temperature sensor and internal voltage monitor 

which is the voltage on the power supply pin. After that, the functions 
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vAHI_AdcStartSample () and vAHI_AdcRead () are called to start the ADC1 pin 

of the MCU to sample and read the output from the humidity sensor, and then 

store the data as an array of pointers in the MCU. 

 

3.4.3.3 Realisation of the Loop for Reading Accelerometer Function 

 

This function is a loop that controls the MCU to take 48 readings from the 

accelerometer, called after the reading humidity sensor function is finished. It 

iterates 16 times with an interval of 10 ms between each iteration, driven by three 

sub-functions: (1) judgment function, which is used to control the number of times 

that read from the accelerometer and judge when to stop the loop function, 

implemented by setting a variable parameter N to count the repetition times; (2) 

reading accelerometer function, which is used to control the MCU to read the 

accelerometer data and is implemented by setting a series of MCU reading ADC 

functions which are similar to the reading humidity sensor function; and (3) timing 

function, which is used to control the sampling rate of reading accelerometer and 

is implemented by setting the MCU wake timer. 

 

Upon being started, the judgment function is programmed to set the variable 

parameter N equal to 1, and then the reading accelerometer function calls the 

function vAHI_AdcEnable () to configure and enable the ADC 2, 3, and 4 pins to 

perform a single conversion with 2.4V reference voltage. After that, the timing 

function calls the function vAHI_WakeTimerEnable () to enable the wake timer 

and generate an interrupt when the programmed timeout period is reached and 

u32AHI_WakeTimerCalibrate () to calibrate the clock of the wake timer to mitigate 

the effect from temperature, supply voltage, and manufacturing tolerance. 
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After the timing function completed, the reading accelerometer function calls the 

functions vAHI_AdcStartSample () and u16AHI_AdcRead () to sample the output 

from x-, y-, and z-axis of the accelerometer at the ADC 2, 3, and 4 pins, 

respectively. And then the data is stored as an array of pointers in the MCU. After 

that, the judgment function determines whether N is greater than 15. If so, the 

MCU goes to the next function. If not, N is increased by 1, and a 10 ms timing is 

generated as implemented by the function u8AHI_WakeTimerFiredStatus (), 

which is used to zero the selected wake timer and the function 

vAHI_WakeTimerStartLarge () which is used to start the wake timer countdown 

from the specified count value. After 10 ms timing, a new cycle of acceleration 

reading repeats, which starts at vAHI_AdcStartSample () and u16AHI_AdcRead 

() until N is greater than 15. 

 

3.4.3.4 Realisation of Transmission Function 

 
 
This function is used to control the MCU to transmit the data to the base station, 

called after the programme has judged N is greater than 15 and stopped the loop 

reading accelerometer function.  

 

Upon being started, the function eLPTI_Init () is first called to configure baseband 

interrupts and initialise the radio calibration. Then, the function 

bAHI_PhyRadioSetPower () is called to set +2.5dBm transmit power level of the 

MCU internal transceiver to ensure a long transmitting distance of up to 10m. 
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After that, eLPTI_Transmit () is called to configure common parameters for the 

transmitted frame. The transmitted frame is configured by the communication 

channel, the long or short address of the transmitting device, the long or short 

address of the destination device, and whether the frame requires an 

acknowledgement from the receiver or not. In the implemented software, the 

MCU is programmed to set the communication channel as channel 26, since the 

communication is design as a fixed channel communication and the 

acknowledgement from the base station is not required in the communication 

because one-way communication is used. 

 

3.4.3.5 Sleeping Function 

 

This function is called after the transmission function is finished. It is used to 

control the MCU go to sleep, and then wake up to repeat the processes starting 

from the Initialisation function. It generates a 10 s sleeping timing, driven by two 

sub-functions from (1) timing function, which is used to control the sleeping time 

and is implemented by setting the MCU wake timer and (2) sleeping function, 

which is used to put the MCU into sleep mode. 

 

Upon being started, the timing function is programmed by using the wake timer 

as the wake timer to generate a 10 s timing implemented by setting functions 

vAHI_WakeTimerEnable (), u32AHI_WakeTimerCalibrate (), 

u8AHI_WakeTimerFiredStatus () and vAHI_WakeTimerStartLarge () in sequence, 

which is similar to the timing function of the loop reading accelerometer function. 

After that, the sleeping function calls the function vAHI_Sleep () to set the MCU 

into sleep mode. During the sleeping time, the MCU is programmed to go to sleep 
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with the RAM off and the 32-kHz oscillator on, since all the data stored on the 

RAM would have been transmitted to the base station before the MCU goes to 

sleep and the 32-kHz oscillator is required for the timing function. 

 

3.5 Experimental setup  
 

In order to characterise the energy consumption of the implemented battery 

powered WSM, the experimental setup was shown in Fig. 3.8 and in Fig. 3.9. In 

the setup, the implemented WSM was powered by one direct current (DC) power 

source, representing the batteries. The source meter with two measured 

channels was used to measure the energy flow through the WSM. One channel 

was used to measure the current through the WSM at Points A and B, which was 

connected in series between the DC power source and the WSM. Another 

channel was used to measure the voltage across the WSM at Points C and D, 

which was connected in parallel to the WSM. A LabVIEW program running on the 

computer was used to control the source meter and display the measured results 

from the source meter. A base station was placed at a distance of 4 m to receive 

the data from the WSM. 

 

Figure 3.8: The block diagram of the experimental setup for characterising the DC power source 
powered the WSM  
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Figure 3.9: Photograph of experimental setup for characterising the DC power source powered 
WSM 

3.5.1 DC Power Source 

 
In order to properly represent the batteries to power the WSM, Keithley 2220-30-

1 was used as the DC power source [106]. It has 2 channels having outputting 0 

–30 V of voltage with 0.03% basic voltage output accuracy and 0–1.5A of current 

output with 0.1% current output accuracy, which are good enough to be used to 

power the implemented system. For the power setup, one outputting channel of 

the DC power source was connected to the WSM in series via the source meter, 

as shown in Fig. 3.8. The maximum output voltage was set to be 3.2 V, which is 

a standard supply voltage for the MCU of the WSM, and the output current was 

set to be 8 mA, which is the minimum current that has been found to enable the 

implemented system to operate. 

 

3.5.2 Source Meter 

 
Keithley 2612B source meter was used to measure the voltage and current of the 

WSM [107]. For the  setup, there are four main parameters that need to be set 

for tests: (1) the number of power line cycles (NPLC), (2) the sampling time 
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interval, (3) the measurement range and (4) the number of data points which is 

related to the measurement time. 

 

NPLC is used to reject the power line-induced Alternating Current (AC) noise 

during the measurement time. It sets the integration time in several power line 

cycles, which is the period that the analog-to-digital (A/D) converter of the source 

meter measures the input signal. The higher the NPLC, the more accurate the 

signal value will be, which means a more significant noise rejection and better 

resolution. 1 PLC specifies an integration time of 20 ms. The fastest integration 

time is 20 µs when PLC is set to be its minimum value of 0.001. Therefore, the 

maximum sampling rate of the source meter is 50 kHz. For the implemented 

circuit, the sampling time interval is the time between two readings of the source 

meter. To achieve a desired and constant sampling rate, this value needs to be 

specified. The relationship between maximum NPLC and sampling time interval 

or sampling rate is shown by the following equation 3.1. 

 

Maximum NPLC =
Sampling time interval

0.02
=

50

Sampling rate
 

 

(3.1) 

 

The measurement range is also affected by the sampling of the source meter. 

When the auto range is turned on, the source meter will adjust the measurement 

range automatically according to the level of the signal. If the signal level is 

relatively stable, the source meter will not change its measurement range. In such 

a case, the auto range does not affect the sampling rate, and the source meter 

will sample the data at a constant sampling rate, determined by NPLC and time 

interval. However, when the measured signal level varies significantly, there is a 

varied sampling rate [107]. For example, the current consumed by the 
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microcontroller is expected to change dynamically since the microcontroller will 

stay at different states such as sleep and activity. Therefore, to keep a constant 

sampling rate, the auto-range function was turned off in the experiments.  

 

3.5.3 LabVIEW Interface 

 
 
A snapshot of the user interface created using LabVIEW is shown in Fig 3.10. It 

was used to set the channel function, the sampling interval, the measurement 

range, the number of data points, the NPLC, and the measurement time of the 

source meter. The graph on the left of Fig. 3.10 shows the current through the 

WSM, and the graph on the right shows the voltage across the WSM. 

 

Figure 3.10: A snapshot of the LabVIEW program for displaying and recording the measured 
current and voltage 

 

Two series of experiments were carried out to analyse the energy consumption 

of the WSM. Since the source meter has a limited number of data points, which 

directly affects the measurement time, as mentioned before, different settings are 

required for different experiments. The first experiment takes the measurements 

of multiple cycles of the WSM operation to verify the programmed application. 

The sampling interval was set to 1 ms, and NPLC was set to 0.05, which means 



76 
 

the sampling rate of the source meter was set to be 100 Hz. The number of data 

points was set to be 60000, which means the measurement time is 60 s. The 

second experiment focuses on only one cycle of the operation to further analyse 

the process of the WSM during the active time and sleep time. The sampling 

interval was set to be 0.1 ms, and NPLC was set to be 0.005, which means the 

sampling rate of the source meter was 1000 Hz. The number of data points was 

set to 120000, which means the measurement time is 12s.  

 

3.5.4 Calculations of Power and Energy 

 
As mentioned before, experiments measure the voltage across the WSM,  𝑉w, 

and the current through the WSM ,  𝐼w . With 𝑉w  and  𝐼w  recorded, the 

instantaneous power consumption of the WSM, 𝑃w at time (𝑡𝑘) can be calculated 

by equation 3.2. 

𝑃𝑤(𝑡𝑘) =  𝑉𝑤(𝑡𝑘) × 𝐼𝑤(𝑡𝑘)   (3.2) 

 

Where 𝑃𝑤(𝑡𝑘) is the instantaneous power consumption of the WSM at 𝑡𝑘 , and  

𝑉𝑤(𝑡𝑘) and 𝐼𝑤(𝑡𝑘) is the instantaneous voltage and current at 𝑡𝑘. 

 

Therefore, the whole energy consumption of the WSM during a period can be 

calculated by equation 3.3. 

𝐸𝑤(𝑡𝑛) = ∑ 𝑉𝑤(𝑡𝑘) × 𝐼𝑤(𝑡𝑘) × ∆𝑡

𝑛

𝑘=𝑖

   (3.3) 
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Where 𝐸𝑤(𝑡𝑛) is the whole energy consumption of the WSM from the beginning 

at the time of 𝑡𝑖 to the end at the time of 𝑡𝑛, ∆𝑡 is the sampling time interval set 

by the source meter, and 𝑛 is the number of data points. 

 

3.5.5 Calculations of Average Current, Voltage and Power 

 

In order to analyse the energy consumption of the WSM, the average current, the 

average voltage and the average power also need to be considered.  

 

The average current 𝐼𝑎𝑣𝑒  of the WSM measured within a fixed timeframe of  𝑇  

can be calculated by equation 3.4. 

𝐼𝑎𝑣𝑒 =
∑ 𝐼𝑤(𝑡𝑘) × ∆𝑡𝑛

𝑘=1

𝑇 
   (3.4) 

 

Similarly, the average voltage 𝑉𝑎𝑣𝑒 of the WSM measured within a fixed timeframe 

of  𝑇  can be calculated by equation 3.5. 

𝑉𝑎𝑣𝑒 =
∑ 𝑉𝑤(𝑡𝑘) × ∆𝑡𝑛

𝑘=1

𝑇 
   (3.5) 

 

Based on equation 3.3, the average power 𝑃𝑎𝑣𝑒 over the time period  𝑇  can be 

calculated by equation 3.6 using 𝑉𝑎𝑣𝑒 and 𝐼𝑎𝑣𝑒. 

𝑃𝑎𝑣𝑒 =
∑ 𝑉𝑤(𝑡𝑘) × 𝐼𝑤(𝑡𝑘) × ∆𝑡𝑛

𝑘=𝑖

𝑇 
   (3.6) 
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3.6 Experimental results and discussions 
 

The measurements of the power consumption of the WSM for multiple and one 

cycle operations were performed using the implemented WSM, and the 

experimental setup described earlier. Table 3.1 shows the same points, different 

points, and significance of the experiments between one and multiple cycles of 

the WSM operations. It should be noted that the same implemented WSM, the 

same programme, and the same experimental method were used to characterise 

the power consumption in the experiments. The differences in both experiments 

are the sampling rate used, the measurement time, and the measured number of 

cycles of the WSM operation. 100 Hz of sampling rate used in the first 

experimental measurement, the longer measurement time is allowed for analyses 

of multiple cycles of the WSM operation. 1000 Hz of sampling rate for one cycle 

measurement time in the second measurement is allowed for a more detailed 

measurement on one active and sleep cycle to analyse the energy consumption 

of every process.  
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Table 3.1: Description of the same points, different points and significance of the experiments 
between one and multiple cycles of the WSM operations 

 

WSM operation 
Multiple Cycles of the WSM 

Operation 
One Cycle of the WSM 

Operation 

Measured WSM Same Same 

Programme of the 
measured WSM 

Same Same 

Measured the energy flow 
through the WSM 

Same Same 

Sampling rate of the source 
meter 

100 Hz 1000 Hz 

Measurement time Long Short 

Significance of 
measurement results 

Long measurement time is 
able to analyse the average 
energy consumption of one 

active and sleep cycle 
among multiple active and 

sleep cycles 

High sampling rate is able to 
analyse the detailed energy 

consumption of each specific 
process in one active and 

sleep cycle 

 

3.6.1 Multiple Cycles of the Wireless Sensor Mote Operation  

 

Figs. 3.11 (a) and (b) show the measured current of 𝐼𝑊 and voltage of  𝑉𝑊 with a 

100 Hz sampling rate of the source meter. The figures show the multiple cycles 

of the WSM operation. Figs. 3.11 (c) and (d) show the calculated instantaneous 

power 𝑃𝑊 and instantaneous energy 𝐸𝑊 based on 𝐼𝑊 and  𝑉𝑊  from Figs. 3.11 (a) 

and (b). Figs. 3.11 (e) and (f) further show the measured currents of 𝐼𝑊 during a 

complete active time and sleep time of the system, respectively. 
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      (a)          (b) 

  
      (c)          (d) 

  
    (e)            (f) 

Figure 3.11: Measured results of (a) 𝐼𝑊 and (b) 𝑉𝑊 of the system using a sampling rate of 100 

Hz. The calculated results of (c) 𝑃𝑊 and (d) 𝐸𝑊 are calculated based on the measured 𝐼𝑊 in 

(a) and 𝑉𝑊 in (b). The measured (e) 𝐼𝑊 and (f) 𝐼𝑊 are the enlarged plots of the measured 𝐼𝑊 
in (a) for a complete active time and sleep time of the system, respectively. 
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It can be seen that the WSM wakes up to execute the pre-set programmed tasks 

during the active time, which is noted as A in the figure after it has been powered 

up for about 5 s. After the WSM finishes the tasks, it goes to sleep for 10 s, which 

is the sleeping time programmed in the WSM as denoted by S in the figure. After 

the sleeping time, the WSM wakes up again and then repeat the same active and 

sleep operation mentioned previously until the DC power source is switched off.   

 

Moreover, there are five typical time points, which are denoted as T1, T2, T3, T4, 

and T5 in the Figs. 3.11 (a), (b), (c), (e), and (f), respectively. They are used to 

illustrate the changes in the WSM current and voltage in different operational 

processes and are described below: 

 

T1: The WSM starts to wake up at 25.51 s for the implemented WSM, with about 

28.6 µA of current consumption at 3.2 V and, therefore, 0.0914 mW of 

instantaneous power. 

 

T2: The WSM is reading the data from the accelerometer during the active time. 

The current consumption increases to about 7.27 mA, and the voltage drops to 

about 3.195 V. The corresponding instantaneous power increases to 23.2 mW. 

 

T3: The WSM is transmitting the data to the base station during the active time 

with the maximum current consumption of 13.1 mA and minimum voltage 3.191 

V. The corresponding instantaneous power increases to 41.7mW. 

 

T4: The WSM starts to go to sleep after finishing the transmission, with about 

29.8 µA of current consumption at 3.2 V and, therefore, 0.0953 mW of 
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instantaneous power. T4 also shows that the WSM experiences about 190 ms of 

active time between T1 and T4. 

 

T5: The WSM starts to wake up again with about 28.7 µA of current consumption 

and, therefore, 0.0918 mW of instantaneous power. T5 also shows that the WSM 

experiences a 10 s sleeping time between T4 and T5. 

 

Moreover, Fig. 3.11 (d) shows the energy consumption during one cycle of active 

and sleep times. The WSM consumed about 4.62 mJ, 4.63 mJ, 4.64 mJ, 4.63 mJ, 

4.61 mJ, and 4.62 mJ of energy from the first to sixth active times, respectively. 

This yields an average energy consumption of about 4.63 mJ for the active time. 

The WSM consumed about 0.97 mJ, 0.97 mJ, 0.92 mJ, 0.96 mJ, and 0.97 mJ of 

energy for the first to fifth sleep times, respectively, which gives an average 

energy consumption of about 0.96 mJ for the sleep time. 

 

It should be noted that, when the current consumption increases significantly, the 

corresponding voltage will drop. It is because a limit was set on the electrical 

output capacity of the DC power supply. However, this does not affect the energy 

consumption analyses of the system, since the energy consumption is calculated 

based on both current and voltage.  
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3.6.2 One Cycle of the Wireless Sensor Mote Operation 

  
(a) (b) 

Figure 3.12: The enlarged plots of the measured results of 𝐼𝑊 ,  where (a) for a complete 
active time and (b) for the sleep time of the system using a sampling rate of 1000Hz 

 

Fig. 3.12(a) shows the measured current of 𝐼𝑊 in one active time and Fig. 3.12 

(b) shows the measured current of 𝐼𝑊 in sleep time. From the figures, it can be 

observed that the current consumption can be broken down into the following 8 

operational processes:  

 

Process 1: as the WSM wakes up, all the peripheral circuits and components are 

powered up, consuming an average current consumption of 7.42 mA in 13.5 ms. 

 

Process 2: after waking up, the WSM starts to initialise the programme, 

performing the u32AHI_Init () function as described in Section 3.4, consuming an 

average current consumption of 7.35 mA in 6.3 ms. 

 

Process 3: the WSM initialises the sampling process, performing the 

vAHI_ApConfigure() function as described in Section 3.4, consuming an average 

current consumption of 7.27 mA in 7.1 ms. 
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Process 4: the WSM reads the humidity sensor, which consumes an average 

current consumption of 7.29 mA in 2.8 ms. 

 

Process 5: the WSM reads from the accelerometer 16 times with the interval time 

of 10 ms between successive readings, consuming an average current 

consumption of 7.27 mA in 150 ms. 

 

Process 6: the WSM prepares the transmission, such as turns on the radio, and 

puts the sampling data into the transmission frame, consuming an average 

current consumption of 7.30 mA in 3.1 ms. 

 

Process 7: the WSM transmits the data to the base station, consuming an 

average current consumption of 11.25 mA in 3 ms.  

 

Process 8: the WSM executes the sleeping function and remains in the sleep 

state, consuming an average current consumption of 30.4 µA in 10 s. 

 

3.6.3 Analysis of the Energy Consumption of the Process  

 

Table 3.2 shows the average current, average voltage, average power, and 

energy consumption as calculated using equations 3.2 to 3.6 of every process of 

the experimental measurement in Section 3.6.2. 

 

The total energy consumption is 5.57 mJ, which can be calculated as the sum of 

the “energy” column in Table 3.2. The energy consumption for one active cycle 
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is 4.60 mJ during 185.8 ms of active time, which means the average power for 

one active cycle is 24.8 mW. For the energy consumption during sleeping, the 

WSM consumed 97.28 µW for 10s, which means the average power for sleeping 

is 97.28 µW. 

 

For the energy consumption of the data processing, it can be seen that WSM 

consumed 3.79 mJ (0.07+3.72) for reading 98 bytes (6×16+2) of data in 152.8 

ms, which means the average energy consumption of the WSM for reading 1 byte 

is about 38.67 μJ. For transmitting 98 bytes of data, the WSM consumed 0.18 mJ 

(0.07+0.11) in 6.1 ms, which means the average energy consumption of 

transmitting 1 byte is about 1.84 μJ. In summary, the collective process of the 

WSM for processing 98 bytes (6×16+2) of data from waking up to the data 

transmission in 185.8 ms requires 4.60 mJ, which means the average energy 

consumption of processing 1 byte of data is about 46.94 μJ.  
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Table 3.2: Energy consumption of every process in the JN5148 and accelerometer 

 
No. Process Average 

Current 
Average 
Voltage 

Average 
Power 

Energy 
 

Time 
 

1 Wake up 7.42 mA 3.198 V 23.73 mW 0.32 mJ 13.5 ms 

2 Initialisation 
program 

7.35 mA 3.197 V 23.50 mW 
 

0.15 mJ 6.3 ms 
 

3 Initialisation 
sampling 

7.27 mA 3.196 V 23.23 mW 0.16 mJ 7.1 ms 

4 Reading humidity 
sensor 

7.29 mA 3.195 V 23.29 mW 
 

0.07 mJ 2.8 ms 

5 Loop Reading 
accelerometer 

7.27 mA 3.195 V 23.23 mW 
 

3.72 mJ 
 

150.0 ms 

6 Prepare 
transmission 

7.30 mA 3.195 V 23.32 mW 0.07 mJ 3.1 ms 

7 Data transmission 11.25 mA 3.191 V 35.89 mW 
 

0.11 mJ 3.0 ms 

8 Sleep 30.4 µA 3.200 V 97.28 µW 0.97 mJ 10.0 s 
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3.7 Summary 
 
This chapter has presented a customer developed batteries powered WSM 

system of hardware, software, and communication methods and analysed the 

energy consumption of the WSM in its operational cycles. The WSM was built 

with a JN5148 microcontroller and two sensors: accelerometer and humidity 

sensor. The integrated transceiver uses the ZigBee protocol based on the 2.4 

GHz IEEE 802.15.4 standard. The main software function includes the 

initialisation function, reading humidity sensor function, reading accelerometer 

loop function, transmission function and sleeping function. The experimental 

results show that the WSM consumes about 4.60 mJ for carrying out the 

programmed tasks during one active cycle of 185.8 ms and 97.28 µW for one 

sleep cycle of 10 s. The average energy consumption of the WSM in processing 

1 byte is 46.94 µJ /byte, including wake up, sampling, and transmission during 

active time. 
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Chapter 4 Energy-aware Approaches for Energy 
Harvesting Powered Wireless Sensor Mote  
 

Chapter 3 has studied the energy consumption of the developed battery powered 

WSM. Chapter 4 will use the developed WSM in Chapter 3 to directly connect an 

energy harvester, discuss key issues of such an EH powered WSM, and address 

these issues by proposing and developing energy-aware approaches. 

