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Abstract

This thesis addresses the use of Self-Organizing Maps (SOM) for exploratory clus-
ter analysis over ubiquitous data streams, where two complementary problems arise:
first, to generate (local) SOM models over potentially unbounded multi-dimensional
non-stationary data streams; second, to extrapolate these capabilities to ubiquitous en-
vironments. Towards this problematic, original contributions are made in terms of al-
gorithms and methodologies. Two different methods are proposed regarding the first
problem. By focusing on visual knowledge discovery, these methods fill an existing gap
in the panorama of current methods for cluster analysis over data streams. Moreover,
the original SOM capabilities in performing both clustering of observations and features
are transposed to data streams, characterizing these contributions as versatile compared
to existing methods, which target an individual clustering problem. Also, additional
methodologies that tackle the ubiquitous aspect of data streams are proposed in respect
to the second problem, allowing distributed and collaborative learning strategies.

Experimental evaluations attest the effectiveness of the proposed methods and real-
world applications are exemplified, namely regarding electric consumption data, air qual-
ity monitoring networks and financial data, motivating their practical use.

This research study is the first to clearly address the use of the SOM towards ubiqui-
tous data streams and opens several other research opportunities in the future.

Keywords: self-organizing maps; data streams; ubiquitous data mining; cluster analysis;
exploratory knowledge discovery.
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Resumo

Esta tese aborda o uso de mapas auto-organizados (SOM) para clustering explora-
tório de dados sobre streams de dados ubíquas, onde dois problemas complementares
surgem: primeiro, gerar modelos SOM (locais) sobre streams de dados não estacionárias
e potencialmente infinitas; segundo, extrapolar estas capacidades para ambientes ubí-
quos. Contribuições originais são apresentadas em termos de algoritmos e metodologias
na solução deste problema. Dois métodos diferentes são propostos para o primeiro pro-
blema. Focados na descoberta de conhecimento visual, estes métodos preenchem uma
lacuna no panorama de métodos atuais para clustering em streams de dados. Adicional-
mente, as capacidades originais do SOM relativamente a clustering de observações e de
variáveis são transpostas para streams de dados, caraterizando estas contribuições como
versáteis comparativamente aos métodos existentes, que focam isoladamente um dos ti-
pos de clustering. Adicionalmente, metodologias que abordam o aspeto distribuído das
streams de dados são apresentadas para o segundo problema, permitindo estratégias de
aprendizagem distribuídas e colaborativas.

Avaliações experimentais atestam a efetividade dos métodos para os problemas pro-
postos e aplicações no mundo real são exemplificadas, nomeadamente com dados de
consumo elétrico, de redes de monitorização de qualidade do ar e financeiros, motivando
o seu uso prático.

Este estudo é o primeiro a abordar de forma clara o uso do SOM relativamente a
streams de dados ubíquas e apresenta inúmeras oportunidades futuras de investigação.

Palavras-chave: mapas auto-organizados; streams de dados; data mining em ambientes
ubíquos; clustering de dados; descoberta de conhecimento exploratória
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1
Introduction

An expert is a person who has made all the mistakes that
can be made in a very narrow field.

NIELS BOHR, DANISH PHYSICIST (1885-1962)

1.1 Problem Statement

This thesis concerns the use of Self-Organizing Maps (Kohonen 1982, 2001) for exploratory
cluster analysis over ubiquitous data streams. The Self-Organizing Map (SOM) is an un-
supervised learning artificial neural network (ANN) model, based on competitive learning,
that excels in data visualization. A standard SOM model consists in a set of topologi-
cally ordered data prototypes arranged in a rectangular lattice (the codebook), to where
simple, but powerful, data visualizations are applied. It was initially proposed in 1982
an has become a well established data mining algorithm with hundreds of applications
in many scientific domains (Pöllä, Honkela, and Kohonen 2009) — yet, in the context
of static data and, therefore, assuming stationary distributions. However, data streams are
characterized by unrestrained amounts of data being continuously generated and non-
stationarity. Data streams are generated naturally within several applications as opposed
to simple datasets, e.g., network monitoring, web mining, sensor networks, telecommu-
nications, and financial applications. Moreover, in some of these, e.g., sensor networks,
data streams may be generated in a distributed manner; also, with the advent of the In-
ternet of Things (IoT) data gathering and processing have been increasingly disseminated
in the physical space. This highlights the fact that data streams may also involve an
ubiquitous aspect to them.
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Figure 1.1: Problem statement illustration.

Consequently, thesis actually addresses two different, but complementary, problems
as depicted in Figure 1.1:

Problem 1 Generate SOM models over potentially unbounded multi-dimensional non-
stationary data streams, where at any particular point in time a model can be obtained
and exploratory cluster analysis performed (through visualization procedures) at each
depicted node.

Problem 2 Instead of centralizing the various data streams, which is not scalable, ob-
tain global models through centralization of the local models themselves; also, if nodes
are mobile, e.g., smartphones, to enable sharing of local models through opportunistic
networks, so a node can “learn” from others.

These problems are dependent because the solution to the later problem inevitably
depends on the former. Moreover, it should be noted that several application scenar-
ios, i.e., monitoring applications, may require only the processing of a single multi-
dimensional data stream. Therefore, the research effort was inevitably biased towards
the former problem, which is sufficiently relevant by its own.

