1,942 research outputs found

    Context for Ubiquitous Data Management

    Get PDF
    In response to the advance of ubiquitous computing technologies, we believe that for computer systems to be ubiquitous, they must be context-aware. In this paper, we address the impact of context-awareness on ubiquitous data management. To do this, we overview different characteristics of context in order to develop a clear understanding of context, as well as its implications and requirements for context-aware data management. References to recent research activities and applicable techniques are also provided

    Exploratory Cluster Analysis from Ubiquitous Data Streams using Self-Organizing Maps

    Get PDF
    This thesis addresses the use of Self-Organizing Maps (SOM) for exploratory cluster analysis over ubiquitous data streams, where two complementary problems arise: first, to generate (local) SOM models over potentially unbounded multi-dimensional non-stationary data streams; second, to extrapolate these capabilities to ubiquitous environments. Towards this problematic, original contributions are made in terms of algorithms and methodologies. Two different methods are proposed regarding the first problem. By focusing on visual knowledge discovery, these methods fill an existing gap in the panorama of current methods for cluster analysis over data streams. Moreover, the original SOM capabilities in performing both clustering of observations and features are transposed to data streams, characterizing these contributions as versatile compared to existing methods, which target an individual clustering problem. Also, additional methodologies that tackle the ubiquitous aspect of data streams are proposed in respect to the second problem, allowing distributed and collaborative learning strategies. Experimental evaluations attest the effectiveness of the proposed methods and realworld applications are exemplified, namely regarding electric consumption data, air quality monitoring networks and financial data, motivating their practical use. This research study is the first to clearly address the use of the SOM towards ubiquitous data streams and opens several other research opportunities in the future

    Enabling ubiquitous data mining in intensive care: Features selection and data pre-processing

    Get PDF
    Ubiquitous Data Mining and Intelligent Decision Support Systems are gaining interest by both computer science researchers and intensive care doctors. Previous work contributed with Data Mining models to predict organ failure and outcome of patients in order to support and guide the clinical decision based on the notion of critical events and the data collected from monitors in real-time. This paper addresses the study of the impact of the Modified Early Warning Score, a simple physiological score that may allow improvements in the quality and safety of management provided to surgical ward patients, in the prediction sensibility. The feature selection and data pre-processing are also detailed. Results show that for some variables associated to this score the impact is minimal.Fundação para a CiĂȘncia e a Tecnologia (FCT

    Assessing Crash Risks on Curves

    Get PDF
    In Queensland, curve related crashes contributed to 63.44% of fatalities, and 25.17% required hospitalisation. In addition, 51.1% of run-off-road crashes occurred on obscured or open-view road curves (Queensland Transport, 2006). This paper presents a conceptual framework for an in-vehicle system, which assesses crash risk when a driver is manoeuvring on a curve. Our approach consists of using Intelligent Transport Systems (ITS) to collect information about the driving context. The driving context corresponds to information about the environment, driver, and vehicle gathered from sensor technology. Sensors are useful to detect drivers’ high-risk situations such as curves, fogs, drivers’ fatigue or slippery roads. However, sensors can be unreliable, and therefore the information gathered from them can be incomplete or inaccurate. In order to improve the accuracy, a system is built to perform information fusion from past and current driving information. The integrated information is analysed using ubiquitous data mining techniques and the results are later used in a Coupled Hidden Markov Model (CHMM), to learn and classify the information into different risk categories. CHMM is used to predict the probability of crash on curves. Based on the risk assessment, our system provides appropriate intervention to the driver. This approach could allow the driver to have sufficient time to react promptly. Hence, this could potentially promote safe driving and decrease curve related injuries and fatalities
    • 

    corecore