 

The rest of the chapter is organised as follows: Section 4.1 describes a typically 

existing EH powered WSM system. Section 4.2 identifies the cause of the risen 

issues in the EH directly powered WSM through experimental measurements. 

Section 4.3 discusses how to address the issues by proposing and developing 

energy-aware approaches, including hardware EAI, software EAI and sensing 

EAI, to manage the energy flow through the system to solve the identified issues. 

Section 4.4 shows the experimental setup and results of a custom-developed EH 

powered WSM system by use of the proposed energy-aware approaches. 

Section 4.5 concludes the chapter with a summary of the key findings. 
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4.1 Typically Existing Energy Harvesting Powered Wireless 
Sensor Mote   
 

 

Figure 4.1: Block diagram of a typical existing EH powered WSM  

  

A typically existing EH powered WSM block diagram is presented in Fig. 4.1 [14] 

and [108], which is composed of four main blocks: energy harvesters, a power 

management module (PMM), an energy storage, and a WSM. Compared with the 

battery powered WSM system shown in Fig.3.1, the energy harvesters, the PMM, 

and the energy storage replace the batteries to power the same WSM. Energy 

harvesters are used to harvest energy from the ambient environment. The 

harvested energy is regulated by the PMM and then stored in the energy storage. 

When the voltage across energy storage reaches the minimum operating voltage 

of MCU, the WSM starts to consume the stored energy to carry out pre-set tasks. 
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4.2 Analysing the Key Issues of Existing Energy Harvesting 
Powered Wireless Sensor Mote   
 

In order to identify and understand the key issues of a typical EH powered WSM 

system, a custom developed WSM powered by a vibration energy harvester was 

used in the study. The energy flow through the system was analysed to determine 

the cause of the key issues.   

 

4.2.1 Energy Harvester 

 
A macro-fibre composite (MFC) was used as an energy harvester to convert 

strain energy induced by structural vibration into electrical energy. The MFC is a 

patch type of piezoelectric transducer that was developed by NASA Langley 

Research Centre [109]. It has been widely used as strain energy harvesters due 

to its extreme flexibility and durability together with high piezoelectric 

performance compared with traditional piezoceramic materials [110] and [111].  

 

Fig.4.2. shows the photograph of energy harvester by adhesive bonding an 

M8528-P2 MFC (Smart Material GmbH, Dresden, Germany) onto one side of a 

carbon fire composite plate, which was implemented by the Energy Harvesting 

Research Group at the University of Exeter. The MFC has an overall length, width, 

and thickness of 103 mm, 31 mm, and 0.3 mm, respectively, but the dimensions 

of the EH area are 85 mm × 28 mm. The carbon fibre composite plate has a 

length, width, and thickness of 300 mm, 50 mm, and 5 mm, respectively. Both 

ends of the plate were sandwiched by two aluminium plates, which serve as the 

gripping platform that will be held by a testing machine in subsequent 
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experiments. Two electric wires connected to two electric electrodes of the MFC, 

which was used to generate the output energy from the MFC. 

 

Figure 4.2: The implemented energy harvester by the Energy Harvesting Research Group 
 
 

4.2.2 PMM, Energy Storage and the Studied WSM 

 
The PMM used in this research and developed by the Energy Harvesting 

Research Group at the University of Exeter as well is shown in Fig. 4.3. It consists 

of (1) a full-wave diode bridge rectifier to convert the AC voltage produced by the 

energy harvester into DC voltage, (2) a maximum power point tracking (PMMT) 

circuit that allows as much power as possible to be transferred from the energy 

harvester to the energy storage, and (3) DC-DC converter to regulate the rectified 

DC voltage and produce a usable DC voltage for charging the energy storage 

and powering the WSM [112]. It should be noted that the rectifier is only needed 

for energy harvesters with AC output, such as the MFC. A 10 mF super-capacitor 

was used as the energy storage in the study. The studied WSM was the same 

WSM described in Sections 3.2 to 3.4, including its hardware and software. 
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Figure 4.3: The PMM used in this research [112] 

 

4.2.3 Experimental setup 

 
A peak-to-peak strain loading of 600 με at 10 Hz was applied onto the strain 

energy harvester using an Instron E10000 ElectroPuls dynamic testing machine 

(Instron, High Wycombe, UK) as shown in Fig. 4.4.  

MFC  

Instron Machine

 

Figure 4.4: Instron machine with the MFC energy harvester 
 

 

The experimental setup for measuring the energy flow throughout the 

implemented EH powered WSM system is schematically shown in Fig. 4.5. In the 

setup, all the measurements were made using two source meters with 1000 Hz 

sampling frequency. One was used to measure the voltage across the super-

capacitor, 𝑉𝐶𝑆 at the points of A and B, and measure the input current to the 
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super-capacitor , 𝐼𝐶𝑆 at the points of C and D. Another source meter was used to 

measure the voltage across the WSM, 𝑉𝑊 at the points of E and F and measure 

the current output to the WSM from the super-capacitor , 𝐼𝑊 at the points of G and 

H. A LabVIEW program was used to control the measurements of the two source 

meters and display the measured results on the computer.  

 

 

Figure 4.5: The schematic of the experimental setup for characterising the MFC powered WSM  

 

The energy generated by the MFC that has been conditioned and outputted by 

the PMM, 𝐸𝐶𝑆 , within a timeframe can be calculated by equation 4.1. The energy 

consumed by the WSM, 𝐸𝑤 , within a timeframe, can be calculated by equation 

3.3. 

𝐸𝑐𝑠(𝑡𝑛) = ∑ 𝑉𝑐𝑠(𝑡𝑘) × 𝐼𝑐𝑠(𝑡𝑘) × ∆𝑡

𝑛

𝑘=𝑖

 (4.1) 

 

where 𝐸𝑐𝑠(𝑡𝑛) is the total energy that has been outputted by the PMM from the 

time beginning at 𝑡𝑖 to the end at 𝑡𝑛, ∆𝑡 is the sampling time interval of the source 

meter, which is set to be 1 ms and 𝑛 is the number of sample/data count. 

 

The accumulated energy stored in the super-capacitor, 𝐸𝑠, at a given time can be 

calculated by equation 4.2.  
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𝐸𝑠(𝑡𝑛) = 𝐸𝑐𝑠(𝑡𝑛) − 𝐸𝑤(𝑡𝑛) (4.2) 

 
 

4.2.4 Results and discussions 

 
 
Figs. 4.6(a) and (b) show the measured voltage of 𝑉𝐶𝑆 and current of 𝐼𝐶𝑆 across 

the super-capacitor, and Figs. 4.6 (c) and (d) show the measured voltage of 𝑉𝑤 

and the current of 𝐼𝑤, at the input to the WSM, respectively. It can be observed 

that 𝑉𝐶𝑆 is equal to 𝑉𝑤 since they were connected in parallel in the system, and 

both of them are able to initially increase to about 2 V and then fluctuated around 

it. The DC-DC converter is enabled momentarily by the MPPT circuit to transfer 

the harvested energy from the MFC to the super-capacitor [112]. Therefore, the 

current profile of 𝐼𝐶𝑆  exhibits a non-continuous burst of spikes with a peak of 

around 100 mA. However, the maximum output current from the PMM is about 

3.1 mA at 𝑉𝐶𝑆 of about 2 V, but  𝐼𝑤 is steady at around 0.3 mA in most of the sleep 

time. This voltage and current are much lower than the minimum operating 

voltage of around 2.4 V and current of around 7 mA as required by the WSM to 

start the operation properly, as discussed earlier in the section.  

 

Figs. 4.6 (c) and (e) show the energy flow of 𝐸𝐶𝑆, 𝐸𝑤, and 𝐸𝑆. It can be observed 

that, when 𝑉𝑤 increases to about 2.01 V at about 14.48 s, it cannot increases to 

the minimum operational voltage. This is because the energy consumption of the 

WSM begins to increase, causing the accumulated energy stored in the super-

capacitor to decrease. Also, 𝐸𝑤  increases significantly at the same time, and 

energy harvested is not high enough for MCU required. Therefore, 𝑉𝑤 cannot 

increases to the minimum operational voltage shows that there is a gap between 

the energy generated by the energy harvester and the energy required by the 
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WSM. The system is not capable of storing enough energy effectively for the 

MCU to start up and so there is a start-up issue for the MCU since the 

accumulated energy is consumed by the MCU instantly. 

 

The drastic increase in the energy consumption of the WSM when 𝑉𝑤 reaches 

about 2 V at 14.48 s is because that the voltage level can only support part of 

peripherals of the MCU such as the ADCs, Digital Converter to Analog (DAC)s, 

comparators and the internal temperature sensor to start working. However, it is 

still lower than the minimum operating voltage of the MCU (2.4 V) to support all 

the peripherals of the MCU. Those parts, as mentioned above, are always 

powered on until there is a minimum operating voltage available to the core 

processor of the MCU for it to operate properly and control all the peripherals with 

proper initialisation. Therefore, with the MCU and some of its peripheral circuits 

continuously draw energy when the voltage supply is below the minimum 

operating voltage of 2.4 V while there is limited energy harvested by the MFC, 

the harvested energy cannot be accumulated in the energy storage. 

  
(a) (b) 
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(c) (d) 

 

 

(e)   
Figure 4.6 : Measured profiles of the (a) 𝑉𝐶𝑆, (b) 𝐼𝐶𝑆, (c) 𝑉𝑤, (d) 𝐼𝑤, and the calculated (e)  𝐸𝐶𝑆 ,  

𝐸𝑤 , 𝐸𝑠  of the system 
 
  

4.2.5 Identified Causes of Issues 

 

Through the above experimental discussions of the energy flow, it can be 

observed that the first key issue of the EH powered WSM systems are the energy 

gap where there is a mismatch between the energy generated by the energy 

harvesters and the energy demanded by the WSM, in which the former is usually 

lower than the latter. This means the energy supply from EH is usually insufficient 

to meet the energy requirements of WSMs instantly. The second key issue is 
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start-up where the WSM is not able to start where the harvested energy could not 

be accumulated in the capacitor since the WSM immediately consumes the 

energy, and therefore the supply voltage is not able to reach the required 

operating voltage of the WSM.  

 

4.3 Proposed Energy-aware Approaches 
 
 
In order to solve the issues of a typical EH powered WSM system as described 

in Section 4.2, the energy-aware approaches are proposed, designed, and 

implemented to deal with the start-up and the energy mismatch issues through 

reducing the power consumption during the active time and the sleeping time, 

including the cold sleeping time and the warm sleeping time. It should be noted 

that the active time is defined as the period where the WSM is activated to 

perform the pre-programmed tasks, which includes the operation starting from 

the WSM woken up until it finishes the transmission and then starts to go to sleep. 

The cold sleeping time is defined as the period where the energy storage is 

charged from zero to sufficient energy for the WSM to be firstly active to perform 

the pre-programmed tasks. The warm sleeping time is defined as the period of 

time where the WSM goes to sleep until it is activated again. The warm sleeping 

time is shorter than the cold sleeping time since the energy storage is not charged 

up from zero as there is some energy that remains in the energy storage but is 

not enough to support the operation of the WSM. 

 

Fig. 4.7 illustrates the developed EH powered WSM with the energy-aware 

approaches. Compared with the typical existing EH powered WSM system shown 



98 
 

in Fig.4.1, the proposed system has added three main blocks: (1) hardware EAI, 

(2) sensing EAI, and (3) software EAI.   

 

Figure 4.7: Block diagram of the developed EH powered WSM with energy-aware approaches 

 

4.3.1 Hardware Energy-aware Interface 

 

4.3.1.1 Concept  

 
The hardware EAI is an interface between the energy storage and the WSMs, 

which is designed to solve the start-up problem and reduce the power 

consumption of the WSMs during sleeping time. It is used to monitor the voltage 

across the energy storage to judge if there is enough energy in the energy storage 

for the WSMs to perform the pre-programmed tasks and determine when to wake 

the WSM up. 

4.3.1.2 Implementation 

 
Fig. 4.8 shows the schematic of the developed hardware EAI. The circuit consists 

of: (1) an ultra-low power voltage supervisor (LTC2935-1, Linear Technology, 

United States) which is used for monitoring the voltage across the energy storage 

𝑉𝐶𝑆 and controlling the on or off state of an N- Metal Oxide Semiconductor Field-
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Effect Transistors (N-MOSFET), and (2) the N-MOSFET which is used as a 

switch to turn on or off the WSM as controlled by the voltage supervisor circuit.  

 

 

Figure 4.8: Schematic of the hardware EAI 

 

The working principle of the hardware EAI is by using the low or high state of the 

OUT pin of the voltage supervisor to control the N-MOSFET switch to break or 

make the connection between the system ground and the negative terminal of 

the WSM to achieve the sleeping or active state of the WSM. In detail, the voltage 

supervisor monitor 𝑉𝐶𝑆 and pull the OUT pin low when 𝑉𝐶𝑆 is below a defined turn-

on threshold voltage, 𝑉𝐻−𝑜𝑛 . Whenever 𝑉𝐶𝑆  rises above 𝑉𝐻−𝑜𝑛 , the OUT pin 

output changes from a low state to a high state, enabling the WSM to achieve the 

active state. When 𝑉𝐶𝑆  drops below a defined turn-off threshold voltage, 𝑉𝐻−𝑜𝑓𝑓 , 

the output of the OUT pin changes from a high state to a low state, enabling the 

WSM to achieve the sleep state. It should be noted that both 𝑉𝐻−𝑜𝑛 and 𝑉𝐻−𝑜𝑓𝑓 can 

be set to a fixed value with eight possible choices ranging from 1.6 V to 3.45 V in 

pre-determined increments [113].   
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4.3.1.3 Operation 

 
Fig. 4.9 shows the illustration of the voltage 𝑉𝐶𝑆  changes under the control of 

hardware EAI and the operation is explained as follows: The energy storage 

device defined as 𝐶𝑆  in the figure is initially charged from 0 V. The OUT pin of the 

voltage supervisor stays low when 𝑉𝐶𝑆  is lower than 𝑉𝐻−𝑜𝑛 . Since the power 

consumption of the hardware EAI is much lower than the energy generated by 

the energy harvesters, the harvested energy can be accumulated in the energy 

storage. Therefore, 𝑉𝐶𝑆 is able to increase during the cold sleeping time.  

 

Figure 4.9: An illustration of 𝑉𝐶𝑆 changes under the control of hardware EAI where 𝑉𝐻−𝑜𝑛 is 
defined turn-on threshold voltage and 𝑉𝐻−𝑜𝑓𝑓 is defined turn-off threshold voltage 

 

Once 𝑉𝐶𝑆 exceeds 𝑉𝐻−𝑜𝑛 , the output pin is set to be in a high state, which turns 

the N-MOSFET into a low impedance state, connecting the system ground and 

the negative terminal of the WSM. The WSM and the energy storage then form a 

closed circuit, where the WSM can draw the current, and consequently, the WSM 

becomes active to perform the pre-programmed tasks. 

 

𝑉𝐶𝑆 subsequently decreases during the active time, since the energy generated 

by the energy harvester is lower than the energy demanded by the WSM during 
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active time. When 𝑉𝐶𝑆 is lower than 𝑉𝐻−𝑜𝑓𝑓 , the voltage supervisor changes the 

out pin state from high to low, which turns the N-MOSFET off into a high 

impedance state, disconnecting the system ground and the negative terminal of 

the WSM. As a result, the WSM is disconnected from the energy storage and is 

switched off immediately. The WSM now turns into the non-active phase so that 

the energy storage can be charged up again if there is input energy from the 

harvester. The system remains in the sleep phase until 𝑉𝐶𝑆 reaches 𝑉𝐻−𝑜𝑛 again, 

and then the cycles repeat. 

 

With the two different threshold voltages used in the EAI, the WSM certainly has 

sufficient energy to begin its pre-programmed task immediately once the 

capacitor voltage has reached the turn-on threshold voltage. Moreover, the 

proposed hardware EAI allows flexible control of the WSM as the actual 

operational state of the WSM is known to occur at the turn-on threshold of the 

EAI. The operational window of the WSM can be easily controlled by adjusting 

the difference between the two threshold voltages.   
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4.3.2 Software Energy-aware Interface 

 

4.3.2.1 Concept  

 

The software EAI is designed to increase the energy use efficiency to extend the 

active time so that the WSM is able to monitor more data from the surrounding 

environment. It is a virtual interface between the MCU and the transceiver, which 

is used to judge whether the energy stored in the energy storage device is enough 

for the WSM to carry out the next operation and ensure all the measured data is 

transmitted before the energy becomes too low for the operation of the WSM.  

 

As mentioned before, the hardware EAI is used to turn on and turn off the WSM 

based on the pre-fixed threshold voltages 𝑉𝐻−𝑜𝑛 and 𝑉𝐻−𝑜𝑓𝑓 , respectively. 

Therefore, the WSM would be turned off when 𝑉𝐶𝑆  reached the pre-fixed 

threshold 𝑉𝐻−𝑜𝑓𝑓 regardless of the WSM operation states, which causes energy 

wastage if the WSM is in a period of active operation. 

 

In order to solve these problems, the software energy-aware programme is 

introduced to monitor the voltage across the energy storage 𝑉𝐶𝑆 and to judge if 

there is enough energy in the energy storage for the WSM to carry out the next 

operation and ensure all the measured data is transmitted before the energy 

becomes too low for such an operation. Therefore, it enables the WSM to stay 

active for as long as possible to allow as many data as possible to be sampled 

and transmitted without being limited by a fixed duty-cycle.   
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4.3.2.2 Operation and Implementation 

 

Fig. 4.10 shows the illustration of 𝑉𝐶𝑆 changes under both the control of software 

EAI and hardware EAI. Compared with the system under the control of the 

hardware EAI, the system adds three defined voltages: 𝑉𝐸𝑁𝐷, 𝑉𝑆−𝑜𝑓𝑓, and 𝑉𝑀𝐼𝑁.  

 

Figure 4.10: An illustration of the voltage 𝑉𝐶𝑆 changes under the control of hardware EAI and 

software EAI where 𝑉𝐸𝑁𝐷  is the voltage that is used to judge whether the capacitor has enough 
effective energy to supply the WSM to perform the next tasks, 𝑉𝑠−𝑜𝑓𝑓 is the voltage that is used 

to judge whether the capacitor has enough effective energy to supply the WSM to perform the 
next tasks and 𝑉𝑀𝐼𝑁 is the minimum operating voltage of the WSM 

 
𝑉𝑀𝐼𝑁 is the minimum operating voltage of the WSM, which means the WSM is no 

longer able to operate properly below 𝑉𝑀𝐼𝑁. It should be noted that 𝑉𝑀𝐼𝑁 is not the 

same as 𝑉𝐻−𝑜𝑓𝑓 since 𝑉𝐻−𝑜𝑓𝑓 is one of the eight fixed values provided by the 

voltage supervisor while 𝑉𝑀𝐼𝑁  is based on the electrical characteristics of the 

chosen MCU. If 𝑉𝐻−𝑜𝑓𝑓  is set to be higher than 𝑉𝑀𝐼𝑁, the system will not be able 

to perform the measurements for as long as possible since the WSM will be 

turned off when it still has the energy and sufficiently high voltage level to support 

the WSM operations. Therefore, 𝑉𝐻−𝑜𝑓𝑓 should be set below 𝑉𝑀𝐼𝑁, which does not 

affect the maximum utilisation of energy by the WSM and also acts as a fail-safe 

mechanism that makes sure the WSM is able to change to the non-active state 

in case the software EAI loses its function.  
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𝑉𝐸𝑁𝐷 is the voltage that is used to judge whether the capacitor has enough energy 

to supply the WSM to perform the next tasks. Furthermore, the judged energy is 

defined as the energy that will be consumed by the WSM to complete the next 

tasks just before 𝑉𝐶𝑆 falls below 𝑉𝑀𝐼𝑁. Therefore, 𝑉𝐸𝑁𝐷 is required to be higher 

than 𝑉𝑀𝐼𝑁 by at least a level that is equivalent to the consumed energy of the next 

tasks. 

 

𝑉𝑆−𝑜𝑓𝑓 is the voltage when the WSM has been turned off through the software EAI 

after the WSM has judged that there is not enough energy for the WSM to perform 

the next tasks, which means the current voltage is lower than 𝑉𝐸𝑁𝐷. Therefore, 

𝑉𝑆−𝑜𝑓𝑓 is lower than 𝑉𝐸𝑁𝐷.  

 

It should be noted that the software EAI still rely on the hardware EAI to make 

the WSM sleep by switching the N-MOSFET off, but with more flexibility at an 

appropriate voltage level based on the energy level and tasks.    