From the above problem statement the initial research questions and respective ob-
jectives towards their answers were thus the following:

RQ1 What are the limitations of Self-Organizing Maps regarding streaming data?

2
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Objectives Address the data stream model and challenges of cluster analysis over
data streams; provide a deep understanding of the SOM algorithm and its strengths
and weaknesses; identify what characteristics of the SOM algorithm prevents it
from being applied to data streams; define requirements for SOM variants operat-
ing over data streams, and; review existing variants of the SOM that may target
some (or all) of the previous defined requirements.

RQ2 Can Self-Organizing Maps provide a valuable tool for data stream cluster analysis regard-
ing current methods? If so, which research paths should be pursued in terms of relevant
contributions?

Objectives Review current approaches to clustering data streams and establish
the relevancy and innovative aspect of this research; identify proven methodologies
from the previous review that may be explored in this study, and; define research
paths to explore, given current state-of-the-art methodologies and limitations found
in current SOM variants.

RQ3 How to address the use of Self-Organizing Maps in ubiquitous environments?

Objectives Understand how the ubiquitous aspect of data streams is currently
dealt with while providing a survey of such methodologies, and; suggest how the
above methodologies can be addressed with the SOM and identify an additional
research path regarding the ubiquitous aspect of data streams.

These research questions are addressed in detail in Chapter 2, where established research
paths and additional research questions, that guided the contributions of this thesis, are
formalized.

1.2 Motivation

Data streams have gained a lot of attention in academia in the recent past, given the shear
volume of data being produced continuously in a wide range of applications. Compara-
tively to static data, data streams impose harder challenges on algorithms operating over
them, namely because they are potentially unbounded and non-stationary, i.e., the under-
lying distribution may change over time. The rationale behind data streams is that the
volume and rate of data can be such that it is unpractical to store them. Hence, clustering
algorithms operating on data streams should ideally operate as single-pass algorithms
and handle evolving data (Gama 2010) — see Section 2.3. Commonly agreed is the fact
that such algorithms can only return approximate clustering results, since data cannot be
revisited to fine-tune the models (Guha et al. 2003).

3
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The SOM is widely used as a tool for projecting high-dimensional data onto a two-
dimensional representation space (the map). This projection retains the relationship be-
tween input data as faithfully as possible, thus describing a topology-preserving repre-
sentation of input similarities in terms of distances in the output space (see Section 2.4).
The main advantage of such a projection is the ease by which a user can gain insight
over the data structure by analyzing the map. Through visualization techniques readily
applied to maps, it is possible to, e.g., visually identify clusters and cluster descriptions,
without imposing any notion and number of clusters. Another motivating aspect for the
use of SOMs regards two different clustering problems that can arise from data streams,
namely the above traditional clustering of observations and the less traditional clustering of
features, i.e., clustering individual time-series of a multi-dimensional data stream. While
current proposals target these problems individually, the SOM algorithm is know for its
versatility in performing both (Silva and Marques 2010a; Vesanto and Ahola 1999), but
currently only in a static data context. Therefore, the extrapolation of these capabilities to
a streaming setting is of great interest. However, the original SOM algorithms cannot be
applied to data streams because they rely on annealing schemes to guide the learning pa-
rameters of the algorithm, i.e., data size must be known in advance. Yet, there have been
some proposals of SOM variants that can deal with non-stationary data, however falling
short on the exploratory cluster analysis capabilities (due to irregular network topolo-
gies) or not achieving a proper vector quantization mapping (which deters or degrades
the application of the standard visualization techniques) — see Section 2.5.

Overall, the described characteristics and versatility of the SOM are not found in other
current data stream clustering methods. Generally, current proposals involve the adapta-
tion of traditional clustering algorithms to a streaming setting, where most apply a two-
phase approach, i.e., maintaining online data abstractions from where clustering results
are generated offline (see Section 2.6). To this extent, and following the taxonomy of (Han,
Kamber, and Pei 2006), there are proposals that involve popular partitioning, hierarchical,
grid-based, density-based and model-based methods. However, the SOM, which falls into the
model-based category of algorithms, has not been properly explored in this context, es-
tablishing a gap in the current panorama of proposed methods (see Section 2.7). As shall
be demonstrated, e.g., in Section 2.4.7, the SOM is very attractive for purposes of visual
and exploratory knowledge discovery — one of the main reasons for its popularity. Fa-
voring visual techniques, exploring and analyzing the vast volumes of data is becoming
increasingly difficult. Information visualization and visual data mining can help to deal
with the flood of information. The advantage of visual data exploration is that the user is
directly involved in the data mining process (Keim 2002). In fact, a recent report (White
2013) found that “at organizations that use visual discovery tools, 48 percent of BI users are able
to find the information they need without the help of IT staff ”. Without visual discovery, the
rate drops to a mere 23 percent. Also, managers using visual data discovery were 28 per-
cent more likely than peers without visualized data to find timely information, according

4
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to the study.

Finally, ubiquitous environments predict large amounts of streaming data being gen-
erated across spatially scattered devices. In such environments it is also not viable nor
scalable to centralize the data streams and apply traditional clustering algorithms. Con-
sequently, current approaches focus on the trade-off between local and global models,
i.e., each node maintains its local model from data it senses or produces; then, global
models are obtained by centralizing the local models and producing global clustering
results, achieving a more scalable distributed mining environment (Rodrigues and Gama
2014). Also, applications scenarios related to, e.g., participatory sensing (Dutta et al.
2009), push the need to “share” models between nodes, through opportunistic networks,
establishing collaboration. Hence, ubiquitous environments imply switching from one-
shot learning tasks to a lifelong and spatially pervasive perspective (Gama 2010). These
scenarios motivate the relevance of introducing new methodologies that allow the use of
the SOM in ubiquitous environments, so as to benefit from the same type of exploratory
cluster analysis performed at local nodes.

1.3 Contributions

The contributions presented in this thesis address first, and foremost, the underlying
problem of exploratory cluster analysis (observations and features) by Self-Organizing
Maps over individual multi-dimensional data streams (at local nodes) — Problem 1 (Sec-
tion 1.1). Then, after providing evidence that local nodes can produce SOM models from
their own acquired data (through experimental evaluation), methodologies for collabo-
rative and distributed learning strategies exploring the ubiquitous aspect of data streams
are addressed, towards Problem 2.

Requirements for SOM variants to produce clustering results from data streams, and
their intrinsic problems, are put forward by investigating the general limitations of the
standard SOM algorithm and specific limitations of other SOM variants (that are able to
learn incrementally). Based on this and on a literature review of current state-of-the-art
methods, the research gap is identified and research paths established.

Concerning methods, inspired by the popular two-phase approach to data streams,
a purely ANN-based methodology is presented based on a novel constrained variant of
an Adaptive Resonance Theory (ART) algorithm, called StreamART2A, that is responsible
for maintaining an online abstraction of the data stream through micro-categories; from
these micro-categories offline SOM models are then obtained on-demand for exploratory
cluster analysis. This approach is referred to as the StreamART2A/SOM methodology and
includes also the proposal and empirical validation of a new error assessment metric.
This metric regards quantifying the fit of a codebook to the evolving data stream and can
be later used to develop change detection mechanisms. More importantly, it served as

5
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the foundation for the proposal of a new SOM variant for data streams.
The StreamART2A/SOM methodology is found to work well across performed eval-

uations. However, it still induces a delay in obtaining SOM models for cluster analysis
(obtained offline). Hence, a novel SOM variant tailored for non-stationary data streams
is presented, i.e., the Ubiquitous Self-Organizing Map (UbiSOM). It relies on global assess-
ment metrics of fit, i.e., between the codebook and the underlying distribution, to guide
the evolution of the learning parameters towards stable representations during stationary
phases and increasing the plasticity of the network during non-stationary phases of the
data stream. This contrasts with the StreamART2A/SOM methodology in the sense that
a SOM model is always available throughout the data stream, establishing this proposal
as interesting for, e.g., real-time monitoring applications.

Both previous methods can be used for clustering of observations and clustering of
features (intimately related to time series clustering), further establishing these propos-
als as versatile regarding existing methods. In respect to feature clustering, an automatic
clustering method is presented to relief the user from (or aid in) visual inspection.

Leveraging the capabilities of the UbiSOM, collaborative and distributed learning
strategies methodologies are put forward to tackle ubiquitous data streams. These ad-
dress the current trade-off between local and global models, by maintaining individual
local UbiSOM models that can be shared with other nodes (which additionally contain a
separate global UbiSOM model) and/or centralized to produce a global SOM model.

Finally, a set of real-world problems are presented which exemplify application sce-
narios to which the proposed methods are applicable. A body of contributed software
allows similar applications to be readily deployed into the real world.

In summary, the main contributions made in this thesis are the following:

i. Requirements SOM variants should target when addressing data streams;

ii. The StreamART2A/SOM methodology — a two-phase approach for clustering data
streams, purely based on ANN methods, that target the SOM as the offline cluster
algorithm; the online abstraction is performed by a variant of an ART algorithm;

iii. The Ubiquitous Self-Organizing Map (UbiSOM) algorithm — a novel SOM variant
tailored for non-stationary data streams. This algorithm continuously adapts to the
underlying distribution of the data stream and allows real-time exploratory cluster
analysis;

iv. Collaborative and distributed learning methodologies that leverage the UbiSOM in
ubiquitous environments;

v. A set of real-world applications for contributions in ii.), iii.) and iv.);

vi. Software framework and general purpose library for the UbiSOM algorithm and
related methodologies.
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1. INTRODUCTION 1.4. Personal Note

These main contributions are supported by other minor contributions presented through-
out this manuscript.

1.3.1 Publications

Most of the above contributions were initially presented or proposed in several publica-
tions, namely:

• Silva, B. and Marques, N. C. (2010). “Ubiquitous data-mining with self-organizing
maps”. In: Workshop on Ubiquitous Data Mining in conjunction with the 19th Eu-
ropean Conference on Artificial Intelligence (ECAI 2010), pp. 45–50.