 

To sum up, the relationships among the voltages are 𝑉𝐻−𝑜𝑛  > 𝑉𝐸𝑁𝐷 > 𝑉𝑆−𝑜𝑓𝑓 > 

𝑉𝑀𝐼𝑁 > 𝑉𝐻−𝑜𝑓𝑓 , shown in Fig. 4.10. 

 

Fig. 4.11 shows the schematic of how the software EAI controls the hardware 

EAI. The programme begins with the WSM in the non-active phase until 𝑉𝐶𝑆 

reaches  𝑉𝐻−𝑜𝑛 , where the hardware EAI turns on the WSM. After that, the MCU 

takes the pre-set number of readings from the sensors. Each reading is stored in 

the internal MCU RAM after each measurement. It should be noted that the pre-

set number is for the sensor measurements to be made in one operational cycle, 
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for example, the pre-set number is set to be 16, which means the MCU is 

programmed to read a sensor for 16 times in one cycle, not the total number of 

readings in one active time, since the MCU will repeat the cycle several times. 

The energy consumed in that one cycle of measurement is calculated by the 

software EAI to judge whether the WSM is able to complete another cycle of 

measurement with the energy available. 
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Figure 4. 11: The schematic showing how the software EAI controls the hardware EAI 

 

After that, the MCU measures 𝑉𝐶𝑆  and then calculates 𝑉𝐸𝑁𝐷 , which will be 

described in the next section. When the MCU has got the values of the current 

𝑉𝐶𝑆  and 𝑉𝐸𝑁𝐷 , it judges whether 𝑉𝐶𝑆   is larger than 𝑉𝐸𝑁𝐷 . If so, this means the 

energy storage has enough energy for the WSM to perform the next 

measurement and transmission tasks. Therefore, the MCU will take another pre-

defined number of readings from sensors and measure 𝑉𝐶𝑆  again. If not, this 

means the energy storage will not have enough energy for the WSM to perform 
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the next measurement and transmission tasks, and the MCU will not take any 

more measurement. Instead, it will transmit all the data stored in the RAM to the 

base station and then send a LOW signal to the RESET pin of the voltage 

supervisor. After that, the voltage supervisor turns off the N-MOSFET so that the 

WSM goes into the non-active phase, and the cycle repeats, alternating between 

active phase and non-active phase as long as there is enough energy stored in 

the capacitor for the next active operation. 

 

4.3.2.3 Determination of VEND 

 

As mentioned before, 𝑉𝐸𝑁𝐷 serves as an indicator that the MCU should end its 

active phase, which is based on the effective energy stored in the energy storage 

and the energy required for the WSM to perform the tasks of taking one cycle of 

readings from the sensors and transmitting all the data stored in the RAM to the 

base station. It is determined by equations 4.3 to 4.6, and as a result, it is 

calculated by equation 4.7: 

𝐸effective ≥  𝐸𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 𝐸𝑡𝑥−𝑠𝑎𝑚𝑝 +𝐸𝑟𝑒𝑠𝑒𝑡 (4.3) 

𝐸effective =  
1

2
× 𝐶 × 𝑉𝐶𝑆

2 −
1

2
× 𝐶 × 𝑉𝑀𝐼𝑁

2 (4.4) 

𝐸𝑡𝑥−𝑠𝑎𝑚𝑝 = 𝑎 × 𝐸𝑡𝑥−1 + (𝑀 + 1) × 𝑏 × 𝐸𝑡𝑥−1 + 𝑏 × 𝐸𝑠𝑎𝑚𝑝−1 (4.5) 

𝐸𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =  
1

2
× 𝐶 × 𝑉𝐸𝑁𝐷

2 −
1

2
× 𝐶 × 𝑉𝑀𝐼𝑁

2 (4.6) 

𝑉𝐸𝑁𝐷 = √
2 × 𝐸𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 + 𝐶 × 𝑉𝑀𝐼𝑁

2

𝐶
 (4.7) 

 

where 𝐸effective is the effective energy stored in the capacitor; 𝐸𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 is the 

energy required for the next operation of the WSM, including the energy required 



107 
 

for taking one pre-set cycle sensor reading and transmitting all the data, 

𝐸𝑡𝑥−𝑠𝑎𝑚𝑝 and the energy required for resetting the voltage supervisor, 𝐸𝑟𝑒𝑠𝑒𝑡; 𝐶 

is the capacitance of the energy storage capacitor; 𝐸𝑡𝑥−1 is the energy required 

for transmitting one byte of data; 𝐸𝑠𝑎𝑚𝑝−1 is the energy required for sampling 

one byte of data; 𝑎 is the number of bytes of the WSM transmission data which 

is able to be expressed as one reading from a sensor such as humidity sensor; 

𝑏 is the pre-set number of bytes of the WSM transmitting data for sensors having 

one reading such as humidity sensor; 𝑏 is the pre-set number of bytes of the 

WSM transmitting data for sensors having a set of reading data  such as 

accelerometer in one sampling cycle; 𝑀 is the number of the WSM sampling 

cycles. Therefore, as the WSM has made more cycles of measurements, more 

energy will be required for transmitting the increasing number of sampled data. 

Thus 𝑉𝐸𝑁𝐷 moves further away from 𝑉𝑀𝐼𝑁. 

 

In addition, 𝐸𝑡𝑥−1 +, 𝐸𝑠𝑎𝑚𝑝−1 and 𝐸𝑟𝑒𝑠𝑒𝑡 can be determined through programming 

the WSM to perform the individual tasks and then measure the energy 

consumption of the respective tasks. One source meter is used to measure the 

voltage 𝑉𝑆 and current 𝐼𝑆 supplied to the WSM, and then the energy consumption 

for performing the task can be calculated by using equation 4.2 where 𝑉𝑆 and 𝐼𝑆 

correspond to 𝑉𝑤 and 𝐼𝑤, respectively. 
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4.3.3 Sensing Energy-aware Interface 

 

4.3.3.1 Concept  

 
Sensing EAI is an interface between the MCU and the sensing unit, which is 

designed to reduce the power consumption of the sensors in the WSM during the 

active time. It is used to turn off the sensors when they are not required. 

 

The sensors are unable to draw the energy during the sleep time since they are 

turned off by the hardware EAI. However, they waste some energy whey they are 

not required to read the sensor during the active time if the system is without the 

sensing EAI. This is because when the hardware EAI turns on the WSM, the 

sensors become active and stay in the active state during the whole active time. 

Therefore, it is not necessary to make all the sensors on all the time. For example, 

sensors such as temperature and humidity sensors only need to read the 

environmental data intermittently. Therefore, keeping those sensors on during the 

whole active time as controlled by the hardware EAI when they are not required 

is a waste of energy. The sensing EAI is introduced to further control the on and 

off states of the sensors when the WSM is turned on in the developed system 

since the sensors are not able to turn on and off by themselves to reduce the 

power consumption of the WSM during the active time.  

 

4.3.3.2 Implementation 

 

The single sensing EAI operation for one sensor is explained as follows. When 

the WSM does not require to read the sensor data after it is turned on, the output 

of DIO pin is set to be in a high state programmed by the MCU software 
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programme, which places the P-MOSFET in a high impedance state, 

disconnecting the system voltage supply and sensor voltage supply. Therefore, 

the sensor is in the non-active state and does not consume energy during the 

period. Whenever the MCU requires the sensor to sample data, it changes the 

output of the DIO state from high to low, which turns the P-MOSFET into a low 

impedance state, connecting the system voltage supply and sensor voltage 

supply. The sensor and the system voltage supply then form a closed circuit, 

where the sensor can draw current, and consequently, the sensor becomes 

active to sample data.  

 

In the case of two sensors, as shown in Fig. 4.12, the MCU needs to set the 

output of the DIO pins accordingly. For example, if reading data from sensor 1 is 

required, the MCU needs to set the output DIO 1 in a low state and the output 

DIO 2 in a high state. Conversely, if the MCU wants to read the data from sensor 

2, it needs to set the output DIO2 in a high state and the output DIO 1 in a low 

state. For more sensors, a similar control method can be used, that is,  the MCU 

needs to set the output of the DIO pin that controls the sensor to be read from in 

a high state and others to the low state. It should be noted that the sensing EAI 

also allows one ADC pin to be shared with multiple sensors. However, it can only 

read data from one of the sensors at a time, which is useful when the MCU has 

limited ADC pins for sensing applications that do not require very frequent 

measurements. 
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Figure 4.12: Hardware schematic of the Sensing EAI 

 

4.3.4 Summary 

 

In conclusion, Table 4.1 shows the comparison of hardware EAI, software EAI 

and sensing EAI. Furthermore, sensing EAI is independent, which means is able 

to achieve the function without hardware EAI and software EAI. However, 

hardware EAI and software EAI are combined together to achieve the function. 

Furthermore, software EAI is to improve the function of hardware EAI.  

 

Compared with the EH powered WSM without hardware EAI, the system with 

hardware EAI is able to enable the harvested energy to be accumulated in the 

capacitor to deal with the start-up issue and allow the WSM to have a low sleep 

current. Furthermore, in the term of the supply voltage, the WSM is able to be 

turned on and turned off based on the pre-fixed threshold voltages 𝑉𝐻−𝑜𝑛 and 

𝑉𝐻−𝑜𝑓𝑓 , respectively.  
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However, there is a drawback of hardware EAI that the WSM would stay active 

until the pre-fixed turn-off voltage threshold reached regardless of the WSN 

operation states. For example, if the WSM finish the tasks early, this could cause 

wastage energy as the WSM is still on; if the WSN is in the period of operation, 

this would cause the WSNs to be unable to finish the required tasks as the turn-

off voltage threshold is reached. This is not ideal for real applications to use such 

a pre-fixed voltage threshold hardware switching approach. 

 

Therefore, software EAI is introduced to utilize the energy stored in the capacitor 

more effectively, by monitoring the voltage in the capacitor to judge if there is 

enough energy in the capacitor for the WSM to carry out the next operation and 

ensure all the measured data is transmitted before the energy becomes too low 

for operation of the WSM. Compared with the EH powered WSM with hardware 

EAI, the system combined with the hardware EAI and software EAI is able to be 

turned on the pre-fixed threshold voltages 𝑉𝐻−𝑜𝑛 , and turned off on the flexible 

voltage 𝑉𝑆−𝑜𝑓𝑓  based on the stored energy level and the required energy of tasks, 

not the limited pre-fixed 𝑉𝐻−𝑜𝑓𝑓 .  

 

It should be noted that software EAI does not change hardware EAI and it use 

the judgement programme and DIO function of the MCU to reset the hardware 

EAI through connecting DIO pin of the MCU and the reset pin of hardware EAI to 

turn off the WSM when needed.  
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Table 4.1: Comparison of hardware EAI, software EAI and sensing EAI 

 

EAI Function Aim Time 
Main 

hardware 
circuit 

Main 
software 

programme 

Control 
function in the 
implemented 

WSM 

Hardware 
EAI 

Monitor the voltage 
across the energy 
storage to judge if 
there is enough 

energy in the energy 
storage for the 

WSMs to perform the 
pre-programmed 

tasks and determine 
when to wake the 

WSM up 

Solve the 
start-up 

problem and 
reduce the 

power 
consumption 
of the WSMs 

during 
sleeping time 

Sleep 

N-MOSFET 
circuit; 
Voltage 

supervisor 
circuit 

None 
Turn on the 

WSM 

Software 
EAI 

 
Judge whether the 

energy stored in the 
energy storage 

device is enough for 
the WSM to carry out 

the next operation 
and ensure all the 
measured data is 
transmitted before 

the energy becomes 
too low for the 

operation of the 
WSM 

Increase the 
energy use 
efficiency to 
extend the 
active time 
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P-MOSFET 

Circuit 
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4.4 Developed Energy Harvesting Powered Wireless Sensor 
Mote Using Energy-aware Approaches 
 

4.4.1 Implementation 

 

In order to understand the enhancement on the performance of the EH powered 

WSM due to the proposed energy-aware approaches, an EH powered WSM was 

implemented for study of this. 

 

The schematic of the developed WSM hardware is shown in Fig. 4.13. It is 

composed of four main blocks: (1) the PMM in [112] (not shown in the figure),  (2) 

a 10 mF super-capacitor, (3) energy-aware approaches including hardware EAI, 

software EAI and sensing EAI, and (4) WSM including a MCU and three different 

sensors. For a fair comparison, it was built using the same wireless MCU of 

JN5148 and the same sensors of ADXL335 3-axis accelerometer, HIH-5030 

humidity sensor, and MCP9700 temperature sensor described in Chapter 3 and 

Section 4.2 in this chapter. The temperature and humidity sensors are designed 

to share the ADC4 pin, realised by the sensing EAI function mentioned in Section 

4.3.3 since the MCU only has 4 ADC pins, which is not enough for 5 ADC 

readings from the three sensors, in which the accelerometer has three outputs. 

The X-axis, Y-axis, and Z-axis acceleration outputs of the accelerometer were 

connected with the ADC1 ADC2 and ADC3 pin of the MCU, respectively. Each 

axis has its own dedicated ADC because the acceleration measurements require 

a much higher sampling rate and as long as possible sampling time for real-world 

measurements. Therefore, the turn on and off as well as the ADC pin sharing 

introduced by the sensing EAI, is not ideal for such applications. A voltage 

reference (ISL21080CIH325, Intersil, California, USA) is used to provide a fixed 
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supply voltage of 2.5 V to the accelerometer during the active time of the WSM. 

This is because the electrical output signal from the accelerometer is the ratio to 

the supply voltage applied to the accelerometer. Therefore, a fixed and known 

supply voltage is essential in processing the sampled data later. It should be 

noted that the implementation of the hardware EAI is the same as described in 

Section 4.3.1, and the sensing EAI is the same as described in Section 4.3.3 with 

the two P-MOSFETs. 
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Figure 4.13: Hardware schematic of the custom-developed WSM connected with the EAI 

 

4.4.2 Operation 

 
The operation flowchart of the WSM is shown in Fig. 4.14. The operation begins 

with the WSM in the non-active phase until there is enough energy in the super-

capacitor to turn on the MCU as determined by the hardware EAI. Once there is 

sufficient energy in the capacitor, the hardware EAI turns on the WSM, and then 

the WSM becomes active. After that, the sensing EAI sets the output DIO1 pin to 

a low state to turn on the temperature sensor and sets the output DIO2 pin to a 

high state to turn off the humidity sensor. Then, the MCU takes one reading from 
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the temperature sensor. After that, sensing EAI changes the output DIO1 pin from 

low to high state to turn off the temperature sensor and changes the output DIO2 

pin to a low state to turn on the humidity sensor. Then, the MCU takes one reading 

from the humidity sensor before the sensor is turned off by sensing EAI. 

 

After that, the MCU takes a total of three readings (one each from x-, y-, and z- 

axes) for each sampling from the accelerometer at every 10 ms. Each reading is 

2 bytes of data and is stored in the internal MCU RAM after each measurement. 

The MCU repeatedly takes reading from the accelerometer until a pre-defined 

number of readings are made, for example, a total of 48 readings for 16 times of 

sampling the accelerometer, which corresponds to 96 bytes of data to ensure 

there are enough readings. 

 

Then, the software EAI measures 𝑉𝐶𝑆  and calculates 𝑉𝐸𝑁𝐷, which is determined 

by equations 4.3 to 4.7. It should be noted that, in the equation 4.5, 𝑎 is 4, which 

means there is 4 bytes of data that need to be transmitted, including 2 bytes from 

the temperature sensor and 2 bytes from the humidity sensor. 𝑏 is 96, which 

means there is 96 bytes of data from the accelerometer in one sampling cycle 

that needs to be transmitted. 𝐸𝑡𝑥−1 +, 𝐸𝑠𝑎𝑚𝑝−1, and 𝐸𝑟𝑒𝑠𝑒𝑡 have been found to be 

4.38 µJ, 34.79 µJ, and 0.17 mJ, respectively, through the experimental method 

in Section 4.3.2, which is set the fixed values in the programme to calculate 𝑉𝐸𝑁𝐷 

. In equations 4.6 and 4.7,  𝐶 is set as 0.01, which means the capacitance of the 

super-capacitor is 10 mF, 𝑎 is 4, 𝑏 is 96, and 𝑉𝑀𝐼𝑁 is set to be 2.4 V.  
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Figure 4.14 : Flowchart of the operation cycle of the developed WSM with energy-aware 
approaches 

 

After that, the software EAI judge whether 𝑉𝐶𝑆 is larger than 𝑉𝐸𝑁𝐷. If so, the MCU 

will take another 48 readings from the accelerometer, store it in the RAM, and 

measure 𝑉𝐶𝑆  and calculate a new 𝑉𝐸𝑁𝐷 again. If not, the MCU transmits all the 

data stored in the RAM and resets the hardware EAI to turn off the WSM so that 

the WSM goes into the non-active phase, and the cycle repeats, alternating 

between active phase and non-active phase as long as there is energy from the 

energy harvester. The data size to be transmitted in the first packet is 100 bytes, 

which consists of 4 bytes from the temperature sensor and humidity sensor, and 
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96 bytes from the accelerometer. The remaining packets only have 96 bytes from 

the 48 accelerometer readings. It should be noted that there is only one 

transmission process to transmit all the packets one by one at the end of the 

active time just before the WSM is switched off. 

 

4.4.3 Experimental setup 

 

Fig. 4.15 shows the experimental setup to measure the voltage across the super-

capacitor, 𝑉𝐶𝑆, and the current consumed by the WSM with the energy-aware 

approaches, 𝐼𝑊. In the setup, one source meter was used to measure 𝑉𝐶𝑆 at the 

points of A and B, which was connected in parallel to super-capacitor and 𝐼𝑊 at 

the points of C and D, which was connected in series between the super-

capacitor and the hardware EAI. It should be noted that 𝑉𝐶𝑆 is the same as the 

voltage across the hardware EAI and the WSM since they are all connected in 

parallel in the circuit. Other parts were similar to the experimental setup described 

in Section 4.2.3. 

 

Figure 4.15: The schematic of the experiment setup for characterising the MFC powered 
WSM  
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4.4.4 Results and discussions 

 

The measured voltage of 𝑉𝐶𝑆 and current of 𝐼𝑊 are shown in Fig. 4.16. It is shown 

that, from the beginning at 0 s to 22.56 s, the capacitor was charged by the PMM 

with the harvested energy from the energy harvester and its voltage 𝑉𝐶𝑆 increases 

from zero to 3.16 V. During this period, the voltage 𝑉𝐶𝑆  is below the pre-set 

threshold 𝑉𝐻−𝑜𝑛 of 3.16 V, and so the WSM is off. As soon as 𝑉𝐶𝑆 reaches 3.16 

V, the hardware EAI turns on the N-MOSFET switch, enabling the capacitor to 

release its energy to the WSM. It is also shown that, after initial charging of the 

capacitor for about 22.56 s, the energy harvester was able to power the WSM for 

a period of 1.15 s (active time) every 7.79 s (sleeping time) with a limited energy 

harvested of 3.2 mW by the energy harvester which is subjected to a peak-to-

peak strain loading of 600 με at 10 Hz vibration. Consequently, a drop in 𝑉𝐶𝑆 and 

a surge in 𝐼𝑊  is observed in Fig. 4.16(a) and (b) respectively as the WSM is 

switched into its active phase for about 1.15 s, including 0.17 s for waking up, 

0.06 s for taking 1 reading each from the temperature and humidity sensors, 0.64 

s for reading from the accelerometer for 4 cycles, 0.12 s for determining the 

effective energy for 4 cycles), 0.14 s for transmitting 388 bytes of measured data 

and 0.02 s for resetting the WSM, shown in Fig. 4.16 (c).  

 

During the active phase, the software EAI calculates 𝑉𝐸𝑁𝐷  and resets the 

hardware EAI once 𝑉𝐶𝑆  drops below 𝑉𝐸𝑁𝐷  of about 2.58 V, calculated from 

equation 4.8 in the studied case. Therefore, the WSM was switched off at around 

2.47 V of  𝑉𝑆−𝑜𝑓𝑓, as shown in Fig. 4.16(a), which is slightly higher than 2.4 V. 

This shows that 𝑉𝐸𝑁𝐷  and 𝑉𝑆−𝑜𝑓𝑓  are not the same as VMIN, which verifies the 

operation of the software EAI. With the introduction of 𝑉𝐸𝑁𝐷, the implemented 
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WSM is able to complete all the measurement tasks and transmit all the data in 

the end of active time before the energy is below the requested level.         

 

During the sleeping time, the WSM is turned off by the hardware EAI, consuming 

an average current of 0.95 µA, calculated using the measured current shown in 

Fig. 4.16 (d) and based on equation 3.4. The main reason for the WSM to have 

such a low sleep current is that the EAI is able to completely switch off the WSM, 

including the MCU and other sub-circuits during the sleeping time. This means 

the power consumption of the WSM is almost zero. This average sleep current is 

mainly consumed by the voltage supervisor and N-MOSFET of the hardware EAI. 

  
(a) (b) 

  
(c) (d) 

Figure 4. 16: Time dependence of (a) the voltage 𝑉𝐶𝑆, (b) the current 𝐼𝑊 with enlarged plots 
(c) during a complete active time, and (d) during the sleeping time. 
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4.4.5 Comparisons of the three configurations 

 

In order to further understand the advantages of the energy-aware approaches 

for the EH powered WSM, characterizations, and comparisons of 3 different 

configurations were performed. Configuration 1 is defined as the system in 

Section 4.4: EH powered WSM with energy-aware approaches, and the non-

active phase current is shown in Fig. 4.16 (d); Configuration 2 is defined as the 

system in Section 4.2: EH powered WSM without energy-aware approaches, and 

the non-active phase current is shown in Fig. 4.6 (d); and Configuration 3 is 

defined as the system in Section 3.6: DC power Source powered WSM without 

energy-aware approaches, and the non-active phase current is shown in Fig. 3.12 

(b).  