• Silva, B. and Marques, N. C. (2010). “Feature Clustering with Self-organizing Maps
and an Application to Financial Time-series for Portfolio Selection”. In: Proceedings of
International Conference of Neural Computation, pp. 301–309.

• Silva, B. and Marques, N. C. (2012). “Neural Network-based Framework for Data Stream
Mining”. In: Proceedings of the Sixth Starting AI Researchers’ Symposium (ECAI
2012). Vol. 241. Frontiers in Artificial Intelligence and Applications. IOS Press, pp.
294–305.

• Silva, B., Marques, N. C., and Panosso, G. (2012). “Applying neural networks for
concept drift detection in financial markets”. In: Workshop on Ubiquitous Data Mining
in conjunction with the 20th European Conference on Artificial Intelligence (ECAI
2012), pp. 43–47.

• Silva, B. and Marques, N. C. (2013). “Ubiquitous Self-Organizing Maps”. In: Pro-
ceedings of the 3rd Workshop on Ubiquitous Data Mining co-located with the 23rd
International Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 54–55.

• Silva, B. and Marques, N. C. (2015). “Ubiquitous Self-Organizing Map: Learning
Concept-Drifting Data Streams”. In: New Contributions in Information Systems and
Technologies: Volume 1. Ed. by A. Rocha et al. Springer International Publishing,
pp. 713–722.

• Silva, B. and Marques, N. C. (2015). “The ubiquitous self-organizing map for non-
stationary data streams”. Journal of Big Data, 2(1), pp. 1–22.

• Marques, N. C. and Silva, B. and Santos, H. (2016). “An Interactive Interface for Multi-
dimensional Data Stream Analysis”. In: Proceedings of the 20th International Confer-
ence Information Visualisation (IV), pp. 223–229.

1.4 Personal Note

This thesis is the culminate of approximately 14 years working with Self-Organizing Maps.
After learning the basics and implementing the classical Online SOM algorithm in college,
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1. INTRODUCTION 1.5. Thesis Structure

Figure 1.2: Thesis structure.

research involving the SOM initiated during my master’s program in which I introduced
a new parallelization method for the Batch SOM algorithm (Silva and Marques 2007),
specifically tailored for large maps and Big Data. During these years, a deep understand-
ing of the original algorithms, their strengths and weaknesses was obtained.

With the advent of the Internet of Things and current paradigm shift to ubiquitous
computing, exploring the use of Self-Organizing Maps in streaming and ubiquitous en-
vironments seemed relevant and challenging. The intersection between artificial neural
networks, in general, and ubiquitous data mining was practically unexplored. On the posi-
tive side, there was a lot of room for exploration and to make contributions; on the other
hand, I became a bit overloaded between all the different contributions, evaluations, ap-
plication scenarios and software development, in parallel with teaching. Consequently,
this research study took longer than anticipated. Nonetheless, as in any doctoral pro-
gram, this experience was extremely enriching both in academic terms as well as in my
personal development.

1.5 Thesis Structure

The thesis is divided into eight chapters and four appendices, as schematized in Figure
1.2.
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1. INTRODUCTION 1.5. Thesis Structure

1.5.1 Basis and Aim (Chapters 1, 2 and 3)

The present chapter introduced the problem, providing some insight on its motivation,
and summarized the contributions of this thesis. Chapter 2 presents the rationale for this
thesis, namely regarding the SOM, challenges and motivating aspects of ubiquitous data
streams, together with literature reviews: limitations of the standard SOM algorithms
for data streams are highlighted and general requirements for data stream oriented vari-
ants are put forward; also, a survey of available variants regarding these requirements
is presented and discussed; additionally, current state-of-the-art methods proposed for
clustering data streams are reviewed, as well as proposals to tackle their ubiquitous as-
pect; finally, the previous exposure is discussed and research paths established, together
with additional research questions. These later research questions are the main focus of
Chapter 3, additionally stating their aims, respective objectives and a basic summary of
the methodology proposed to solve them, enabling a focused reference for the topics ad-
dressed in the following chapters. Furthermore, some considerations and assumptions
on the normalization of data streams are discussed. Finally, a brief summary of artifi-
cial data streams, used in the experimental evaluation of the forthcoming proposals, is
provided. These three chapters form the basis for the development of the thesis.

1.5.2 Methods, Results and Discussion (Chapters 4, 5, 6 and 7)

These can be regarded the main chapters of this thesis, in the sense that they expose
the main contributions. They concentrate the author’s answers to the research ques-
tions enunciated in the previous chapter. Chapter 4 presents and evaluates the Strea-
mART2A/SOM methodology. Chapter 5 introduces the UbiSOM algorithm and the auto-
matic feature clustering method. Chapter 6 then addresses the ubiquitous aspect of data
streams with the UbiSOM, presenting distributed and collaborative learning methodolo-
gies. Chapter 7 exemplifies real-world applications of the algorithms and methodologies
presented in the previous three chapters.

1.5.3 Final Remarks (Chapter 8)

This research is not without limitations. In Chapter 8 main findings are discussed, by
revisiting the initial research questions and summarizing the contributions. Strengths
and limitations of the contributions are discussed, together with recommendations for
future work.