 

The performances and the non-active phase currents of these three 

configurations are summarized in Table 4.2. Compared with configurations 1 and 

2, it can be seen that the energy-aware approaches play an important role in 

dealing with the mismatch between the energy generated by the harvesters and 

the energy demanded by the WSMs to perform the required tasks. The energy-

aware approaches enable the WSM to be powered by EH technology when there 

is limited energy harvested. For example, using the same 3.2 mW of power from 

the energy harvester, the WSM without the energy-aware approaches is not able 

to operate, but the EH powered WSM with the energy-aware approaches is able 

to operate. This is because the energy-aware approaches enable the energy 

generated during the non-active phase to be accumulated effectively in the 

capacitor without being consumed immediately by the WSM. Compared with 

configurations 1 and 3, it can be seen that the energy-aware approaches can 
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reduce the power consumption of the WSM during the sleeping time from 30.4 

µA of a normal sleep mode to 0.95 µA. This is because with the EAI in 

Configuration 1, the internal wake-up timer and other associated circuits are all 

switched off with minimum energy consumption. Configuration 2, which does not 

have the EAI, could not accumulate the energy effectively at all and consume 

energy by the internal wake-up timer and other associated circuits. Therefore, it 

can never start up in the studied case. 

 
Table 4.2: Comparison of the performance and average non-active currents of the WSM with 

three configurations 

 
No Configuration Addition feature Performance Non-active 

phase current 

(µA) 

1 EH powered WSM with 

energy-aware 

approaches 

Software EAI WSM able to work 0.95 

2 EH powered WSM 

without energy-aware 

approaches 

MCU running in a 

normal sleep 

mode 

𝑉𝐶𝑆 increases to about 

2 V, but WSM is not 

able to start 

310 

3 DC power Source 
powered WSM without 

energy-aware 
approaches 

MCU running in a 

normal sleep 

mode 

WSM is able to start 

and operate 

30.4 
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4.5 Summary 
 

This chapter has shown the energy-aware approaches to manage the energy 

flow from the energy storage capacitor to the WSMs and to deal with the start-up 

issue and the mismatch between the energy generated by the harvesters and the 

energy demanded by the WSMs to carry out required tasks. It has been shown 

that a typical EH powered WSM without the proposed energy-aware approaches 

is not able to start and, therefore, cannot operate when there is limited energy 

harvested, which demonstrates the importance of the energy-aware approaches 

proposed and developed in this chapter. The combined hardware, software, and 

sensing energy-aware approaches were implemented and experimentally 

studied in a custom developed piezoelectric vibration EH powered WSM. The 

experimental results show that, with a limited energy harvested, the energy-

aware approaches enable (1) the harvested energy to be accumulated in the 

capacitor to deal with the mismatch for enabling the WSM operation, (2) solve the 

start-up issue, and (3) allow the WSM to have a low sleep current reducing from 

30.4 µA of a commercial WSM to 0.95 µA.  
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Chapter 5 Energy Analyses of Energy Harvesting 
Powered Wireless Sensor Network 
  

From Chapter 4, it can be seen the energy-aware approaches have been 

successfully applied in the custom-developed WSM to address issues of the start-

up and the mismatch between the energy generated by the harvesters and the 

energy demanded by the WSMs to carry out the required tasks. Chapter 5 will 

move on from EH powered WSM to EH powered WSN, that is, from a mote to a 

network. The energy analyses of EH powered WSM joining the network and 

effects of the duty cycle of WSM operation, and the capacitor size of energy 

storage on EH powered WSN joining processes are analysed through the 

experimental measurements using the implemented EH powered WSN. 

Following this, the problem of the EH powered WSN joining process is identified 

and will form the research work by developing an energy-aware approach for EH 

powered WSN in Chapter 6.   

 

The rest of the chapter is organised as follows: Section 5.1 describes the 

proposed EH powered WSN topology. Section 5.2 describes the implementation 

of the system. Section 5.3 gives an overview of the studied EH powered WSN. 

Section 5.4 presents the energy analyses, and associated processes of EH 

powered WSM joining the network. Section 5.5 describes the EH powered WSM 

operation. The experimental setup and results are shown in Sections 5.6 and 5.7, 

respectively. Following this, Section 5.8 discusses the problem of the network 

joining process, and finally, Section 5.9 concludes the chapter. 
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5.1 Description of the Studied Network Topology 
 

 

Figure 5.1: Schematic of the studied EH powered WSN topology 
  

The schematic of the implemented EH powered WSN is presented in Fig. 5.1. 

The network topology is a star network, which consists of a network manager and 

three EH powered WSMs. The network manager is used to manage and control 

all functions of the network, such as the communication time and the frequency 

slot of the WSMs in the network and the WSMs are used to collect data from the 

environments and then transmit them to the network manager when they have 

enough energy. The implemented WSMs are different from previous 

implemented WSMs in that they are capable of two-way wireless communication 

with the network manager. The network manager aggregates all the collected 

data on the network and then passes to an assigned computer. 

 

The advantage of star topology is that most of the network functions, such as the 

communication time and the frequency slot of each WSMs, are given to the 

network manager, which is helpful to reduce the energy consumption in the 

network behaviour of the WSMs. Moreover, it is able to reduce the impact of a 

transmission line failure by independently connecting each mote to the network 

manager. The failure of a transmission line linking any mote to the network 
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manager will result in the isolation of that mote from all others, but the rest of the 

motes in that network will be unaffected. 

 

It should be noted that, mesh topology is also an option, which is a more complex 

and expensive network than the star network, where all motes cooperate to 

distribute data amongst each other. It consists of a self-forming multi-hop mesh 

of motes and an access point mote that connects the motes to the network 

manager. Motes are capable of two way communication and collect and relay 

data. The data is propagated along a path by hopping from mote to another mote 

until it reaches its destination. However, the mesh network needs to have several 

motes staying in the active state at the same time, which is difficult in the EH-

WSN system, since the active time of the motes is very short due to energy 

limitation. In most cases, only a few motes are active and remain in the network 

for a short time. Moreover, for the mote itself in a mesh network, it has to 

undertake not only the tasks of sampling and communication with the network 

manager, but also need to communicate with other motes to achieve some 

network functions, which cost more energy than the motes in the star network 

where the network function is controlled by the network manager. Therefore, star 

topology is considered here as it is a more viable network that can be powered 

by using energy harvesting.  
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5.2 Implementation of the Studied Network 
 

5.2.1 Hardware Implementation 

 

The studied network is implemented by an IEEE 802.15 4 compliant platform of 

Linear Technology. The reason for using a Linear Technology is that the motes 

in the network are able to deliver a highly flexible network with proven reliability 

and ultra-low energy consumption performance [70]. The studied network 

manager is built with a Linear Technology DC9011A network manager, 

connected with a computer through a Linear Technology DC9006 Eterna™ 

interface, and powered by the computer through a USB connection or a CR2032 

coin battery.    

 

Figure 5.2: Schematic of the studied EH powered WSM with the hardware EAI developed in 
Chapter 4 

 

The architecture of the studied EH powered WSM is shown in Fig. 5.2. It consists 

of an energy harvester, a PMM circuit, a super-capacitor, a hardware EAI circuit, 

and a WSM. The energy harvester, PMM circuit, super-capacitor and hardware 

EAI are the same as those described in Chapter 4.  
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The WSM is built with a Linear Technology DC9003 A-B Evaluation/Development 

Mote, which includes an integrated LTC5800 Mote-on-Chip microcontroller, a 

chip antenna, and a chip build-in temperature sensor [114]. The current 

consumption of LTC5800 chip transmitting at 8 dBm and receiving a packet is 

about 9.7 mA and 4.5 mA, respectively [70]. The chip build-in temperature sensor 

is used to read the local temperature data for wireless transmission. 

5.2.2 Software Implementation 

 

The network and the WSM operation is configured programmatically via an API, 

that is, an application programming interface. The network manager and the 

WSM are connected to the DC9006A interface board for programming and 

debugging them. The software of the network manager is implemented based on 

the Python platform to interact with the serial API of the network manager. The 

software of the WSM is implemented using IAR Embedded Workbench for 

Advanced RISC Machine (ARM) platform to develop C-code applications for 

executing and writing applications directly on the WSMs. Furthermore, "IAR" is 

an abbreviation of Ingenjörsfirman Anders Rundgren, which means Anders 

Rundgren Engineering Company. 

 

It should be noted that the WSM can operate in the master and slave modes. 

Running in a master mode, the on-board ARM Cortex-M3 processor of the 

LTC5800 can access sensors and other input/output components directly, where 

it runs an application that commands and controls network joining. Alternatively, 

the mote can run as a slave mode, expecting the master device to control its 

operations via a serial API. Based on the case of EH powered WSN applications, 

the WSM is chosen as the master mode, since it is required to operate 
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autonomously by directly judging if the local energy level stored in the super-

capacitor is enough for the next action after it wakes up, rather than being 

controlled by another connected device that also requires energy, which is 

impractical in real-world applications of EH powered WSNs.   

 

5.3 The Studied Network Overview 
 

5.3.1 Communication protocol  

 

The communication protocol of the studied WSN is based on Time Slotted 

Channel Hopping (TSCH) of the IEEE 802.15.4e standard. The TSCH is a 

channel access method for shared medium networks. It can be seen as a 

combination of time division multiple access and frequency division multiple 

access mechanisms as it uses diversity in time and frequency to provide reliability 

to the upper network layers. In the TSCH network, the time is organised into time 

slots, and communication channels are separated by different frequency bands 

based on the IEEE 802.15.4e standard. The network shares a communication 

schedule controlled by the network manager. The schedule provides instructions 

to each mote on what to do in each time slot: transmit with which channel, receive 

with which channel, or sleep, which allows the WSM to know in advance when to 

turn on or off its radio to save energy. Typically, the network based on the TSCH 

has a reliability of over 99.999% while consuming less than 10 mA of current for 

its communication [115].   
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5.3.2 MAC Layer 

 
 
The network communication uses the standard IEEE 802.15.4e packet in the 

beacon enabled mode. The network starts to form when the network manager 

begins sending advertisements. The advertisements are IEEE 802.15.4e beacon 

frames that contain information that enables a WSM to synchronise to and 

request to join the network. The advertisements also describe when the new 

WSM can send in a request to join the network, and when it should expect a reply. 

This results in temporary shared links being assigned to the joining WSM that it 

will use until the WSM gets its specific dedicated links from the network manager. 

This message exchange is part of the security handshake that establishes 

encrypted communications between the network manager and the WSM. Once 

the WSM has joined the network, it maintains precise synchronisation through 

time correction messages exchange with the network manager. Then, the WSM 

can request to have particular timeslots assigned to it. 

 

5.3.3 Physical Layer 

 
 
For the physical layer, the network operates in the IEEE 802.15.4e standards-

compliant platforms with 16 channels from 2.4 GHz to 2.48 GHz. The 16 channels 

across the frequency bands are numbered 0 to 15 with increasing frequency, 

corresponding to IEEE 2.4 GHz channels 11 to 26. It should be noted that, in the 

studied network, the number of communication channels of the network manager 

is set to be down to 7 out of the 15 available channels to reduce the network 

communication time. Because the studied network includes one manager and up 
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to three WSMs, which does not use all the channels to commutation and the 

minimum setting channels of the chip manufacturer is 7. 

 

5.4 Joining Processes of the Studied Mote Powered by 
Energy Harvesting 
 

The processes of the WSM joining the network are shown in Fig. 5.3. The network 

starts to form when the network manager begins to send advertisements. The 

operation of one of WSMs joining the network can be broken up into four phases: 

high-voltage search process, low-voltage research process, negotiating process, 

and connected process.  

Network ManagerWSM

High-Voltage search process

Negotiating process 

Joining Start

Low-Voltage search process

Connecting process 

Searching for the network  

Searching for the network  Voltage drop  

 

Found network  

 

Sending join request

 Joing permission   Heard join reply 

Joining Complete 

Advertisements

Advertisements

Start joining

Turn the radio receiver on

Synchronise to the network

Ready to send data  

Network Start

 

Figure 5.3: The processes of the WSM joining the network 

 

 

When a WSM wants to join a network, the WSM starts searching for a network to 

join. Searching means it listens on a single channel for a while, and then sleeps 

for a while, and then resumes listening on a different channel. The join duty cycle 
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is the ratio of active listening time to doze times (a low-power radio state for sleep) 

during the period when the mote is searching for the network. 

 

High-voltage Search Process: The WSM will get time-synchronised to the 

network to allow the network manager to manage the network. Therefore, the 

WSM starts to join the network by turning on its radio receiver to search for the 

network that matches its network ID by listening to the advertisements messages 

sent by the matched network manager. This first process of network joining is 

defined as the high-voltage search process in this chapter.  

 

Low-voltage Search Process: Once the voltage drops to a threshold that the 

WSM is not able to keep the radio receiver working with the current power supply,  

the WSM will increase the current consumption to keep the radio signal strength 

stable at the configured decibel-milliwatts level of 16.2 mW [70]. The change is 

controlled by a hardware-based autonomous media access controller managing 

radio operation, which incorporates a co-processor for controlling all of the time-

critical radio operations [70]. It should be noted that this does not happen in the 

case that the WSM is powered by a constant power source such as batteries 

because of the stable supply voltage. This process of network joining is defined 

as the low-voltage search process in this chapter.  

 

The high-voltage search process and low-voltage search process can be 

collectively referred to as the search process, which can be 10's of seconds to 

10's of minutes.  It should be noted that the WSM join duty cycle is that how much 

time a searching WSM spends listening for a network versus sleeping, which has 
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a large impact on the search process since it controls the turn-on time of the radio 

receiver and will be discussed in the next sections.  

 

Negotiating Process: The WSM has heard an advertisement and has 

synchronised to the network. After that, the WSM starts to communicate with the 

network by sending a join request to the network manager and then waits for a 

response. This process is defined as the negotiating process. 

 

Connecting process: The WSM has heard the join reply from the network 

manager and is being configured by it, which is defined as the connecting 

process. As soon as the network joining process is completed, the WSM 

becomes operational and is ready to send data to the manager. 

 

5.5 The Studied Mote Operation 
 

The operation flowchart of the WSM is shown in Fig. 5.4. The operation begins 

with the WSM in the non-active phase until there is enough energy in the 

capacitor to turn on the WSM. Once there is sufficient energy in the capacitor, 

the hardware EAI turns on the WSM, and then the WSM becomes active. After 

that, the WSM sets the output DIO5 pin to a high state to ensure that the hardware 

EAI will keep the WSM on. Then, the WSM starts to join the network and then 

start to search process. Once the WSM has found the network, it starts to achieve 

the negotiating process and connecting process. After the WSM joined the 

network successfully, it takes one reading from the on-chip temperature sensor 

and then transmits the data to the network manager. After that, the WSM sets the 

DIO5 pin to a low state to reset the hardware EAI to turn off the WSM. Then, the 
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WSM goes into the non-active phase, and the cycle repeats, alternating between 

the active phase and the non-active phase as long as there is energy from the 

energy harvested form energy harvester and stored in energy storage. It should 

be noted that this chapter focuses on research on the energy consumption of the 

WSM joining network so that the sampling task implemented here was kept as 

simple as possible. 

 

N
Vcs>VH-on

Start

WSM is OFF

Hardware EAI turns on the WSM

Y

WSM starts to active

Open the control pin for resetting the hardware EAI

WSM starts to join the network 

Y

Take 1 reading from the temperature sensor 

N

Hardware EAI turns off the WSM

Transmit the data to the network manager

The control pin resets the hardware EAI

Searching process

Negotiating process 

Connecting process 

WSM completes to join the network 

Found network

 

Figure 5.4: Flowchart of the operation cycle of the studied WSM with the hardware EAI 
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5.6 Experimental Setup  
 

The same experimental set-up, including the MFC energy harvester and Instron 

E-10000 dynamic machine, was used as one described in Chapter 4, as shown 

in Fig.4.4. The machine was set to apply a 600 µε peak-to-peak strain level at 10 

Hz vibration frequency in the study. One source meter was used for simultaneous 

current and voltage measurements to determine energy consumption. Fig. 5.5 (a) 

shows the image of the measured WSM. It consists of: (1) the PMM circuit which 

is connected with the MFC (the MFC is not shown in the figure), (2) four different 

sizes of super-capacitors of 22 mF, 33 mF, 50 mF, and 100 mF prepared, (3) the 

hardware EAI, and (4) a DC9003 A-B Evaluation/Development Mote (Linear 

Technology/Analog Devices, Norwood, Massachusetts, USA) for the study. The 

red and black lines connected with DC9003 are the power and ground pins of the 

mote, respectively. The black line at the bottom of the figure connected with 

DC9003 is used to reset the hardware EAI. Fig. 5.5 (b) shows the network 

manager, which is a commercially available development kit of a DC9011A and 

DC9006 interface (Linear Technology/Analog Devices, Norwood, Massachusetts, 

USA). 

 

 

(a) (b) 
Figure 5.5: Image of (a) the measured EH powered WSM and (b) the network manager  
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In order to understand the studied EH powered WSN system, three different 

measurements were performed, as shown in table 5.1: 

 

The first one is used to analyse the energy consumption of the processes when 

the WSM is joining the network. The system used a 100 mF super-capacitor and 

100% network joining duty cycle. The measurements used 2 kHz sampling 

frequency and focused on the operation of the WSM joining the network and 

sending the data after it has joined the network successfully.  

 

The second is used to analyse the impact of the duty cycle on the network joining 

process. The system still uses the 100 mF super-capacitor. The measurements 

used 200 Hz sampling frequency to allow a longer measurement time and 

focused on the operation of the WSM searching for the network with different duty 

cycles.  

 

The third is used to analyse the impact of storage capacitor sizing on the network 

joining process. The measurements used 200 Hz sampling frequency and 

focused on the enabling maximum searching time of the system with different 

capacitor sizes and the time required to charge up the super-capacitor from 0 V 

to the turn-on threshold voltage of the hardware EAI. 
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Table 5.1: Comparison of three experimental setups for the studied EH powered WSN system  

 

No. Aim 
Super-

capacitor 

Network 
joining 

duty cycle 

Sampling 
frequency of 
source meter 

Used 
MCU 

Used EAI Kay Results 

5.7.1 

 
Analyse the energy 
consumption of the 

processes when 
the WSM is joining 

the network 
 

100 mF 100% 2k Hz DC9003 
Hardware 

EAI 

Energy Consumption 
of Network Joining 

Processes 

5.7.2 

 
Analyse the impact 
of the duty cycle on 
the network joining 

process 

100 mF 

 
100%, 

50%, and 
25% 

 
200 Hz 

 
DC9003 

 
Hardware 

EAI 

Searching time 
required to join the 

network successfully 

5.7.3 

Analyse the impact 
of storage capacitor 

sizing on the 
network joining 

process 

22 mF, 33 
mF, 50 
mF, and 
100 mF 

100% 200 Hz DC9003 
 

Hardware 
EAI 

Enabling maximum 
searching time with 
different capacitor 
sizes and the time 

required to charge up 
the super-capacitor 

from 0 V to the turn-on 
threshold voltage of 
the hardware EAI 

 

5.7 Evaluation and Discussion   
 

5.7.1 Energy Consumption of Network Joining Processes 

 

It is well known that in the case of energy harvesting powered WSNs, energy is 

very limited. Therefore, it is crucial to identify which processes are power hungry 

so that appropriate measures can be taken to reduce energy consumption. The 

measured current profile 𝐼𝑊 of the WSM joining network process, as well as the 

sensing and communication, is shown in Fig. 5.6. It begins with the hardware EAI 

turns on the WSM when there is sufficient energy in the super-capacitor and ends 

with the hardware EAI turns off the WSM. The processes can be divided into 7 

processes, as shown in Fig. 5.6. It should be noted that this section focuses on 
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studying the network joining processes and their energy consumption, which is 

marked as 3 to 6 in Fig. 5.6. 

 

              Figure 5.6: Measured results of 𝐼𝑊 of the WSM during one cycle operation 

 

5.7.1.1 The Operation of Before and After Network Joining 

 
 
The processes 1 and 2 are the operation of the WSM before joining the network, 

and process 7 is the operation of the WSM after joining the network. The current 

profiles of these processes in Fig. 5.6 are enlarged and shown in Fig. 5.7. 

  
(a) (b) 

Figure 5.7:  𝐼𝑊 from Fig. 5.6 with the enlarged plots of the defined processes (a)1, 2 and (b) 7 
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Process 1: As soon as 𝑉𝑊 reaches the pre-fixed turn-on threshold voltage, the 

WSM is turned on by the hardware EAI and then the super-capacitor powers up 

all the peripheral circuits and components of the WSM, which causes a current 

peak of about 12 mA at the beginning when the WSM starts to wake up. 

 

Process 2: After waking up, the WSM begins to initialise the programme, such as 

importing the library files, which consumes a current of about 5 mA at the 

beginning. Then, it executes the first pre-programs task, which is to set the DIO5 

pin high for controlling the hardware EAI. It consumes an average current of about 

1.8 mA. 

 

Process 7: After the WSM has joined the network successfully, it takes, for 

example, one reading from the on-chip temperature sensor, that is, the case 

studied here, and then transmits the data to the network manager with a current 

peak of about 11 mA. After that, it resets the hardware EAI to turn off the WSM.  

 

5.7.1.2 The Operation and Processes of Network Joining 

 

The operation of the WSM joining the network includes the processes from 3 to 

6, as shown in Figs. 5.8 (a), (b), (c) and (d), respectively. The processes are the 

high-voltage search process, low-voltage search process, negotiating process, 

and connecting process, respectively. Moreover, Fig.5.8 (e) and Fig. 5.8 (f) show 

the measured voltage profile 𝑉𝑊 of the WSM joining network process as well as 

the sensing and communication and the calculated energy 𝐸𝑊 based on the 

measured 𝑉𝑊 and 𝐼𝑊, respectively.  
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         (a)        (b) 

  
          (c)         (d) 

  
     (e)           (f)  

Figure 5.8: The enlarged plots of 𝐼𝑊 in Fig. 5.6 during processes (a) 3, (b) 4, (c) 5, and (d) 6. 
(e) Measured capacitor voltage 𝑉𝑊 of the WSM during one cycle of operation. (f) The energy 

consumed 𝐸𝑊 that is calculated based on the measured 𝐼𝑊 in Fig. 5.6 and 𝑉𝑊 in Fig. 5.8 (e) 
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Process 3 - high-voltage search process: the process is a repeating cycle with a 

current consumption range from about 2.1 mA to 6.2 mA. The average current 

consumption is about 5.71 mA, and the average voltage is about 2.990 V. The 

energy consumption for the process is about 51.63 mJ within 3021 ms, and as a 

result the average power is about 17.09 mW. 

 

Process 4 - low-voltage search process: the process is a repeating cycle with 

higher current consumption than that of the low-voltage search process, which 

ranges from about 2.3 mA to 7.2 mA. The average current consumption is about 

6.69 mA and the average voltage is about 2.721 V. The energy consumption for 

the process is about 83.83 mJ within 4603 ms. As a result, the average power is 

about 18.21 mW. 

 

Process 5 - negotiating process: the process begins with the WSM synchronising 

to the network, which is a repeating cycle with the current consumption from 

about 0 mA to 5 mA. When the synchronisation is finished, the WSM starts to 

communicate with and send a join request to the network manager, which causes 

a current peak of about 12 mA at the end. The average current consumption is 

about 1.55 mA, and the average voltage is about 2.591 V. The energy 

consumption for the process is about 6.06 mJ within 1509 ms. As a result, the 

average power is about 4.01 mW. 

 

Process 6 - connecting process: the WSM communicates with the network 

manager several times to being configured by the network manager, which 

causes several current peaks of about 12 mA. Although the peak current during 

the communication is higher than most of the other processes, it only lasts for a 
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very short time, which leads to a low average current consumption of about 0.08 

mA. The average voltage is about 2.637 V. The energy consumption for the 

process is about 0.20 mJ within 7432 ms, and as a result, the average power is 

about 1.47 mW. 

 

The average current, average voltage, average power, energy consumption, and 

time of every process are shown in Table 5.2. The high-voltage search process 

and low-voltage process consume much higher average power than the other 

processes. It should be noted that, although the high-voltage search process and 

the low-voltage process occur in the same operation of the WSM searching the 

network, the average power of the low-voltage search process is higher than that 

of the high-voltage search process.  

 

Moreover, after several measurements, it was found that, the uncertain time 

ranges of the negotiating process and the connecting process are less than 50 

ms in most cases, since both processes happened after the WSM has found the 

network manager, which means it is certain for the WSM to communicate with a 

known network manager. However, the high-voltage search process and low-

voltage process have the longest uncertainty time during the joining network 

process, which can last from several milliseconds to several minutes or even 

more. Therefore, reducing the energy consumption of the high-voltage search 

process and the low-voltage process should be the priority, which will be studied 

in Chapter 6. 
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Table 5.2: Energy consumption of every process in the studied EH powered WSN system  

 
No. Process Average 

Current 
(mA) 

Average 
Voltage 

(V) 

Average 
Power 
(mW) 

Energy 
(mJ) 

Time 
(ms) 

1 Wake up 0.45 3.134 1.41 1.38 974 

2 Initialisation 1.55 3.127 4.85 
 

3.67 757 
 

3 High-voltage 
Search Process 

5.71 2.990 17.09 51.63 3021 

4 Low- voltage 
Search Process 

6.69 2.721 18.21 
 

83.83 4603 

5 Negotiating 
Process 

1.55 2.591 4.01 
 

6.06 
 

1509 

6 Connecting 
Process 

0.08 2.637 0.20 1.47 7342 

7 Sensing and 
Transmission 

1.88 2.665 4.94 
 

0.22 44 

 
 

5.7.2 Effects of Duty Cycling on Network Joining Process 

 

As mentioned in Section 5.4,  the join duty cycle is the ratio of active listening 

time to doze times (a low-power radio state for sleep) during the period when the 

mote is searching for the network. It is a one-byte field by setting the ‘joindc’ 

parameter of the LTC5800 chip between 0 and 255, representing about 0.5% to 

100%. For example, if the ‘joindc’ parameter was set to 255, the WSM will 

constantly listen, changing channels every few seconds. If the ‘joindc’ was set to 

26, the WSM will spend about 10% of the time (26/255) listening and 90% of the 

time sleeping. The greater portion of the time the WSM listens, the higher the 

chance that the WSM will hear an advertisement and join the network faster, but 

at an increased average current consumption for a given timeframe. It should be 

noted that, join duty cycle only affects the average current consumption without 

excessively affecting the total energy of the whole network joining process based 
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on the same active listening time, since the energy consumption during the doze 

time is much lower than during the active listening time. Therefore, an appropriate 

join duty cycle is essential to the success of the network joining process in the 

EH powered WSN since it directly affects the time spent on searching. 

  
(a) (b) 

Figure 5.9: Current profiles of the WSM when the network joining process is (a) at 50% duty 
cycle and (b) at 25% duty cycle 

 

Their current profiles will be compared here using network joining duty cycles of 

100%, 50%, and 25%. Fig. 5.6, Fig. 5.9 (a) and Fig. 5.9 (b) show the current 

consumption of the WSM to analyse the effects of the duty cycle when it is joining 

the network at the duty cycle of 100%, 50%, and 25%, respectively. It can be 

seen that the duty cycle only affects the searching process, including the low-

voltage and high-voltage search processes. The average current consumptions 

during doze time with different duty cycles are similar, which is about 3 µA with 

several 0.2 mA current peaks. The amplitude of the current during the active 

listening process with different duty cycles are also similar, including the high-

voltage and low-voltage search processes which are 5.71 mA and 6.69 mA, 

respectively.  
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To further verify the effect of the duty cycle on the network joining process, 50 

measurements of testing the joining time required to join the network successfully  

were taken to determine the distribution of the joining time for each duty cycle, 

respectively. Fig. 5.10 shows the search time in high-voltage, and low-voltage 

search processes, sorted from low to high in 50 measurements with the network 

join duty cycle of 100%, 50%, and 25%, respectively. It should be noted that the 

search time studied here is the time for the high-voltage and low-voltage search 

processes, not the whole network joining time, including the extra time of the 

negotiating and connecting processes since the duty cycle of the network joining 

process only affects the search time. The search time in Fig 5.10 includes the 

active listening time and doze time. 

 

It can be seen that the search process time is inconsistent regardless of the duty 

cycle. For example, the WSM may join the network with 35 s when the join duty 

cycle is 100% in Fig 5.10 (a), and may join the network with 10 s when the join 

duty cycle is 50% in Fig 5.10 (b). However, when the join duty cycle is 100%, the 

search time is mostly within 15 s and when the network join duty cycle is reduced 

to 50% and 25%, the occurrences of the search time within 15 s slightly decrease. 

It means a high duty cycle can increase the probability that the search time is 

completed in a short time. For example, there are about 30 times that the WSM 

joins the network less than 10 s when the join duty cycle is 100% in Fig 5.10 (a),  

but there are about 20 times that the WSM joins the network less than 10 s when 

the join duty cycle is 25% in Fig 5.10 (c). In addition, the high duty cycle can 

effectively avoid long searching time. For example, the longest time spending on 

search time is about 35 s when the join duty cycle is 100% in Fig 5.10 (a),  but 

the longest time spending on search time is about 90 s when the join duty cycle 
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is 50% in Fig 5.10 (b). It should be noted that all the discussions here are 

probabilities. 

 

In the EH powered WSN, the WSM needs to communicate with the network 

manager as soon as possible in the most cases, because the energy harvested 

is limited and so the duration of active time is limited as well, or it takes a long 

time to wake up again with a limited energy supply. Therefore, in order to make 

the WSM join the network as soon as possible, 100% duty cycle is chosen, since 

the low duty cycle will increase the searching time because of the extra doze 

time. It should be noted that, although the system with a low duty cycle has a 

lower average current consumption than that with a high duty cycle, it does not 

mean that the system has lower energy consumption with low duty cycle, since 

the active listening process of the system is the same regardless of the duty cycle. 

Conversely, the energy consumption of the system with the low duty cycle is 

higher than that with the high duty cycle because of the extra energy consumption 

during the doze time and the leakage current of the system while the active 

listening time is still the same. 

   
(a) (b) (c) 

Figure 5.10: Search time in high-voltage and low-voltage search processes when the WSM 
successfully join the network, sorted from low to high in 50 measurements (a) at 100% duty cycle, (b) 

at 50% duty cycle and (c) at 25% duty cycle 

 



146 
 

5.7.3 Storage Capacitor Sizing 

 

Choosing an appropriate storage capacitor size is important to the EH powered 

WSN since the capacitance requirement in the EH powered WSN is different from 

that in the EH powered WSM as the search time is random. The detailed analyses 

are given below. Comparing with the network joining process, the energy 

consumption of EH powered WSM during active time is relatively fixed or has a 

relatively low value when the WSM is pre-programed to perform a fixed task. 

Although the peak current of several processes, such as wireless transmission is 

high, it can know the energy consumption in advance because of the predictability 

in each process. Therefore, the capacitance requirement in the EH powered 

WSM is that the stored energy of the capacitor should be sufficient to support the 

WSM to carry out the tasks in the active time when the voltage across the 

capacitor is between the minimum operation voltage of the WSM and the turn-on 

threshold voltage of the hardware EAI. It should be noted that the stored energy 

discussed in the section is the consumable energy for the WSM, not the total 

stored energy in the capacitor calculated from 0 V.  

 

However, the energy consumption of network joining process during the active 

time is random in the EH powered WSN, since the time of the high-voltage search 

process and the low-voltage search process are random because of the 

uncertainty of the WSM in searching for the network and waiting for the network 

manager to response as discussed in Section 5.7.2. Therefore, an appropriate 

storage capacitor size is essential to the success of the network joining process 

since the capacitor size directly affects the maximum allowed time for the network 

joining process. Careful consideration of it should be taken into account to ensure 
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a successful network joining of the WSM with the fewest attempts to avoid energy 

wastage.   

 

Four different capacitor sizes of 22 mF, 33 mF, 50 mF, and 100 mF were used in 

this experiment. The system performance was assessed using these capacitors 

one by one. The capacitance of the energy storage chosen is in the milliFarads 

range since one of the fundamental requirements is that the energy stored in the 

energy storage must be enough for the WSM to complete its network join process. 

Based on the earlier study in Section 5.7.2, the network joining duty cycle of 100% 

was used in all the tests. The measured currents that were consumed by the 

WSM during the network searching process with the four super-capacitor sizes 

are shown in Fig. 5.11. It should be noted, in order to measure the maximum 

searching time that a capacitor can sustain, the measurements in Fig. 5.11 are 

all performed with the network manager turned off. Because the WSM will 

continue to search for the network when it cannot find the network manager. With 

the 22 mF, 33 mF, 50 mF, and 100 mF super-capacitors, the maximum searching 

time is about 2.98 s, 4.10 s, 6.87 s, and 13.91 s, respectively.  

  

(a) (b) 
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(c) (d) 
Figure 5.11: Current consumed by the WSM when a peak-to-peak stain loading of 600 µε at 
10 Hz was applied onto the MFC using a super-capacitor size of (a) 22 mF, (b) 33 mF, (c) 50 

mF, and (d) 100 mF 
  

 

To further verify the effect of the storage capacitor size on the network joining 

process100 measurements of the above test were taken to record the proportion 

of the WSM successfully joining the network for the first joining attempt with the 

four different capacitor sizes, respectively. The performances of the system are 

shown in Table 5.3. 

 

With the 22 mF, 33 mF, 50 mF, and 100 mF super-capacitors, the average time 

of the voltage charged from 0 V to turn-on voltage (3.15 V) are about 49.9 s, 70.9 

s, 123.3 s, and 215.7 s, respectively. The average maximum search time is about 

3.1 s, 4.2 s, 6.9 s, and 13.9 s, respectively. The energy consumption of the system 

in the searching time with them is 58.5 mJ, 78.6 mJ, 128.5 mJ, and 254.9 mJ, 

respectively. It should be noted that the energy consumption of the WSM here 

may a little higher than the stored energy calculated according to the capacitance 

itself since the MFC keeps charging the system during the active time.  
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The proportion of the WSM with 22 mF capacitor successfully joining the network 

for the first time is about 18% and increases to 26%, 42%, and 72% for the one 

hundred measurements when the capacitor increases to 33 mF, 50 mF, and 100 

mF, respectively. This is because the larger the capacitor size, the longer the time 

window for searching the network. Similar to the network join duty cycle, the 

number of attempts in successfully joining the network using different capacitor 

sizes is relatively random. An energy storage that is sufficiently large is able to 

sustain the network joining process for a longer period and, therefore, has a 

higher successful network joining chance in one attempt. This agrees with the 

results in Table 5.2, where the rate of successfully joining the network increases 

with the amount of time given to join the network. However, a large capacitor also 

takes longer to charge up, which may result in a short active phase frequency of 

the WSM to meet the requirements of the EH powered WSN application for 

specific analyses or monitoring, since the WSM has to wait for a long while to be 

activated. Therefore, appropriate sizing of the capacitor based on the input power 

from the energy harvester is required to optimise the network joining process. 

Therefore, 100 mF is selected as the storage capacitor size in the EH powered 

WSN systems studied in Chapter 5 and 6, because it can support the WSM 

searching time of approximately 14 s, which enables the WSM to successfully 

join the network in most cases and do not have to wait for too long, such as one 

hour to be activated.  
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Table 5.3: Performances of the EH powered WSM joining the network with 22, 33, 50, and 100 
mF super capacitors 

 

Capacitor 
size 
(mF) 

Average 
charging 
time (s) 

Average 
allowed 

searching 
time (s) 

Energy consumed 
during searching 

time (mJ) 

The success rate in 
100 times for 

network  searching 
(%) for the first time 

22 49.9 3.1 58.5 18 

33 70.9 4.2 78.6 26 

50 123.3 6.9 128.5 42 

100 215.7 13.9 254.9 72 

 

5.8 The Problem of the Network Joining Process in Energy 
Harvesting Powered Wireless Sensor Network 
 

As can be seen from the above experiments, joining the network is a random 

process, especially in the searching process, which can spend several minutes 

or more. This uncertainty may cause the EH powered WSM to be turned off 

before joining the network or unable to complete the pre-programing tasks after 

successfully joining the network since joining the network consumes most of the 

energy. If these happen, a lot of the harvested energy will be wasted, and the 

energy storage requires extra time and energy to be recharged again. In the case 

of EH powered WSNs, where energy harvested is limited, the energy consumed 

by every unsuccessful network joining attempt or no follow-up sampling and 

communication after successfully joining the network is undesirable. Therefore, it 

is important for the WSM to deal with this problem. 
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5.9 Summary 

 

This chapter studies a star topology EH powered WSN that comprises one 

network manager (Linear Technology DC9011A), and three EH powered WSMs 

that consist of a strain energy harvester, a PMM, a super-capacitor, hardware 

EAI and a Linear Technology DC9003 A-B Evaluation/Development Mote. In 

particular, the main focus was on the analyses of the energy consumption of the 

network joining process and the effects of the duty cycles and the energy storage 

size on the network joining process. 

 

Detailed analyses revealed that the network joining process is very power hungry, 

especially for the low-voltage search and high-voltage search processes. 

Reducing the network joining duty cycle does not necessarily save the energy 

required for network joining. An appropriate size of the capacitor is crucial to 

ensure that the mote is able to join the network from the first attempt.  

 

The main problem found is that the high-voltage search process and low-voltage 

process have very long uncertainty time. This uncertainty may cause much 

energy wasted by every unsuccessful network joining attempt or no follow-up 

sampling and communication after successfully joining the network. 

 

 

 

 

 

 



152 
 

Chapter 6 Network Energy-aware Approaches for Energy 
Harvesting Powered Wireless Sensor Networks  
 
 
From Chapter 5, it can be seen that the network joining process of the EH 

powered WSM in the EH powered WSN is a random process and consumes more 

energy than the sampling and transmission tasks of a WSM. This uncertainty, 

especially the searching process may cause the WSM to waste a lot of energy 

as the WSM may be repeatedly turned off due to depleted energy before it can 

join the network or may be unable to complete the pre-programing tasks after 

successfully joining the network. Also, synchronisation of the network among the 

motes is important for the tasks management and scheduling of the motes. 

Therefore, Chapter 6 proposes and develops a network energy-aware approach 

to deal with the identified problem of the uncertainty. The network energy-aware 

approach studied in this chapter is a collective approach that includes the 

hardware EAI, the software EAI and the sensing EAI that have been described 

previously in Chapter 4 as well as some a new programme for the network joining 

and synchronisation that will be studied in this chapter. 

  

The rest of the chapter is organised as follows: Section 6.1 describes the 

proposed network energy-aware approach for the network joining. Section 6.2 

describes the programme for synchronised operation and Section 6.3 describes 

the implementation of the developed EH powered WSN with the proposed 

network energy-aware approach. Section 6.4 describes the experimental setup 

and Section 6.5 shows the results and discussions. Section 6.6 concludes the 

chapter with a summary of the key findings. 
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6.1 Network Joining Process with Energy Awareness 
 

6.1.1 Concept 

 
The uncertainty in the network joining process means that the WSM will not know 

whether it will be able to join the network successfully within the timeframe that it 

has been powered up based on the capacitor size. Even if the WSM successfully 

completes the network joining process after a lengthy search process, it is no 

longer able to operate properly or perform the subsequent tasks when the supply 

voltage is between the minimum operating voltage 𝑉𝑀𝐼𝑁 that the WSM can work 

properly and the turn-off threshold of the hardware EAI. The energy available in 

the capacitor between these two voltages is generally insufficient for completion 

of a task. If the WSM continues to operate, the voltage level will quickly drop to 

the turn-off threshold, which resets the WSM even though the tasks are 

incomplete, and wastes all the energy used for previous processes. The WSM 

will then have to re-join the network once its capacitor has been recharged to the 

turn-on threshold. Therefore, on top of energy-aware approaches for WSMs  that 

was previously studied in Chapter 4, the network energy-aware approach is 

studied here to reduce the energy consumption and prevent energy wastage 

when the EH powered WSM fails to join the network because of the limited energy 

supply. The network energy-aware approach is designed to trace the energy 

consumption of every EH powered WSM in the EH powered WSN during the 

targeted joining network processes, especially for those with a high power 

consumption and a long uncertain time. The network energy-aware approach 

determines whether the WSM has been staying in searching for network joining  

processes for too long, which results in insufficient energy to perform the next 

processes, including the other processes of network joining and the basic tasks 
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such as data sampling and transmission. By resetting the hardware EAI to put 

the WSM into an inactive phase in advance before the capacitor voltage drops to 

the turn-off threshold of the hardware EAI, the energy stored in the WSM will be 

higher than the case where the WSM continues to stay in the search process until 

the voltage of the energy storage drops to the turn-off threshold of the hardware 

EAI. Therefore, the energy storage can be recharged faster to the turn-on 

threshold to power up the WSM again sooner. Once the WSM has successfully 

joined the network, other network joining process programme together with the 

EAIs of WSMs will then be used, which will be explained in Section 6.2. 

 

According to the different average powers of the high-voltage search process and 

the low-voltage search process, studied  in Chapter 5, the WSM is able to judge 

whether it is in the high-voltage search process or the low-voltage search process 

by continuingly measuring the voltage across the capacitor, 𝑉𝐶𝑆 , and then 

calculating the average power between the measurement interval. However, this 

method consumes a lot of energy, since a continuous voltage monitoring 

operation with a few milliseconds of monitoring intervals is required to determine 

the voltage changes accurately and timely. 

 

Moreover, since the time spent on each of the processes during the network 

joining is uncertain, even if it is able to determine which process the WSM is 

currently in, it is impossible to predict the time spent on next process when the 

WSM is joining the network. Therefore, a network energy-aware algorithm in the 

targeted processes of network joining for several uncertain processes is designed 

to deal with the aforementioned problems while tracing and managing the energy 

flow of the WSM to determine when it needs to be turned off. The targeted 
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process is set as the search process that includes the high-voltage search 

process and the low-voltage search process, since these two processes are the 

most power hungry processes and have the longest uncertainty time during the 

join network process, as mentioned in Chapter 5. 

 

It should be noted that there is no changes were made to the hardware EAI when 

the network energy-aware approach were implemented. The sensing EAI and the 

software EAI will realize the function after the WSM join the network successfully, 

which means they are not related to the network energy-aware approach focusing 

on the WSM joining the network. In the term of the software EAI, the method has 

not changed, but the specific values used to judgement program have changed, 

since the MCU and sensor are different from those of Chapter 4. 

 

6.1.2 Network Energy-aware Approach 

 

In the network energy-aware programme, the completion of a process that the 

WSM is currently running is used to judge whether the current remaining energy 

is sufficient. Typically, the WSM is able to determine whether it has completed 

the network joining process through registering the call-back functions to handle 

a number of notifications that indicate three flowing processes:  

 

(1) The WSM has heard the advertisement messages sent by the network 

manager, which means there is a joining notification that shows the WSM 

has completed the search process.  
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(2) The WSM has been synchronised to the network and started to join the 

network, which means that there is a connected notification that shows the 

WSM has completed the negotiating process.  

 

(3) The WSM has got the joining permission to complete the network joining 

process and became operational to execute its pre-programmed tasks, 

which means there is an active notification that shows the WSM has 

completed the connecting process and joined the network successfully.  