1.5.4 Appendices

This thesis has four additional appendices. Appendix A presents contributed software
that can be readily used to replicate the real-world application scenarios of Chapter 7
in practice. Appendix B describes in more detail the artificial data streams used in the
experimental evaluations of Chapters 4, 5 and 6. Appendix C contains detailed and/or
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additional experimental results regarding Chapters 4 and 5. Finally, Appendix D pro-
vides additional information of the triple-cascaded moving average that approximates the
behavior of a Gaussian filter, which is used in the UbiSOM algorithm.
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2
Rationale and Literature Review

I have no special talents. I am just passionately curious.

ALBERT EINSTEIN, GERMAN PHYSICIST (1879-1955)

A deeper understanding of the problematic addressed in this thesis is necessary as
well as establishing the relevancy of the undergone research comparatively to existing
approaches.

2.1 Chapter Overview

This chapter covers the necessary aspects needed to comprehend the established prob-
lem, the research context, its motivating aspects regarding current approaches and, con-
sequently, how the solutions can improve the state-of-the-art.

The chapter is organized as follows. Motivation and aims are established in Section
2.2. Section 2.3 addresses the challenges, relevance and motivating scenarios regarding
cluster analysis over ubiquitous data streams. Section 2.4 provides a deep understand-
ing of the SOM algorithm and its limitations regarding data streams. The exploratory
cluster analysis abilities of the SOM are also compared and contrasted with other pop-
ular clustering methods. In Section 2.5 requirements SOM variants should address in
dealing with data streams are put forward, together with a survey and evaluation of ex-
isting variants against these requirements. Current methods for cluster analysis on data
streams are surveyed in Section 2.6. Section 2.6.3 reviews some current strategies in deal-
ing with ubiquitous data streams. Finally, Section 2.7 provides a critical analysis of the
current landscape to further motivate the use of the SOM, summarizing the answers to
the initial research questions and providing research directions.
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2.2 Motivation and Aim

Despite being a three decade old algorithm, Kohonen’s Self-Organizing Map algorithm
(Kohonen 1982, 2001) has proven throughout literature to be a powerful tool for unsu-
pervised knowledge discovery, namely exploratory cluster analysis, across all scientific
domains (Pöllä, Honkela, and Kohonen 2009). However, no works are found regard-
ing its clear applicability to the intrinsic problems of data streams and their distributed
nature.

The aim of this chapter is to provide answers to the initial research questions put for-
ward in Section 1.1, so as to clearly motivate and contextualize the undergone research.
Also, from this exposition, to lay out research paths that raise additional research ques-
tions.

2.3 Unsupervised Knowledge Discovery from Data Streams

In the past 50 or so years, information technology, together with the fast development
of powerful data collection and storage tools, led to an explosion of data gathered from
business, society, science and engineering, medicine and almost every other aspect of
everyday life. The human inability to process and make sense of these vast amounts of
data quickly pushed the need to develop tools to automatically uncover valuable infor-
mation from such data into organized knowledge. Consequently, the interdisciplinary
field of Knowledge Discovery and Data Mining (KDD)1 surged, has evolved, and contin-
ues to evolve, from the intersection of research fields such as machine learning, pattern
recognition, databases, statistics, artificial intelligence, knowledge acquisition for expert
systems, data visualization, and high-performance computing. The unifying goal is to
extract high-level knowledge from low-level data in the context of large volumes of data.
Many people use the terms knowledge discovery (from data) and data mining as synonyms,
while others view data mining as merely an essential step in the process of knowledge
discovery, i.e., the application of specific algorithms for extracting patterns from data
(Han, Kamber, and Pei 2006).

From its inception KDD focused its attention in batch learning, extracting knowledge
from datasets. By nature, a dataset consists of a fixed amount of data that can be revisited
several times to extract relevant information. Nowadays, data streams (Aggarwal 2007;
Gama 2010) are generated naturally within several applications, as opposed to simple
datasets. Such applications include network monitoring, web mining, sensor networks,
telecommunications, and financial applications, for example. All have vast amounts of
data arriving continuously and in these applications it may not be feasible to store all the
arriving data into a traditional database and/or file format.

1Originally the acronym stood for Knowledge Discovery from Databases. It was then changed to define
knowledge discovery from a wider range of data sources.
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2. RATIONALE AND LITERATURE REVIEW 2.3. Unsupervised Knowledge Discovery from Data Streams

More formally, a data stream S is a massive sequence of observations X1; X2; : : : ; XN ,
i.e., S = fXigNi=1, which is potentially unbounded (N ! 1). Each observation is de-
scribed by an d-dimensional feature vector, i.e., Xi = [xji ]

d
j=1, belonging to a feature space


 that can be continuous, categorical or mixed. Each feature describes an individual
measurable property of the phenomenon being observed. In this work only continuous
spaces are considered.

When no other information is available, knowledge discovery methods are usually
based on unsupervised learning, e.g., cluster analysis or simply clustering. Clustering can
be defined as a data mining task which aims at finding meaningful subsets of obser-
vations (clusters) from a larger set of observations (Han, Kamber, and Pei 2006). The
members of a cluster are more like each other than they are like members of other clus-
ters, based on some similarity measure. From a higher-level standpoint, clustering is a
data segmentation task and is useful in understanding the underlying structure of the
data. Another type of clustering, comparatively to this clustering of observations, is the
clustering of features. Feature clustering consists in arranging features into homogeneous
clusters, i.e., groups of features which are strongly related to each other and thus bring
the same information. Besides providing additional understanding of the data, such ap-
proaches can then be useful for dimensionality reduction and feature selection (Dash
and Liu 2000). In the context of data streams, clustering of features is closely related to
time-series clustering (Liao 2005) — see Section 2.6.2. Therefore, the problem of clus-
ter analysis (regardless of its type) over data streams concerns maintaining a clustering
result that can be presented to the user at any time.

2.3.1 The Data Stream Model

In the context of static data a plethora of algorithms have been proposed to address the
clustering problem (Berkhin 2006). However, static data can be revisited several times
to build clustering models, processing time is not a huge issue and it assumes the un-
derlying distribution is stationary, i.e., the underlying structure is immutable. On the
other hand, data streams exhibit some characteristics that limit the applicability of tradi-
tional clustering algorithms. In (Babcock et al. 2002) the data stream model is presented,
highlighting the difficulties algorithms are presented with, comparatively to static data:

• Observations in the data stream arrive online and algorithms have no control over
the order they are processed;

• Data streams are potentially unbounded in size;

• Once an observation has been processed it is discarded or archived — it cannot be
retrieved easily unless it is explicitly stored in memory, which is typically small
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relative to the size of the data streams. In the case of transient data streams, past
observations cannot be recovered.

Consequently, considering their nature, cluster analysis over data streams should address
the following challenges (Barbará 2002):

• Limited time: data streams arrive continuously, which requires fast and real-time
response. Therefore, the clustering algorithm should be able to handle the speed of
data streams in limited (constant) time. Ideally, data stream clustering algorithms
should only require one-pass over the data;

• Limited memory: data streams are potentially unbounded, which would require
unlimited memory. However, the clustering algorithm must operate within mem-
ory constraints, providing a compact model of the clustering;

• Evolving data: the algorithm must consider that data streams evolve considerably
over time, e.g., new clusters might appear, others disappear, reflecting the dynamics
of the stream. This must also be addressed in the light of limited memory;

• Noisy data: any clustering algorithm must be able to deal with random noises
present in the data, since outliers have great influence on the formation of clusters;

• High-dimensional data: some data streams are high dimensional in their nature.
Consequently, the clustering algorithm has to overcome this challenge.

Although these requirements are only partially fulfilled in practice, it is instructive to
keep them in mind when designing algorithms for clustering data streams. One thing
that is agreed is that such algorithms can only provide approximate results , since data
cannot be revisited (Guha et al. 2003).

Evolving (non-stationary) data is a big challenge to algorithms. This means the un-
derlying distribution, from where clustering is being performed, may change over time,
after some minimum permanence. In some literature this is defined as concept drift (Gama
2010). A way to formalize this is to consider a data stream S as a sequence of station-
ary distributions Di, i.e., S = fD1; D2; : : :D1g, however without any knowledge of the
size of each Di. Nonetheless, the evidence of change is reflected in some way in the
observations, e.g., distributions Di and Di�1 have different mean, variance or correla-
tions between features. Also, old observations become irrelevant and clustering models
must discard that information. However, a difficult problem in handling change is distin-
guishing between true drift and noise. The difference between noise and observations of
another distribution is persistence: there should be a consistent set of observations of the
new distribution. Some algorithms may overreact to noise, misinterpreting it as concept
drift, while others can be too robust to noise, adjusting to the real changes too slowly. An
ideal learner should combine robustness to noise and sensitivity to concept drift (Gama
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2010). Embedding change detection in the learning process is one of the most challenging
problems when learning from data streams (Kifer, Ben-David, and Gehrke 2004).

There has been a lot of research regarding data stream clustering algorithms, mostly
targeting clustering of observations. Section 2.6.1 provides an overview of such methods,
which involve either adapting some traditional algorithms for single-pass strategies or,
more usually, to combine an online summarization stage where the data stream in contin-
uously “condensed” into summary structures; traditional clustering algorithms are then
applied offline to the summary data. The distinction between clustering observations
and clustering features is not an issue with static data, since observations and features
can be easily transposed. However, in the context of data streams, the standard matrix
transposition is not applicable since it can not be applied to continuously arriving data.
Clustering features in data streams requires different algorithms, but not much work has
been developed towards this — see Section 2.6.2.

Regarding the ubiquitous aspect of data streams, some of the following motivating
scenarios shed light on the relevance of cluster analysis over ubiquitous data streams.
Nonetheless, this specific problematic is addressed later in Section 2.6.3.