 

Therefore, the WSM is able to be programmed to judge whether the search 

process, negotiating process or connecting process has completed or not based 

on the receipt of the relevant notifications. However, it is impossible to tell when 

the high-voltage search process changes to the low-voltage search process 

during the search process by the call-back functions, since the change is 

controlled by a hardware-based autonomous media access controller managing 

radio operation, which incorporates a co-processor for controlling all of the time-

critical radio operations [70]. Additionally, it is a software-independent timing 

control of the radio and radio-related functions, which handles precise 

sequencing of peripherals, including the transmitter, the receiver, and advanced 

encryption standard peripherals to minimise central processing unit (CPU) activity, 

thereby preventing variable software latency from affecting network timing and 

greatly reducing system power consumption by allowing the CPU to remain 

inactive during the majority of the radio activity [70]. Nevertheless, as shown in 

Chapter 5, the average power consumption of the low-voltage search process is 

higher than that of the high-voltage search process. Therefore, the average 

power consumption of the low-voltage search process is used as a reference in 
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the network energy-aware approach. This is because it is better to slightly 

overestimate the energy usage to ensure that the WSM will not be reset to be off 

by the hardware EAI during the period of asks. 

 

Figure 6.1: The flowchart of the energy-aware programme for the high-voltage search process 
and the low-voltage search process 

 

Fig. 6.1 shows the flow chart of the energy-aware programme for the search 

process. The programme begins after the WSM starts to join the network. The 

WSM measures 𝑉CS and then assumes the current available energy is only used 

for the low-voltage search process. Following this, the WSM calculates the 
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remaining energy in the capacitor,  𝐸con and the maximum consumed energy of 

the WSM by staying in the low-voltage search process,  𝐸max−low  and then 

determines the maximum allowed time that the WSM is able to stay in the low-

voltage search process, 𝑇max−low based on the average power consumed by the 

WSM in the low-voltage search process, 𝑃low−v by using equations 6.1, 6.2, and 

6.3, respectively.  

𝐸𝑐𝑜𝑛 =  
1

2
𝐶𝑉𝐶𝑆 

2  −
1

2
𝐶𝑉min

2 
 

(6.1) 

𝐸𝑚𝑎𝑥−𝑙𝑜𝑤 =  𝐸𝑐𝑜𝑛 − 𝐸𝑛𝑒𝑔𝑜 − 𝐸𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 − 𝐸𝑏−𝑠𝑎𝑚𝑝 (6.2) 

𝑇𝑚𝑎𝑥−𝑙𝑜𝑤 =
𝐸𝑚𝑎𝑥−𝑙𝑜𝑤

𝑃𝑙𝑜𝑤−𝑣
 

(6.3) 

 

 

where 𝑉min is the pre-set minimum operating voltage of the WSM, which means 

that the WSM is no longer able to operate properly below it; 𝐸nego and 𝐸connected 

are the average energy required for the WSM to complete the negotiating process 

and connecting process, respectively; and 𝐸b−samp is the energy required for the 

WSM to complete the basic tasks including sampling, transmitting and resetting 

the hardware EAI. 𝐸nego  ,  𝐸connected , 𝐸b−samp  and 𝑃low−v  can be determined 

through programming the WSM to perform the individual tasks and then 

measuring the energy consumption of the tasks, which are similar to the 

determination of 𝑉END described in Section 4.3.2. 

 

It should be noted that 𝑇max−low is also used to judge whether the WSM has 

enough energy to perform the next processes. If  𝑇max−low is higher than 0, it 

means the WSM still have the energy and therefore, time to stay in the search 

process. If  𝑇max−low  is lower than 0, it means the WSM does not have the 
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sufficient energy and therefore, will stop the search process. As a result, the WSM 

will reset the hardware EAI to turn itself off so that the super-capacitor can be 

recharged for a new attempt of joining the network.  

 

A timing function is called to create a timer to record  𝑇max−low. After the time that 

is equal to 𝑇max−low has elapsed, the WSM determines the status of the search 

process by checking whether the joining notification has been obtained or not. If 

it has, this means the WSM has already completed the search process. 

Therefore, the network energy-aware programme for the search process ends 

here. The energy which has been consumed by the search process will not cause 

the WSM to have insufficient energy to perform the next processes since it has 

already been considered in the calculation of 𝑇max−low. Also, the calculation of 

 𝑇max−low actually overestimates the energy usage using only the low-voltage 

search process as reference while the search process includes the high-voltage 

search process that consumes less power. This guarantees that there will always 

be some energy left after  𝑇max−low has elapsed. If the WSM did not receive the 

notification, it will measure a new 𝑉CS to calculate a new  𝑇max−low to be compared 

with 0. If the new  𝑇max−low is higher than 0, which means the WSM still have the 

energy to stay in the search process, the WSM will generate a timing function to 

record the new  𝑇max−low and set a new timer. If the new  𝑇max−low is lower than 

0, which means the energy storage will not have enough energy for the WSM to 

perform the next processes even if the search process can be completed later. 

Therefore, the WSM will immediately implement the software EAI programme to 

reset the hardware EAI to put itself into an inactive phase. The whole cycle 

repeats when the WSM wakes up to join the network again. 

 



160 
 

Under most circumstances where there is no power or the power from the energy 

harvesters is lower than the power consumed by the WSM during the search 

process, it is expected that the loop of the approach shown in Fig. 6.2 will not 

repeat for more than three times. This can be explained using the following 

scenarios: 

 

(1) The first case is that the WSM has already received the joining notification 

after 𝑇max−low has elapsed. This means the search process is completed 

and the WSM finishes the energy-aware programme for the search 

process. 

 

(2) The second case is that the WSM has already completed the high-voltage 

process and stays in the low-voltage search process after  𝑇max−low has 

elapsed. This means the system still has the energy to support the WSM 

in the low-voltage search process for a while, since 𝑇max−low is calculated 

based on the low-voltage search process which has the higher average 

power than that of the high-voltage search process. However, the WSM 

still has not obtained the joining notification. It then measures 𝑉CS  and 

calculates  𝑇max−low for the second time, which should be higher than 0. 

 

After the second 𝑇max−low has elapsed, if the WSM has already completed 

the low-voltage search process, which is same as case 1, the WSM will 

finish the energy-aware programme. If not, the WSM will measure 𝑉CS and 

then calculate  𝑇max−low  for the third time. This time, the thirdly 

calculated 𝑇max−low is likely to be lower than 0, since the WSM is already 

in the low-voltage search process during the second calculated 𝑇max−low, 
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which is also the maximum time that the energy remained is able to sustain 

the low-voltage search process. Therefore, the WSM will reset the 

hardware EAI. 

 

Occasionally when the power from the energy harvesters is very high, which 

recharges the super-capacitor and increases the capacitor voltage, the WSM 

could still be in the high-voltage search process after 𝑇max−low has elapsed. The 

WSM will repeat the operation to get a newly measured 𝑉CS  and 

calculated 𝑇max−low until it gets a join notification to finish the programme or until 

the calculated 𝑇max−low is lower than 0 to reset the hardware EAI in the case that 

no join notification is received and the power from the energy harvesters suddenly 

becomes unavailable or too low. 

 

Therefore, the network energy-aware approach is able to cover all the possible 

scenarios of the search process with minimal number of voltage monitoring times 

while tracing and judging whether the remaining energy of the WSM is sufficient 

to support the next processes instead of doing a constant monitoring with 

milliseconds interval. Since the judgment method is based on the current 

remaining energy of the WSM, any additional energy from the energy harvesters 

that replenishes the energy storage during the monitoring process will also be 

considered. For example, assume that the WSM is in the previously mentioned 

second scenario running the timer function for the second time. If there is 

additional energy that replenishes the super-capacitor and is high enough to 

support the WSM to remain in the search process for a period of time just before 

𝑇max−low elapsed, the following thirdly calculated 𝑇max−low will be higher than 0. 



162 
 

As a result, the WSM will continue to stay in the search process if it still has not 

completed the search process. 

6.2 Developed Energy Harvesting Powered Wireless Sensor 
Networks with the proposed Network Energy-aware 
Approaches 
 

6.2.1 Network Communication  

 

The communication between the EH powered WSM and the network manager in 

the EH powered WSN is two-way communication, which is different from the one-

way communication between the EH powered WSM and the base station in 

Chapter 4.  It should be noted that in the one-way communication, the EH 

powered WSM is able to communicate with the base station but will not get any 

response from it. For example, when the EH powered WSM transmits the data to 

the base station, it is not able to acquire a transmission response from it, which 

means that the EH powered WSM is not able to know whether the transmission 

is successful or not.  In contrast, the two-way communication allows the EH 

powered WSM to get a response from the network manager. The EH powered 

WSM is able to ask for the transmission response from the network manager after 

it transmits the data to determine whether the transmission is successful or not. 

If the transmission response says some data is lost during the transmission, the 

EH powered WSM is able to resend the data. Moreover, since the EH powered 

WSM is able to communicate with the network manager, it also can retrieve the 

network time from the network manager and then synchronised with the network 

to achieve synchronised measurements and transmissions. This allows a 

network with many motes to be synchronised and managed by the network 

manager to ensure a reliable wireless network and achieve the operation in the 
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synchronous measurements application which will be described in detail in the 

next section. 

6.2.2 Hardware Implementation 

 

In order to understand the performance of the EH powered WSM in the network 

using the proposed network energy-aware approach, an EH powered WSN was 

implemented for the study. Similar to the network schematic of the EH powered 

WSN in Chapter 5, the studied network topology is a star network. The EH 

powered WSN in this chapter consists of three DC9003A-B motes and a 

DC9001B network manager that all have the LTC5800 chip. Since the network 

manager has a very important role in managing the network, it will be connected 

to a computer to get a steady power supply to ensure that it is always on, and to 

allow more control and processing from the computer. Moreover, two of the 

WSMs are powered by the vibration and airflow energy harvesting, respectively 

and one WSM is powered by battery. 

 

It should be noted that, the proposed network energy-aware approaches focus 

on avoiding the wasted energy during the WSM joining the network, since joining 

the network is a random process, especially in the searching process, which can 

spend several minutes or more. Therefore, the complexity of the network 

structure will not affect the function of the network energy-aware approaches. For 

example, as there are more WSMs in the network, each WSM may take longer 

time to join the network, but this does not affect the energy-aware approaches to 

determine whether the current WSM has enough energy to continue to join the 

network. The energy-aware approaches does not focus on changing the length 

of time that each WSM joins the network, but rather whether the WSM wastes the 
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energy on meaningless waiting, which results in insufficient energy to perform the 

next processes. Because joining the network is only the first step in the case of 

EH powered WSNs, the more important step is that the WSM samples the data 

and sends it to the network manager after successfully joining the network. For 

example, the WSM may unable to complete the pre-programing tasks after 

successfully joining the network since joining the network consumes most of the 

energy. If these happen, a lot of the harvested energy will be wasted, and the 

energy storage requires extra time and energy to be recharged again. 
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Figure 6.2: Schematic of the studied WSM in the EH powered WSM 

 

The first EH powered WSM consists of an energy harvester, a PMM circuit, a 

super-capacitor, a hardware EAI circuit and a WSM. The energy harvester, PMM 

circuit, and hardware EAI are the same as those in Chapter 4. The system used 

a 100 mF super-capacitor and the architecture of the WSM is shown in Fig. 6.2.  

The first EH powered WSM includes three analogue sensors: 
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(1) The acceleration sensing circuit includes a ADXL335 3-axis 

accelerometer and a voltage reference (ISL21080CIH325, Intersil, 

California, USA), which is used to provide a fixed reference voltage of 

2.5 V to the accelerometer during the active time of the WSM, since the 

accelerometer requires a fixed reference voltage to determine the 

accelerations from the sensor readings but the direct supply voltage from 

the capacitor is not constant throughout the active phase. Moreover, the 

acceleration sensing circuit includes the sensing EAI which is built with 

one P-MOSFET to turn on and off the connection between the system 

and the sensor power as controlled by the high and low signal generated 

by the DIO6 pin of the DC9003A, respectively. The ADC2, ADC3 and 

ADC4 pins of the DC9003A are individually connected to the three 

outputs (acceleration in x-, y- and z-axis) of the 3-axis accelerometer. 

 

(2) The radiation sensing circuit [116] which is shown in Fig. 6.3 is built 

around Tyndall TY1003 RADFETS [117] for measuring ionising radiation 

dose for aerospace industry to assess environmental conditions in a high 

altitude. An analogue switching circuit is used to turn on and off the 

radiation sensor as controlled by the high and low signal generated by 

the DIO22 pin of the DC9003A, respectively. The ADC 1 pin of the 

DC9003A is connected to the output of the radiation sensor to read the 

output signal from the radiation sensing circuit. 
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Figure 6.3: Schematic of the studied WSM in the EH powered WSM 

 

(3) The temperature sensing circuit is the built-in temperature sensor on 

DC9003A, which is used to acquire the local temperature data for 

wireless transmission. 

 

The second EH powered WSM consists of an energy harvester, a PMM circuit, a 

super-capacitor, a hardware EAI circuit and a WSM. An airflow energy harvester 

is used to generate electrical energy from airflow to the EH powered WSM. Fig. 

6.4 shows the airflow energy harvester which consists of a modified helical 

Savonius turbine, which is connected to an electromagnetic generator to convert 

energy from airflow into electrical energy, developed by the Energy Harvesting 

Research Group at the University of Exeter. The turbine and the generator have 

the dimensions of Ø15 × 20mm and Ø7 × 16mm, respectively [118]. The 

generator and a power management circuit were put into a case with the 

dimensions of 35 × 16 × 66 mm for ease of holding the EH module. A portable 

wind generator was used to generate the airflow for this test. The portable wind 

generator is adjustable to generate different airflow speeds, where the airflow 

speed can be measured by an anemometer at the air outlet of generator. The, 

hardware EAI and the super-capacitor are the same as the first EH powered 
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WSM. The second EH powered WSM includes an ADXL335 3-axis 

accelerometer circuit and a built-in temperature sensor.  

 

Figure 6.4: Airflow energy harvester 

 

The third WSM is powered by batteries and the sensing platform includes the 

same ADXL335 3-axis accelerometer circuit and a built-in temperature sensor. 

 

6.2.3 Implemented Software Overview 

 

All the motes were programmed with the network energy-aware approach. After 

the WSM has successfully joined the network as controlled by the network 

energy-aware programme, it will run the programmes including basic sampling 

application, asynchronous acceleration measurements application (AAM) and 

synchronous acceleration measurements application (SAM), as shown in Fig. 6.5, 

which will be further explained later. 
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Figure 6.5: The flowchart of the sampling and transmission tasks programme after the WSM 
has joined the network 

 

The flow chart of the network joining operation is the same as the mentioned in 

Fig. 5.4 between the WSM starts to join the network and completes to join the 

network, and therefore will not be repeated here.  

6.2.3.1 Basic Sampling Application  

 

This function is used to control the WSM to achieve the basic sampling function 

that reads from sensors with small amount of data bytes such as the temperature 

sensor, humidity sensor and radiation sensor first. It then proceeds to get one set 

of data from the accelerometer and determines the next sampling application of 

either AAM or SAM to be executed, depending on the remaining energy in the 

capacitor when the basic sampling application has completed. In the basic 

sampling application, the five sub-functions of dn_open (), dn_ioctl (), dn_close 

(), dn_read () and dn_wirte () are used to access the WSM to enable the relevant 
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pins of the WSM including sensors, actuators, ADC and digital interfaces, control 

a previously enabled pin, disabled a previously enabled pin, read from a 

previously enabled pin and write to a previously enabled pin, respectively. It 

should be noted that at the beginning of the programme, the sequences and the 

number of times that these sub-functions will be called might differ from one mote 

to another depending on the types and number of sensors used.   

 

Fig. 6.6 shows the flowchart of the first EH powered WSM reading from the 

RADFET sensor and temperature sensor, which have low data byte output at the 

beginning of the basic sampling application. 

Turns on the RADFET sensor

Take 1 reading from the temperature sensor 

Take 1 reading from the RADFET sensor

Turns off the RADFET sensor

Start

Turns on the accelerometer

Turns off the  temperature sensor

Low data bytes in the 

basic sampling programme

 

Figure 6.6: The flowchart of the first EH powered WSM reading the sensors with low data bytes 
in the basic sampling programme 

 

Upon being started, the general purpose input/output (GPIO) function is used to 

generate a high signal from one GPIO pin to turn on the RADFET sensor, since 

the switching circuit of the sensor is required drive current to turn on. 

Furthermore, the WSM uses dn_open () to enable the DP3 pin of DC9003 board 



170 
 

and then used dn_ioctl () function to configure the pin as output, and then uses 

dn_write () function to drive the GPIO pin high.        

 

Since the RADFET sensor needs time to reach a steady state output, the WSM 

reads the temperature sensor first to give the RADFET sensor time to get ready 

for sampling the data. The WSM uses dn_open () to enable the internal ADC pin 

of DC9003 board and then uses dn_read () to read the output of the temperature 

sensor, which has 2 bytes of data. After that, dn_close () is used to close the 

reading temperature function. 

 

Then, the WSM uses dn_open () to enable the ADC 0 pin of DC9003 board and 

then uses dn_read () to read the output of the RADFET sensor, which is also 2 

bytes. After that, the WSM uses dn_close () to close the reading RADFET 

function and then uses dn_write () function to drive the DP3 pin low to turn off the 

RADFET sensor. After that, the basic sampling application will proceed with the 

acceleration measurement. 

 

For the WSMs without the radiation sensor, their basic sampling applications 

begin with taking 1 reading from the temperature sensor and then go straight to 

turning on the accelerometer. 

 

After the readings from the sensors with low data byte outputs have been taken, 

the sensing EAI circuit of accelerometer required a low signal to turn on the 

accelerometer. Therefore, the WSM uses pin 6 of the DC9003 board to turn on 

the accelerometer and read the X-, Y- and Z-axis acceleration from its ADC 2, 3, 

4 pins, respectively. The application sets the WSM to take a pre-set number of 
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readings from the accelerometer. In this case, the WSM is set to repeat each data 

reading process every 10 ms for 14 times to ensure there are enough readings 

to cover the measured vibration frequencies in the studied case of this thesis. 

This means the total data acquisition time is 140 ms with a sampling rate of 100 

Hz. In each time, the WSM takes a total of three readings (2 bytes of data) each 

from X-, Y-, and Z-axis of the accelerometer. This results in a total of 84 bytes 

from the accelerometer.   

 

After the pre-set number of accelerometer sampling function is finished, the WSM 

measures the current voltage level across the capacitor, 𝑉cs−sample  and then 

compare with 𝑉judge which is a pre-set voltage to determine if WSM does the next 

sampling process. In this case, 𝑉judge is set as 2.6 V, since the WSM is able to 

perform at least 2 times of measurements in the SAM application when the 

voltage across the 100 mF capacitor is this value, based on the measured energy 

consumption through experiments in the next Section 6.4.3. If 𝑉cs−sample is higher 

than 𝑉judge , the WSM will perform the SAM application and if 𝑉cs−sample is lower 

than 𝑉judge, the WSM will perform the AAM application with the software EAI. 

 

6.2.3.2 Asynchronous Acceleration Measurements Application 

 

This function is aimed to enable the WSM to achieve a long measurement with 

the limited energy when  𝑉cs−sample  is lower than the 𝑉judge. It is used to control 

the WSM to achieve the AAM application with the software EAI function.  

 

Fig. 6.7 shows the flowchart of the AAM application. Similar with the software EAI 

in Chapter 4, the function is programmed to set the variable parameter M to 1, 
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which is used to record the number of times that the WSM had taken the pre-set 

number of readings from the accelerometer to calculate 𝑉END. After that, 𝑉END is 

calculated by using equations 4.3 to 4.7 and then is compared with 𝑉CS. In this 

case, 𝐸𝑡𝑥−1 +, 𝐸𝑠𝑎𝑚𝑝−1 and 𝐸𝑟𝑒𝑠𝑒𝑡 have been found to be 45 µJ, 19 µJ, and 30 µJ, 

respectively through the experimental method in Section 4.3.2. In addition, 𝐶 is 

set as 0.1, which is the capacitance of the super-capacitor of 100 mF, 𝑎 is 4 that 

includes 2 bytes each from the RADFET and the temperature sensor for the first 

EH powered WSM and is 2 for the other WSMs that have only the temperature 

sensor, 𝑏 is 84, and VMIN is set to be 2.5 V, since the voltage reference of the 

accelerometer is 2.5 V.  

 

It should be noted that, the first comparison is between  𝑉cs−sample  and 𝑉END. If 

𝑉CS is higher than 𝑉END, M increases by 1 and then the function repeats one cycle 

of the WSM taking the pre-set number of readings from the accelerometer. After 

that, the WSM monitors 𝑉CS and then calculates a new 𝑉END to compare the two 

voltages again, and then repeats the cycle. If 𝑉CS is lower than 𝑉END, dn_close () 

is used to close the reading accelerometer function and then the transmission 

function is called to transmit all the recorded data. After that, the WSM uses 

dn_write () to drive the pin 5 to generate a low signal to reset the hardware EAI. 

As the WSM has been turned off by the hardware EAI, it goes into the non-active 

phase and the cycle repeats. It should be noted that, the function is also set to 

transmit all the data and then reset the hardware EAI after the WSM performs 11 

cycles of reading from the accelerometer as executed by the AAM. There will be 

a maximum of 1012 bytes of data where 88 bytes are from the basic sampling 

application and 924 bytes are from the 11 cycles of readings, which is able to 

meet most of the monitoring application requirements. Every transmission 
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interval is set as about 100 ms through the timing function, since the maximum 

data throughput of the WSN is 36 packets/s [119], which means the maximum 

data throughput of one WSM is 12 packet/s in the developed EH powered WSN. 