2.3.2 Motivating Scenarios and Applications

Examples motivating the clustering of data streams can be found in many application do-
mains, including finance (Kargupta et al. 2002; Kontaki, Papadopoulos, and Manolopou-
los 2008), web applications (Antonellis, Makris, and Tsirakis 2009), networking (Zhang
and Wang 2010), and sensor monitoring (Rodrigues, Gama, and Lopes 2008; Vatsavai et
al. 2010). Also, the current computing paradigm shift that we are witnessing nowadays
towards ubiquitous computing, e.g., Internet of Things (IoT), is intrinsically related to
data streams. Ubiquitous computing encompasses devices such as intelligent sensors, ve-
hicle control systems, household appliances, computer peripherals and other embedded
computer systems, all which can produce massive amounts of data in the form of ubiq-
uitous data streams. Relating to knowledge discovery, this has led to the emergent field
of Ubiquitous Data Mining (UDM). UDM is devoted to knowledge discovery from data
on mobile, embedded and ubiquitous devices and the processing networks they form
(Gaber et al. 2014). In ubiquitous environments, devices often have the ability to move
and they never see the global picture — they know only their local spatial-temporal envi-
ronment. However, the device may be able to exchange information with other devices,
thus forming a truly distributed environment.

Some examples of the above applications are:

• Clustering data streams collected by individual sensors or within sensor networks
(Gama, Rodrigues, and Lopes 2011; Rodrigues, Gama, and Lopes 2008; Vatsavai
et al. 2010) is a typical application. Sensor networks may be responsible, e.g., for
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measuring ambiance and pollutant concentrations in a given city. In this context,
data is collected from a set of sensors distributed all around the city. Clustering
this kind of information can help to understand patterns of pollution over different
periods of the day across a particular place, area or in the entire city. A similar
application can be performed over water distribution networks, e.g., in (Li et al.
2011);

• Nowadays, financial applications are demanding increasingly timely knowledge,
as trading orders are put forward every second. The continuous variations of the
prices of a set of financial assets can be regarded as a multivariate data stream,
composed by individual time series. Clustering of the time series is one of the
learning tasks required in this scenario, considering that it allows the identification
of similar and dissimilar financial assets along trading hours, which can be useful
for portfolio management or placing trading orders;

• Some proposed systems also illustrate additional applications:

– MobiMine (Kargupta et al. 2002) is credited to be the first data stream mining
system. It is a client/server PDA-based distributed data mining application
for financial data streams. The server collects data from different financial
websites, selects active stocks and applies online data mining algorithms to
the stock data. On the client side the user can perform his portfolio manage-
ment. Computations regarding the impact of global active stocks in the local
portfolios are performed in the server and results visualized in the PDAs; the
system minimizes transfered data applying Fourier transformations. It should
be noted that the server performs all data mining tasks.

– Another system is the Vehicle Data Stream Mining System for vehicle monitor-
ing (Kargupta et al. 2004). It is a ubiquitous data stream mining system that
allows continuous monitoring and pattern extraction from data streams gener-
ated on-board a moving vehicle. The mining component is located on a PDA.
The system may also interact with the control station to alert the network or
improve its model.

– In (Stahl et al. 2010) the term Pocket Data Mining is proposed to describe col-
laborative mining of streaming data in mobile and distributed computing en-
vironments, where authors proposed a general framework based on software
agents.

Being able to produce clustering models in real-time assumes great importance within all
these applications.
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2.4 The Self-Organizing Map

The Self-Organizing Map (SOM) (Kohonen 1982, 2001) is an artificial neural network (ANN)
clustering model that excels in data visualization. ANN-based clustering is performed
through competitive learning schemes, which are traced back to early works of Rosen-
blatt (Rosenblatt 1961), von der Malsburg (Malsburg 1973) and Grossberb (Grossberg 1976).
Some preliminary considerations on competitive learning are given in the next section
before delving into the SOM itself. This should allow a deeper understanding of the
problems data streams impose on competitive learning schemes.

2.4.1 Competitive Learning Fundamentals

Competitive learning is a form of unsupervised learning in artificial neural networks,
in which neurons compete among themselves to represent a subset of the input data.
In ANN terminology, observations are called input patterns. With static data, the input
patterns fX1; X2; : : : ; XNg form the training dataset D, where N is the total number of
observations. When describing learning procedures, the concept of (discrete) time is re-
current. The current time is referred to as (t) and the next time step as (t + 1). Usually,
at each time step an input pattern X(t) will be presented to the network. If presenting the
training dataset several times, each presentation is called an epoch.

According to (Rumelhart and Zipser 1985), a competitive learning scheme consists of
the following three basic components:

i. “Start with a set of units that are all the same except for some randomly distributed param-
eters which makes each of them respond slightly differently to a set of input patterns;

ii. Limit the strength of each unit;

iii. Allow the units to compete in some way for the right to respond to a given subset of inputs.”

Competitive learning can be implemented using a completely linked two-layer feed-
forward neural network as shown in Figure 2.1. The nodes (neurons) in the input layer
admit input patterns that are fully connected to the output nodes in the competitive layer.
Each output node is associated with a prototype vector Wk, with k = 1; : : : ; K, where K
is the number of prototypes, stored in terms of synaptic weights Wki, with i = 1; : : : ; d,
representing the connection between input node i and output node k, i.e., the prototypes
have the same dimensionality as the input patterns. Some competitive learning networks
can impose lateral connections between units in the competitive layer to promote coop-
eration or inhibition, e.g., the SOM, as detailed in Section 2.4.2.