 

Figure 6.7: The flowchart of the AMM application 

 

6.2.3.3 Synchronous Acceleration Measurements Application 

 

This function is aimed to enable the WSM to repeat a pre-set number of 

acceleration measurements and then sends them periodically to the network 

manager in every reporting period,𝑇reportms. This means the WSM is synchronous 

to the network where its operation is properly scheduled. It should be noted that 

this situation happens when the WSM has sufficient energy where 𝑉cs−sample  is 

higher than 𝑉judge due to a short network joining time, which means that the 

energy consumption of the network joining process is low. As a result, the 

remaining energy of the WSM after it has joined the network allows the WSM to 

complete tasks with higher energy requirements.  
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Figure 6.8: The flowchart of the SAM application 

 

Fig. 6.8 shows the flowchart of the SAM application. Upon being started, the 

WSM transmits the data sampled from the basic sampling application to the 

network manager. After that, the WSM uses dn_getNetworkTime () to retrieve the 

current network time from the network manager. The network time contains both 

current Absolute Slot Number (ASN), which is the number of timeslots since the 

network start up, represented by a 5 byte integer, and the corresponding 

Coordinated Universal Time (UTC). The UTC is in the serialised format that 

includes the number of seconds since midnight of January 1, 1970, represented 

by a 4 byte integer and is defined as 𝑇sec, and the number of microseconds since 
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the beginning of the current second, represented by a 4 byte integer and is 

defined as 𝑇usec. It should be noted that, the WSM is set to ask the network time 

after it send the sampled data to the network manager every time to ensure the 

accuracy of the time synchronisation. Then, the WSM arms a timer, waits for it to 

expire, and then take a pre-set number of readings from the accelerometer and 

send them to the network manager. The waiting time, 𝑇waitms  is calculated by 

equation 6.4.  

 

𝑇𝑤𝑎𝑖𝑡𝑚𝑠 = 𝑇𝑟𝑒𝑝𝑜𝑟𝑡𝑚𝑠 −  (((𝑇𝑠𝑒𝑐 ×  1000)  +  (𝑇𝑢𝑠𝑒𝑐

×  1000)) % 𝑇𝑟𝑒𝑝𝑜𝑟𝑡𝑚𝑠) 

(6.4) 

 

It should be noted that the % sign is modulo, 𝑇waitms  and 𝑇reportms are in 

milliseconds because the timer clock is based on milliseconds [120] and 𝑇reportms  

is set as 5000 ms as an example to show the WSM is able to perform the 

synchronised measurements with a long time interval in the WSN. This means 

the operation as programmed in the SAM repeats every 5000 ms that have 

elapsed as set by 𝑇reportms since 00:00:00 Thursday, 1 January 1970. Since the 

increment of the ASN and UTC time in all the WSMs occur at approximately the 

same time and the rate with an accuracy of up to microsecond [120], the event of 

SAM can therefore be assumed to happen at the same time on all the WSMs.  

 

After that, the WSM measures the voltage across the super-capacitor, 

𝑉cs−schedule and then compared with 𝑉min−schedule which is the minimum voltage 

across the super-capacitor to meet the energy requirement for the WSM 

implementing one measurement cycle to judge whether it has sufficient energy 

to implement the next measurement cycle or not. If so, the WSM retrieves the 
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current network time again and repeats the cycle. If not, the WSM reset the 

hardware EAI to turn off itself, which is similar to that in the AMM application.  

 

Here is an example of how the WSMs achieve the synchronised measurement 

and transmission after it receives the network time from the network manager. 

𝑇reportms  is set as 5000 ms and assume that the first EH powered WSM obtained 

the current network time of 2004-09-16T23:59:58.75, which corresponds to the 

UTC time of 1095379198.750. The second EH powered WSM obtained the 

current network time of 2004-09-17T00:00:00.25, which corresponds to the UTC 

time of 1095379200.250. Following this, 𝑇waitms of the first EH powered WSM is 

calculated by 5000- ((1095379198 × 1000) + (0.75 × 1000)) % 5000, which is 

equal to 1250 and 𝑇waitms of the second EH powered WSM is calculated by 5000- 

((1095379200 × 1000) + (0.25 × 1000)) % 5000, which is equal to 4750. Therefore, 

the first EH powered WSM will sleep for 1250 ms and then wake up to turn on 

the accelerometer to measure at 1095379200.000, which corresponds to the time 

2004-09-17T00:00:00.000 and repeats the operation every 5000 ms. Similarly, 

the second EH powered WSM will sleep for 4750 ms and then wake up to turn 

on the accelerometer to measure at 1095379205.000, which corresponds to the 

time 2004-09-17T00:00:05.000 and repeats it every 5000 ms. Therefore, the two 

EH powered WSM are able to turn on the accelerometer at the same time after 

2004-09-17T00:00:05.000, where their measurement operation has been 

synchronised.  
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6.3 Experimental Setup 
 

Three WSMs in the EH powered WSN used the same kind of 100 mF super-

capacitor and 100% network joining duty cycle. A peak-to-peak strain loading of 

600 με at 10 Hz was applied to the vibration energy harvester in the first EH 

powered WSM and airflow with the speed of about 9 m/s was used to run the 

airflow energy harvester in the second EH powered WSM. It should be noted that, 

energy generated from the energy harvesters will not be measured, since this 

experiment focuses on studying the performance and the energy consumption of 

the EH powered WSMs during different processes in the WSN. Two source 

meters were each used for measurements of the first and second EH powered 

WSM. All the measurements used 200 Hz sampling frequency to allow a longer 

measurement time.   

 

 
 

(a) (b) 
Figure 6.9: Image of the prototypes of (a) the first EH powered WSM with the radiation 

sensing circuit that will be powered by the vibration energy harvester and (b) the second EH 
powered WSM that will powered by the airflow energy harvester 

 

Fig. 6.9(a) and Fig. 6.9(b) show the image of the prototypes of the first EH 

powered WSM and the second EH powered WSM, respectively, which have been 
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discussed in Section 6.2. The network manager is the same as the one shown in 

Fig. 5.5(b). 

 

To study the performances and energy consumption of the studied EH powered 

WSN with the network energy-aware approach, different test conditions were 

used. However, in each test, both the Instron testing machine and the portable 

wind generator were turned on at similar times to ensure that the EH process of 

the two EH powered WSMs started at a similar time. After that, the battery-

powered WSM was turned on right after the energy harvesters have been turned 

on. The following three typical cases are analysed in the next section: 

 

1. The first studied case is used to show the network energy-aware approach 

is able to reduce the energy wastage in the event that the network 

searching of the EH powered WSM is too long. It was done by comparing 

the current, voltage and energy consumption of the EH powered WSMs 

without and with the network energy-aware approach when they could not 

join the network successfully. It should be noted that, the only difference 

between the two EH powered WSMs is that the EH powered WSM without 

the network energy-aware approach does not have the network energy-

aware approach but still got the other EAIs.   

 

2. The first EH powered WSM has joined the network successfully and then 

completed the basic sample application. After that, the AMM application 

was executed because 𝑉cs−sample  is lower than 𝑉judge. 
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3. The first EH powered WSM has joined the network successfully and then 

completed the basic sample application. After that, the SAM application 

was executed because Vcs−sample is higher than the Vjudge . The second 

and third EH powered WSM was also used to show that the WSMs in the 

WSN are able to implement the synchronised accelerometer 

measurements and transmissions across the network. The stargazer, 

which is a software that provide a graphical view of the LTC5800 wireless 

network [121] was used to show the network topology of the proposed EH 

powered WSN.  

 

6.4 Results and discussions 
 

6.4.1 Verification of Network Energy-aware Approaches for 
Energy Saving 

 

This section shows the case where the network joining is unsuccessful and how 

the network energy-aware approach saves energy. Fig. 6.10 shows the 

measured current, voltage and the calculated energy consumption of the EH 

powered WSM without and with the network energy-aware approach, 

respectively. 
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       (a)          (b) 

 
 

      (c)        (d) 
Figure 6.10: Measured 𝑉cs and 𝐼w with enlarged view during the active phase of the EH 

powered WSM without the network energy-aware approach in (a) and (b), respectively and 
with the network energy-aware approach in (c) and (d), respectively 

 

For the EH powered WSM without the network energy-aware approach, Fig. 

6.10(a) shows that, from the beginning at 0 s to about 207 s, the super-capacitor 

was charged by the PMM with the harvested energy from the MFC and its voltage 

𝑉cs increased from 0 V to about 3.124 V at point A. After that, the WSM is turned 

on by the hardware EAI. To better recognise the processes that occur after the 

WSM becomes active, the measured current as shown in Fig. 6.10(b) will be used 

in the subsequent analyses. After the WSM has completed the wake up and 

initialisation process as defined in Section 5.7.1.1 between point A and point B 
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that last for about 2.03 s, the WSM began to join the network at point B (209.146 

s). The WSM spent about 12.34 s between point B and point C (221.48 s) on the 

search process, including the high-voltage search process and low-voltage 

search process that caused its voltage 𝑉cs to drop from 3.104 V to 2.272 V. After 

that, the hardware EAI turned off the WSM, since the current 𝑉cs is lower than the 

turn-off threshold voltage of the hardware EAI, which took about 0.01 s and 

finished at point D (221.49 s) with 2.273 V.  

 

For the EH powered WSM with the network energy-aware approach, Fig. 6.10(c) 

shows that, from the beginning at 0 s to about 201 s, the super-capacitor was 

charged by the PMM with the harvested energy from the MFC and its voltage 𝑉cs 

increased from 0 V to about 3.128 V at point A. After the WSM completed the 

wake up and initialisation process as shown in Fig. 6.10 (d) between point A and 

point B that last for about 2.06 s, the WSM began to join the network at point B 

(203.085 s), which is similar to the case without the network energy-aware 

approach. The voltage across the super-capacitor then increased as energy can 

be accumulated effectively in the super-capacitor with the hardware EAI that has 

a low current consumption as discussed in Section 4.4.4. 

 

After that, the network energy-aware programme began. Fig. 6.11 (a) shows that, 

the WSM first monitored the 𝑉cs (3.111 V) at point B and then calculated the 

current maximum time that the WSM can stay in the search process, 𝑇max−low 

(8958 ms) through equations 6.1 to 6.3. After 8958 ms has elapsed, the WSM 

checked whether it has obtained the joining notification or not. Since no 

notification is received, it repeated the approach, which monitored the 𝑉cs (2.545 

V) and calculated 𝑇max−low again at 212.04 s. As the calculated 𝑇max−low (168 
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ms) is higher than 0 ms, the WSM judged that it is able to continue the search 

process and then set a 168 ms timer. Similarly, after 168 ms, the WSM checked 

for the joining notification, which again is not received. The approach repeats 

again at 212.21 s, which is shown as point C (212.21 s). The calculated 𝑇max−low 

is -13 ms, which is lower than 0 ms. Therefore, the WSM judged that it has not 

got the energy to perform the next process even if it is able to complete the search 

process immediately. After that, the WSM reset the hardware EAI to turn off itself, 

which spent about 35 ms and finished at point D (212.245 s) with 2.532 V. After 

that, the capacitor voltage increased just as the case without the network energy-

aware approach, which shows that network energy-aware approach works 

seamlessly with the hardware EAI. 

 

Fig. 6.11(b) compares the measured current between the EH powered WSM 

without and with the network energy-aware approach from wake up (point A) to 

the process of the hardware EAI turning off the WSM (point D) in Fig. 6.10(b) and 

Fig. 6.10(d), respectively. The wake up and initialisation process for both EH 

powered WSMs are similar, since they use the same related programme. After 

that, the EH powered WSM with the network energy-aware approach spent about 

9.12 s on the search process which is about 3.21 s less than the EH powered 

WSM without the approach. It should be noted that in this case, spending less 

time means saving more energy, since all the energy consumed during the 

search process is wasted because the EH powered WSM was not able to join the 

network or complete any tasks even if it successfully joined the network. 
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(a) (b) 

  
(c) (d) 

Figure 6.11: The enlarged plots (a) 𝑉cs of Figure 6.10(c) and (b) the current comparison 
between Figure 6.10(b) and Figure 6.10(d) from point A to point D. The calculated results of 

𝐸𝑊 based on (c) the measured 𝑉cs of Figure 6.10(a) and 𝐼w of Figure 6.10(b) and (d) the 

measured 𝑉cs of Figure 6.10(c) and 𝐼w of Figure 6.10(d), respectively. 

 

The EH powered WSM without the network energy-aware approach consumed 

about 212.53 mJ energy on the search process and resetting the hardware EAI, 

as shown in Fig. 6.11(c).  

 

On the contrary, the EH powered WSM with the network energy-aware approach 

consumed a total of about 164.30 mJ on the search process, the network energy-

aware programme and resetting the hardware EAI, as shown in Fig. 6.11(d), 
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which saves about 48.23mJ energy if compared with the EH powered WSM 

without the network energy-aware approach. This amount of energy saved is 

quite significant as it could sustain almost the entire high-voltage search process 

or 219 times of the sensing and transmission, based on the energy analysis in 

Chapter 5. Since the WSM with the network energy-aware approach resets the 

hardware EAI earlier at a higher capacitor voltage, the super-capacitor can be 

recharged to the turn-on threshold voltage of the hardware EAI quicker than the 

WSM without the network energy-aware approach. 

 

6.4.2 Asynchronous Acceleration Measurements Application  

 

As discussed earlier in Section 6.2, upon a successful network join, the WSM will 

execute the AAM application if the capacitor voltage is less than 2.6 V after it has 

completed its basic sampling application. Only the first EH powered WSM with 

the network energy-aware approach will be analysed here since the AAM is not 

synchronised, which does not involve other WSMs. The measured voltage 𝑉cs 

and current 𝐼w in this case are shown in Fig. 6.12. The voltage profile of 𝑉cs as 

shown in Fig. 6.12(a) is very similar to those in Fig. 6.11(a) and 6.11(c). Therefore, 

just as before, the measured current 𝐼w  will be predominantly used for the 

subsequent analyses. The wake up and initialisation process occurred between 

point A and point B (210.485 s) as shown in Fig. 6.12(b) is again similar to those 

in Figs. 6.10(b) and (d) due to the similar related programme used. 

 

After that, the WSM began the network join process with the search process using 

the proposed network energy-aware approach, which is between point B and 

point C (219.535 s) in the inset of Fig. 6.12(a) and Fig. 6.12(b). The WSM first 
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monitored 𝑉cs (3.105 V) at point B and then calculated 𝑇max−low to be 8856 ms. 

After 8856 ms has elapsed, the WSM still has not obtained the joining notification 

and as a result, it monitored the 𝑉cs (2.571 V) again at 219.34 s and calculated 

𝑇max−low to be 533 ms, which means the WSM is able to continue the search 

process. After 533 ms, the WSM has obtained the joining notification and then it 

stopped the energy-aware program, since the search process has been 

completed at 219.535 s as shown at point C. After that the WSM spent about 9.47 

s on the negotiating process and connecting process, which is the process 

between point C and point D (229.005 s) in Figs. 6.12(a) and (b). 

 

 

  
(a) (b) 
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(c) (d) 
Figure 6.12: Measured (a) 𝑉cs with enlarged view of 𝑉cs from 210 s to 225 s as inset and 

enlarged plots of 𝐼w (b) from 205 s to 235 s, (c) from 228 s to 232 s and (d) from 231.6 s to 
231.95 s 

 

After the WSM has joined the network successfully, the WSM implemented about 

0.22 s of basic sampling application between point D and point E (229.225 s), as 

shown in Fig. 6.12(c). Then, the WSM judged that it will run the AMM application, 

since the 𝑉cs−sample as shown at point E is about 2.57 V which is lower than 2.6 

V. With the AMM application, the WSM repeatedly take the acceleration 

measurements for about 1.55 s between point E and point F as shown in Fig. 

6.12(c). The current peak of 2.2 mA at 229.065 s is due to the turning on of the 

accelerometer through the sensing EAI. 

 

After completing the sampling tasks, the WSM sent the data to the network 

manager through 12 transmission times. Between points G and H, the first 

transmission has 88 bytes of data from the basic sampling application and each 

transmission of the following 11 transmissions has 84 bytes of data. This means 

the WSM has repeated 11 cycles of taking 42 readings (84 bytes) from the 3-axis 

accelerometer during the AMM application. Fig. 6.12(d) shows the enlarged view 

of the 8th to 11th transmissions as an example to discuss the transmission process. 
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It can be seen that, the interval between each transmission is approximately 100 

ms, which has been set in advance as discussed in Section 6.2.2. After the WSM 

transmitted the data to the network manager, there is a process with about 5.14 

mA of current consumption caused by the WSM waiting for a response from the 

network manager. If the WSM receives the response, it will finish the current 

transmission and if not, it will resend the data. Therefore, all the transmissions 

are successful without the need to resend. After that, the WSM resets the 

hardware EAI to switch off itself between point G and point H in Fig. 6.12(c) and 

then it went into non-active phase. 

  
(a) (b) 

Figure 6.13: The calculated result of 𝐸𝑊 based on the measured 𝑉cs of Figure 6.12 (a) and 𝐼w 
of Figure 6.12 (b) with enlarged view of (a) from 205 s to 230 s and (b) from 228s to 234 s 

 

The average current, average voltage, average power, energy consumption and 

time of every process separated by any consecutive two points marked by the 

alphabets of A to H based on the results in Fig. 6.12 and Fig. 6.13 are shown in 

Table 6.1 It can be seen that, in a total of 23.615 s, the WSM has consumed 

about 184.26 mJ. The WSM consumed the most energy on the search process 

during the network joining process which cost about 156.42 mJ in 9050 ms. After 

the WSM joined the network successfully, it consumed about 1.95 mJ for reading 
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1012 bytes data in 1770 ms and about 3.81 mJ for transmitting 1012 bytes data 

in 1210 ms.   

 

Table 6.1: Energy consumption of every process of the first EH powered WSM when it performs 
AMM application  

 

No. Process Average 
Current 

(mA) 

Average 
Voltage 

(V) 

Average 
Power 
(mW) 

Energy 
(mJ) 

Time 
(ms) 

A-B Wake up and 
Initialisation 

1.25 3.117 3.58 7.44 2080 

B-C Searching Process 6.08 2.838 17.28 156.42 9050 

C-D  Negotiating 
Process and 

Connected Process 
 

0.61 2.558 1.54 14.62 9470 

D-E  Reading data in Basic 
Sample Application 

 

0.88 2.572 1.63 0.36 220 

E-F Reading data in AMM 
Application 

0.40 2.575 1.02 1.59 1550 

F-G Transmission  1.22 2.582 3.15 3.81 1210 

G-H Resetting Hardware 
EAI 

0.32 2.582 0.83 0.03 35 

Total     184.26 23615 

 

6.4.3 Synchronous Acceleration Measurements Application 

 

As discussed earlier in Section 6.2, upon a successful network join, the WSM will 

execute the SAM application if the capacitor voltage is more than 2.6 V after it 

has completed its basic sampling application. Both EH powered WSMs and the 

performance of the EH powered WSN will be analysed here. 
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6.4.3.1 Operation of the first Energy Harvesting Powered Wireless 
Sensor Mote 

 

The measured voltage 𝑉cs and current 𝐼w in this case are shown in Fig. 6.14. Fig. 

6.14(a) shows that the voltage profile looks similar to the previous case but with 

the voltage stops dropping at a higher level and increases at a slower rate 

afterwards. The WSM began with the wake up and initialisation process as 

indicated between point A and point B (212.54 s), as shown in Fig. 6.14(b). Then, 

the WSM with the network energy-aware approach start to join the network, which 

is similar to the previous case. After the WSM has joined the network successfully, 

the WSM implemented about 0.22 s of basic sampling application between point 

D (228.375 s), and point F (228.595 s), as shown in Fig. 6.14(c). Then, the WSM 

judged that it will run the SAM application, since the 𝑉cs−sample as shown at point 

E is about 2.74 V, which is higher than 2.6 V. 

 
 

(a)  (b)  
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(c) (d) 

Figure 6. 14: Measured (a) 𝑉cs and measured (b) 𝐼w with enlarged view of 𝐼w from 210 s to 235 
s as inset and enlarged plots of 𝐼w (c) from 228 s to 238 s and (d) from 228.35 s to 228.7 s  

 

Fig. 6.14(c) shows three sampling and transmission operations of the WSM 

running with the SAM application as an example. Fig. 6.14(c) shows the enlarged 

view of the first operation between point D and H. Between point D and point F, 

the WSM implemented the basic sampling application. After that, between point 

F and point G (228.62 s), the WSM transmitted the data from the basic sampling 

application to the network manager and then waited for a response from the 

network manager since it was running the SAM application. It should be noted 

that, the transmission is not based on the network time since it happened before 

the WSM obtained the network time. 

After that, the WSM transmitted a requirement to ask the current network time 

from the network manager, which is the WSM achieved the 1st network time 

retrieve and caused a current peak of about 9.8 mA at 228.625 s. Then, it 

received the ASN and UTC time of the current network from the network manager 

with about 5.2 mA current consumption. 

After that, the WSM went to sleep with the timing function for a duration equals 

the calculated 𝑇waitms between point H and point L (231.57 s) in Fig. 6.14(c). The 
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WSM then wakes up and turns on the accelerometer at 231.575 s to repeatedly 

take the 3 readings from the three outputs of 3-axis accelerometer for 14 times 

every 10 ms. It should be noted that, this measurement is the 1st measurement 

that is synchronised over the network. Therefore, the following transmission at 

231.745 s is marked as 1 in Fig. 6.14(d). The second synchronised transmissions 

happened at 236.745 s while the network time retrievals happened at 236.765 s. 

The time interval between successive synchronised operations is 5 s, as defined 

by 𝑇reportms (5000 ms). 

The current profiles of the synchronised operations between points L and M as 

well as points N and O are the same as the current profile shown in Fig. 6.14(b) 

from point E to point H. The capacitor voltage can be charged up in Fig. 6.14(a) 

after 228.595 s. This means the average power consumption of the SAM is less 

than the power from the vibration energy harvester. Thus, the WSM continued to 

run the SAM application as shown in Fig. 6.15(a) and remained well synchronised 

as can be seen in Fig. 6.15(b) with the even time gap between successive 

transmissions. 

  
(a)  (b)  

Figure 6.15: The measured 𝐼w (a) during the active phase of the first EH powered WSM from 
210 s to 290 s and (b) with enlarged view from 230 s to 250s. 

 



192 
 

The average current, average voltage, average power, energy consumption and 

time of every process separated by any consecutive two points marked by the 

alphabets of A to O based on the results in Fig. 6.14 are shown in Table 6.2. The 

calculated energy consumption is based on the Fig. 6.14(a) and Fig. 6.14(b). 

Again, the WSM consumes the most energy on the search process during the 

network joining process, which cost about 109.50 mJ in 6325 ms. After the WSM 

has successfully joined the network, it consumed about 0.38 mJ for reading 88 

bytes of data during the basic sampling application and about 0.34 mJ for 

transmitting the 88 bytes data in 25 ms. The network time retrieval process costs 

about 13.24 mW of power but over a short time of 50 ms, which leads to a low 

average energy consumption of 0.66 mJ. The energy consumption of the sleeping 

process with the timing function is about 1.44 mJ, which is very similar to the 

energy consumption for one cycle of SAM application that reads 84 bytes of data 

from the accelerometer, turns on and off the accelerometer, transmits the 84 

bytes of data, retrieves the network time, monitors the voltage and makes the 

judgement in 240 ms at 1.47 mJ. Therefore, the overall energy consumption of 

the WSM that is running the SAM application is higher, mainly due to the higher 

energy consumption during sleeping with the timing function. This explains the 

slower capacitor voltage increment rate as observed in Fig. 6.14(a). 
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Table 6.2: Energy consumption of every process of the first EH powered WSM when it performs 
SAM application 

 

No. Process Average 
Current 

(mA) 

Average 
Voltage 

(V) 

Average 
Power 
(mW) 

Energy 
(mJ) 

Time 
(ms) 

A-B Wake up and Initialisation 1.23 3.100 3.78 7.87 2080 

B-C Searching Process  5.97 2.904 17.31 109.50 6325 

C-D  Negotiating 
Process and Connected Process 

0.62 2.711 1.67 15.90 9510 

D-F Reading data in Basic Sample 
Application 

0.85 2.732 1.71 0.38 220 

F-G Transmission the data in Basic 
Sample Application 

4.95 2.735 13.56 0.34 25 

G-H 1st  Network time Retrieve 4.83 2.742 13.24 0.66 50 

H-L Sleeping with the timing function 0.21 2.742 0.50 1.44 2900 

L-M 1st SAM application 1.87 2.751 6.12 1.47 240 

M-N Sleeping with the timing function 0.21 2.755 0.59 2.81 4760 

N-O 2nd  SAM application 1.88 2.762 5.03 1.21 240 

 

6.4.3.2 Operation of the second Energy Harvesting Powered Wireless 
Sensor Mote 

 
The measured voltage 𝑉cs and current 𝐼w of the second EH powered WSM that 

was powered at the same time as the first EH powered WSM are shown in Fig. 

6.16. Since the airflow energy harvester produces more power than the vibration 

energy harvester, the super-capacitor was charged up from 0 V to 3.134 V in 

122.835 s, which was marked as point A in Fig. 6.16(a). Once the WSM has been 

powered up, the processes are similar to the first EH powered WSM. The wake 

up and initialisation process occurred between point A and point B (124.86s). 
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Then, the WSM with the network energy-aware approach start to join the network, 

which is similar to the case of the first EH powered WSM. After the WSM has 

joined the network successfully, the WSM implemented the basic sampling 

application between point D and point E, as shown in Fig. 6.16(b). Then, the WSM 

judged that it will run the SAM application, since the 𝑉cs−sample as shown at point 

E is about 2.972 V, which is higher than 2.6 V. It should be noted that, VCS 

eventually increased to 3.3 V, which is the maximum output voltage of the PMM 

because the power from the airflow energy harvester is enough to recharge the 

super capacitor and supply the power for the operation of the WSM 

simultaneously. 

 

 
 

(a)  (b)  
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(c) (d) 

Figure 6.16: The measured (a) 𝑉cs with its enlarged view from 100 s to 299 s in the inset and 

𝐼w with enlarged view from (b) 122 s to 138 s, (c) 120 s to 280 s and (d) 225 s to 250 s. 

 

The WSM completed the 1st SAM at 141.745 s, which is marked as 1 in Fig. 

6.16(c). A total of 28 synchronised transmissions were recorded in this 

measurement. The WSM synchronised with the first EH powered WSM to 

measure the acceleration and transmit at the same time in the WSN at its 19th 

SAM. Fig. 6.16 (d) shows that the 19th to 22th synchronised measurement of the 

second EH powered WSM happened at 231.575 s, 236.575 s, 241.575 s, and 

246.575 s, respectively and the synchronised transmission happened at 231.745 

s, 236.745 s, 241.745 s, and 246.745 s respectively. This corresponds to the 1st 

to the 4th synchronised operation of the first EH powered WSM, which happened 

at the same time as shown in Fig. 6.15(b). Therefore, it can be seen that, the EH 

powered WSMs with the proposed energy-aware approaches including the 

network energy-aware approach, sensing, software and hardware energy-aware 

approaches in the EH powered WSN are able to achieve a synchronised 

measurement and transmission. It should be noted that, although three WSMs 

implement the synchronised accelerometer measurements and transmissions 

across the network, the network manager may receive the data from them at 
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slightly different times because they have different communication conditions in 

the EH powered WSN such as different transmission distances. 

 

6.4.3.3 Operation of the Energy Harvesting Powered Wireless Sensor 
Network 

 

Fig. 6.17(a) shows the network topology of the proposed EH powered WSN on 

the stargazer window in three sequences of the joining status of the three WSMs. 

On the stargazer window, the network manager and the WSMs are identified by 

the short MAC address of their internal wireless chips, which is the last 2 bytes 

of their 8-byte long MAC address. The MAC address is unique to each mote and 

is assigned to the mote at the factory during production. For example, the long 

MAC address of the first EH powered WSM is 00-17-0D-00-00-60-03-AB and as 

a result of that it is shown as 03-AB on the stargazer window. With the same rule 

applies, the network manager, the second EH powered WSM and the battery-

powered WSM are identified as 58-33, 06-28 and 23-31, respectively.  

The battery-powered WSM (23-31) joined the network first as marked by ‘1’ in 

Fig. 6.17(a), since the battery is able to power the WSM immediately to wake up 

and join the network with a steady stream of power supply. Then, it was the 

second EH powered WSM (06-28) that joined the network on its first network 

joining attempt, as shown in Fig. 6.16. After that the first EH powered WSM (03-

AB) joined the network last on its first network joining attempt, as shown in Fig. 

6.14. The order in which the three WSMs join the network depends on the 

capacitor charging time and the number of attempts to join the network. 

Fig. 6.17(b) shows the display window of stargazer that recorded the transmission 

details from the three WSMs to the network manager. The network manager 
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received 84 bytes of data from the 3-axis accelerometer in each of the three 

WSMs in every 5 s in the synchronised measurement. 

 

 
(a) 

 
(b) 

Figure 6.17: (a) The network topology of the proposed and developed EH powered WSN on 
stargazer window in three network joining sequences of the three WSMs and (b) The traffic 
monitor window of stargazer that shows the data from the three WSMs received by the network 
manager. 
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6.5 Summary 
 

This chapter has shown how the network energy-aware approach with the 

network energy-aware approach saves energy during the network joining process 

of the WSMs that is full of uncertainty, especially in terms of the time and therefore 

the energy required to complete the network joining process. An EH powered 

WSN formed by WSMs with the proposed network energy-aware approach was 

built and tested. The EH powered WSN is a star network and includes one EH 

powered WSM powered by the vibration energy harvester, one EH powered 

WSM powered by the air flow energy harvester and one WSM powered by battery. 

The experimental results show that the network energy-aware approach 

incorporates all the energy-aware approaches seamlessly. The network energy-

aware approach enables (1) the harvested energy to be accumulated in the 

super-capacitor to deal with the start-up issue of EH powered WSM and (2) allows 

the EH powered WSM to have a low sleep current with the hardware EAI. (3) 

Then, once the EH powered WSM with the network energy-aware approach is 

powered up and began the network joining process, a significant amount of 

energy can be saved when the attempt to join the network failed. Once the EH 

powered WSM has joined the network successfully, the different programme 

applications that incorporate the software EAI, sensing EAI and hardware EAI 

allow the EH powered WSM to achieve (4) asynchronous operation or (5) 

synchronised operation based on the energy level left after the WSM has joined 

the network. 
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Chapter 7 Conclusions 
 

7.1 Achieved Objectives 
 
 
The EH powered WSS are gaining increasingly popularity, since they enable the 

system to be self-powering, long lasting, almost maintenance free, and 

environmentally friendly. However, the mismatch between the energy generated 

by the harvesters and the energy demanded by the WSS to perform the required 

tasks is always a bottleneck as the ambient environmental energy is limited and 

the WSS is power hunger.  

 

Therefore, the main focus of the thesis for the EH powered WSS (WSMs and 

WSNs) is to propose, design, implement and test the energy-aware approaches, 

including hardware EAI, software EAI, sensing EAI, and the network energy-

aware approaches to deal with the energy mismatch to carry out required tasks. 

The main research ideas are to manage the energy flow and reduce the power 

consumption of the WSM in the EH powered WSS. For these, the thesis has 

achieved the following objectives. 

 

• To develop an understanding of WSM power consumption for the 

development of EH powered WSMs; 

 

This thesis has reviewed the energy harvesting techniques that can be used to 

extract energy from different available energy sources, with focus on the power 

output that can be harvested. It has also reviewed wireless communication 

technologies, protocols and the off-the-shelf commercial chips, and compared 

their performance for the EH powered WSS requirements, especially in the 
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energy consumption of transmission and receive processes. Based on the 

reviews of the energy harvesting and wireless sensor technologies, a research 

challenge in the mismatch between energy harvested by harvesting methods and 

energy demanded by wireless sensor technology is identified. To address the 

energy mismatch, the thesis has reviewed the energy-saving mechanisms in the 

WSS, with particular focus on the energy-aware approach.  

 

This thesis has studied a battery powered WSM system and analysed the 

energy consumption of the WSM. The WSM was implemented with JN5148 

microcontroller and two sensors: accelerometer and humidity sensor. The main 

software was programmed with initialisation function, reading humidity sensor 

function, reading accelerometer loop function, transmission function and sleeping 

function.  The communication was selected as the ZigBee protocol based on the 

2.4 GHz IEEE 802.15.4 standard and was designed to have a fixed channel in 

non-beacon enabled mode to transmit data.  The testing system was designed 

as one implemented WSM and one base station placed at a distance of 4 m to 

receive the data from the WSM. The testing set-up was designed to use one DC 

power source to represent the batteries to power the implemented WSM and use 

one source meter with a LabVIEW program running on the computer to measure 

the energy flow through the WSM.  The experimental results are then presented 

and analysed. The most important result of the analysis is that the average 

energy consumption of the WSM in processing 1 byte is 46.94 µJ /byte, including 

wake up, sampling and transmission during active time. This experimental 

analyses has supplied an understanding of the power consumption during sleep 

and active times, and has formed a basis of the study of EH powered WSS. 
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• To identify key issues of EH directly powered WSMs  and develop smart 

energy-aware approaches to solve the identified issues, enabled 

successful  EH powered WSMs in one-way communication operations; 

 

This thesis has proposed, designed, implemented and tested the energy-aware 

approaches, including hardware EAI, software EAI, sensing EAI for energy-

harvesting powered WSS. A typically energy harvesting powered WSM was 

designed to be used to analyse the key issues of existing EH powered WSM 

through the experimental measurements. The start-up issue and the energy 

mismatch issue in the system were then identified. Too address these issues, 

energy-aware approach concepts are proposed and the implementation are 

developed. The hardware EAI was designed as an interface between the energy 

storage and the WSMs to monitor the voltage across the energy storage to judge 

if there is enough energy in the energy storage for the WSMs to perform the pre-

programmed tasks and determine when to wake the WSMs up and implemented 

by an ultra-low power voltage supervisor circuit and N-MOSFET switch circuit. 

The software EAI was designed as a virtual interface between the MCU and the 

transceiver to judge whether the energy stored in the energy storage device is 

enough for the WSM to carry out the next operation and ensure all the measured 

data is transmitted before the energy becomes too low for the operation of the 

WSM and implemented by the software energy-aware programme. The Sensing 

EAI was designed as an interface between the MCU and the sensing unit to turn 

off the sensors when they are not required during the active time to reduce the 

power consumption of the sensors in the WSM and   implemented by P-MOSFET 

switch circuit. A piezoelectric vibration powered EH-WSM system with proposed 

energy-aware approaches was developed to evaluate the effectiveness of the 
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energy-aware approaches and the enhancement on the performance of the EH-

WSM. It has been shown that the energy-aware approaches have enabled the 

harvested energy to be accumulated in the energy storage device to (1)  deal with 

the mismatch for the operation of the WSM,  (2) solve the start-up issue, (3) 

enable a commercial available WSM with a reduced  sleep current  from  28.3 µA 

to 0.95 µA, and (4) enable the WSM operations for a long active time of about 

1.15 s in every 7.79 s to sample and transmit a large number of data (388 bytes), 

rather than a few ten milliseconds and a few bytes. 

 

•To analyse the energy of network behaviour in EH powered WSN and 

identify issues in the network joining process; 

 

This thesis has studied the energy analyses of the implemented WSM during 

the network joining process in the EH powered WSN. A star topology EH powered 

WSN, which comprises one network manager (Linear Technology DC9011A) and 

three developed WSMs. The WSM was implemented with a strain energy 

harvester, a PMM, a super-capacitor, hardware EAI and a Linear Technology 

DC9003 A-B Evaluation/Development Mote. The testing set-up was designed in 

three steps. The first step was designed to analyse the energy characterisation 

of the processes when the WSM is joining the network. The second step and third 

step were designed to analyse the effects of joining duty cycles and the storage 

sizing on the network joining process, respectively. The experimental results 

were then presented and analysed, and the key finding are listed below.(1) The 

network joining process is very power hungry especially for the low-voltage 

search and high-voltage search processes, with average power of about 17.09 

mW and 18.21 mW, respectively. (2) Reducing the network join duty cycle does 
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not necessarily save the energy required for network joining. (3) Appropriate 

sizing of the capacitor size is crucial to ensure that the mote is able to join the 

network from the first attempt. Finally, the main problem was identified that the 

energy consumption of the WSM joining the network is undetermined because of 

its randomness. The results have provided an important knowledge and 

understanding of networking joining processes in energy behaviour to design the 

energy-aware approaches for EH enabled WSNs through reducing the energy 

consumption of the implemented WSM.  

 

•To develop network energy-aware approaches to reduce the energy 

consumption of the WSM joining the network for EH powered WSNs 

enabled successful EH powered WSMs in network two-way communication 

operations; 

 

This thesis has proposed, designed, implemented and tested the network 

energy-aware approaches for EH powered WSN. The network energy-aware 

approach concept was proposed to save energy during the network joining 

process of the WSMs that is full of uncertainty, especially in terms of the time. 

Therefore, the energy-aware approach required to complete the network joining 

process was implemented by a network energy-aware approach which is able to 

cover all the possible scenarios of the search process with minimal number of 

voltage monitoring times while tracing and judging whether the remaining energy 

of the WSM is sufficient to support the next processes instead of doing a constant 

monitoring with milliseconds interval. The EH powered WSN formed by WSMs 

with the proposed network energy-aware approaches was built and tested. The 

EH-WSN is a star network and includes one EH powered WSM powered by the 
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vibration energy harvester, one EH powered WSM powered. The experimental 

results have showed that the network energy-aware approach incorporates all 

the energy-aware approaches seamlessly. The network energy-aware approach 

enables the harvested energy to be accumulated in the super-capacitor to deal 

with the start-up issue of EH powered WSM and allowed the EH powered WSM 

to have a low sleep current with the hardware EAI. The developed energy-aware 

approach has been used for EH powered WSN in the lab and can be used for 

their successful operations. The tested results are given below. Once the EH 

powered WSM with the network energy-aware approach is powered up and 

began the network joining process, energy, as an example of 48.23 mJ for a 

tested case, can be saved when the attempt to join the network failed. Once the 

EH powered WSM has joined the network successfully, the different programme 

applications that incorporate the software EAI, sensing EAI and hardware EAI 

allow the EH-WSM to achieve  asynchronous operation and  synchronised 

operation based on the energy level left after the WSM has joined the network. 

 

•To enable EH powered WSNs for structural and environmental monitoring 

applications. 

 

This thesis has developed the energy-aware approaches which have provided 

an enabled capability for EH successful powering WSS technologies in the 

condition of energy mismatch and it can be said that there is potential of the 

research to be used for wide industrial EH powered WSM and WSN applications.  

For example, the piezoelectric vibration powered EH-WSM system with proposed 

energy-aware approaches have enabled the harvested energy to be accumulated 

in the energy storage device and enabled the WSM operations for a long active 
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time of about 1.15 s in every 7.79 s to sample and transmit a large number of 

data (388 bytes), rather than a few ten milliseconds and a few bytes. 

 

7.2 Limitation 
 

 ZigBee over IEEE 802.15.4 is chosen as the wireless communication 

standards for the study of EH powered WSS in the thesis, since it has the 

low energy consumption in the short-distance transmission application.  

The thesis does not has focus on the long-distance wireless 

communication technologies. Therefore the thesis has a limitation on the 

transmission distance; 

 

 The thesis focus on enabling the EH powered WSM sample and send data 

as much as possible during the active time. However, in some other cases, 

the WSMs are not required to sample and send data all the time during 

the active time. It only needs to transmit alarms and a small amount of 

data when the sampled data exceeds the warning value, which requires 

the WSMs to have the ability to analyse and process the local sampled 

data. Therefore, the thesis has limitations in meeting the specific 

applications with event-based alarm features; 

 

 Although the complexity of the network does not affect the function of 

network energy-aware approaches, large-scale WSM will cause a single 

WSM to join the network for a long time and increase the failure rate of 

joining the network. Moreover, although the star network is suitable for the 

EH powered WSN applications, it is not suitable for the networks with 
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large-scale WSMs, which will lead to severe channel congestion. Further 

consideration is needed when developing the network energy-aware 

approaches for the networks with large-scale WSMs; 

 

 For the real applications, it is recommended that the EH powered WSS 

with the energy-aware approaches should be developed on a completed 

end-to-end platform to analyse the data from network servers based on 

specific application requirements, rather than only show the sampled data 

in the network manager or base station in the thesis. 

 

7.3 Future Work 
 

7.3.1 Long-distance Transmission Application 

 
 
In the future, it is recommended to use the developed energy-aware approaches 

to study the EH powered WSS for the long-distance transmission applications. 

For example, it is recommended to use the LoRa wireless communication 

standard to replace the ZigBee over IEEE 802.15.4 wireless communication 

standard for industrial internet things, since the developed energy-aware 

approaches are the energy management methods  that suit for all EH powered 

WSS.  

7.3.2 Event-driven Methods 

 

In the future, the WSMs in the EH powered WSS are able to add some event-

based functions to meet the specific application requirements through software 

implementation. For example, after the WSM samples the data from the 
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temperature sensor, it calculates the average or maximum value of the 

temperature and only transmits the processed data when the temperature is 

higher than the pre-set fixed value. 

7.3.3 Implementation of Real End-to-End Applications 

 

In the future, it is useful to implement the real end-to-end EH powered WSN 

applications from the WSM to the end users. For example, using EH powered 

WSMs with the energy-aware approaches collects the environmental data and 

then transmit the data to the network manager or base station. The network 

manager or base station then sends the information to network server such as 

the cloud where the data are analysed by an application server. After that, the 

application server sends the results or alerts to end user via a mobile phone or a 

computer. 

 

7.4 Conclusions 
 

The main contributions of this thesis to the research community are the smart  

mote and network energy-aware approaches – which enables a >30 times 

reduction in sleep power consumption of WSNs for successful EH powering 

WSNs without the start-up issue in the condition of mismatch between the energy 

generated by harvesters and demanded by WSNs in both mote and network 

systems. For EH powered WSM systems, the energy-aware approaches have (1) 

enabled the harvested energy to be accumulated in the energy storage device to 

deal with the mismatch for the operation of the WSM;  (2) solved the start-up 

issue and enabled a commercial available WSM with a reduced  sleep current  

from  28.3 µA to 0.95 µA; (3) enabled the WSM operations for a long active time 



208 
 

of about 1.15 s in every 7.79 s to sample and transmit a large number of data 

(e.g., 388 bytes), rather than a few ten milliseconds and a few bytes.  

 

Moreover, for EH powered WSN systems, on top of energy-aware approached 

for EH powered WSM, the network energy-aware approaches have additional 

capabilities for network joining process. Once the EH powered WSM with the 

network energy-aware algorithm is powered up and began the network joining 

process, energy, as an example of 48.23 mJ for a tested case, can be saved 

when the attempt to join the network failed. Once the EH powered WSM has 

joined the network successfully, the different programme applications that 

incorporate the software EAI, sensing EAI, and hardware EAI allow the EH 

powered WSM to achieve asynchronous operation or synchronised operation 

based on the energy level left after the WSM has joined the network. 

 

Through designs, implementations, and analyses, it has been shown that the 

developed energy-aware approaches have provided an enabled capability for EH 

successfully powering WSS technologies in the condition of energy mismatch, 

and it has the potential to be used for wide industrial applications. 
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