In simple competitive learning, given an input pattern X(t), randomly initialized neu-
rons in the competitive layer compete with each other to represent the input, and only
the winner neuron c becomes activated or “fired”. The neuron who wins the competition
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Figure 2.1: Architecture of the competitive learning network. The output selects one of
the prototype Wc by setting yc = 1 and all yj = 0; j 6= c.

is the one which is found to be more similar to the input pattern. If using a distance
function, e.g., the Euclidean distance (k � k), to measure dissimilarity, then the winning
neuron c is determined by Eq. (2.1), i.e., the one which has the “closest” prototype to the
input pattern.

c = min
k
k X � Wk k (2.1)

While performing clustering, competitive learning aims at minimizing the mean squared
error (MSE) cost function:

MSE =
1

N

NX
t=1

k X(t)� Wc(t) k2: (2.2)

Targeting this criteria, competitive learning imposes a gradient-descent prototype
vector update towards the input pattern following the competitive learning update rule
in Eq. (2.3):

Wc(t+ 1) = Wc(t) + �(t)[X(t)� Wc(t)] (2.3)

where 0 < �(t) � 1 is the learning rate. Generally, the learning rate decreases monotoni-
cally over time, i.e., an annealing scheme. For example, one can select �(t) = �i(1 � t

N ),
where �i is the initial learning rate. The learning rate determines the adaptation of the
prototype towards the input pattern and is directly related to the convergence. If � equals
zero, there is no learning. If it is set to one, it will result in fast learning and the prototype
vector is directly pointed to the input pattern. For other choices of �, the new position
of the prototype vector will be on the same “line” between the old prototype and the
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input pattern. The rationale regarding annealing schemes for the learning rate is to al-
low prototypes to slowly converge to their optimal positions, minimizing the MSE cost
function.

This competitive learning paradigm only allows learning for a particular winning
neuron and is called winner-take-all (WTA) or hard competitive learning (Fritzke 1997). Note
that, depending on the initialization of the prototypes, some neurons may never win the
competition — called “dead-units”. On the other hand, learning can also occur in a coop-
erative way, meaning that not only the winning neuron adjusts its prototype, but all other
prototypes may be adjusted depending on how approximate they are to the input pat-
tern. This is called winner-take-most (WTM) or soft competitive learning (Fritzke 1997), from
which the SOM is a prominent example. These algorithms are less likely to be trapped at
local minima and to generate dead units than hard competitive alternatives (Baraldi and
Blonda 1999).

Competitive learning in the presented form, despite being a computationally efficient
procedure — time and space complexity of O(NK) and O(K), respectively, is not partic-
ularly suited for data streams. Data streams, by assuming N !1, limit the applicability
of annealing schemes. Constant values for the learning rate are used only in specific
models (see ART networks in Section 2.4.1.2) because they also have problems. If we
keep � fixed, a learning rate that is too small leads to painfully slow convergence, while a
learning rate that is too large, although allowing to rapidly adjust to non-stationary data,
can hinder convergence and cause prototypes to fluctuate around or to even diverge.

2.4.1.1 Relation to k-means

There is an intimate relationship between the WTA competitive learning scheme and the
incremental k-means (MacQueen 1967) algorithm. The k-means algorithm is also based
on a fixed number of data prototypes (centroids) and both suffer from poor prototype
(centroid) initialization, if randomly chosen. Let Zk 2 Rd be a k-means centroid. The
incremental k-means algorithm works by adjusting the closest centroid Zc to an observa-
tion X(t) by Zc(t + 1) = nc�Zc(t)+X(t)

nc+1
, where nc is the number of observations associated

with that centroid. In a WTA scheme this can be approximated by allowing each neuron
to have its own learning rate, e.g., an annealing scheme such as �c = 1

nc
(Yair, Zeger, and

Gersho 1992).

Again, if we consider non-stationary data, as time passes each centroid/prototype
loses the ability to perform large updates and to properly converge to a new distribu-
tion, because the learning rate is continuously getting smaller. We can say that while the
procedure achieves stability over a stationary distribution, it loses plasticity over time.
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2.4.1.2 ART networks

Adaptive Resonance Theory (ART) (Grossberg 1976), contrary to popular believe, is not an
ANN model, but a whole theory on aspects of how the brain processes information. The
theory led to an evolving series of real-time unsupervised network models for clustering,
pattern recognition, and associative memory (Carpenter and Grossberg 1988; Carpenter,
Grossberg, and Reynolds 1991; Carpenter, Grossberg, and Rosen 1991b), some more com-
plex than others, which we call ART networks.

ART networks have the ability to adapt, yet not forget past information, and this
is what Grossberg refers to as the stability–plasticity dilemma (Grossberg 1976), somewhat
tackling non-stationary data. What differentiates the competitive learning scheme of ART
networks is that neurons can be added to the network dynamically. ART2-A (Carpenter,
Grossberg, and Rosen 1991a) networks are extensions of the original ART2 network (Car-
penter and Grossberg 1988) to handle continuous real-valued features. During learning,
the stored prototype of a category2 is adapted only when an input pattern is sufficiently
similar to it; otherwise, a new category is created with the input pattern as its initial-
ization. The meaning of being sufficiently similar is dependent on a vigilance parameter
� 2 [0; 1]. If � is large, the similarity condition becomes stringent and many finely divided
categories are formed. In contrast, a smaller � gives a coarser categorization, resulting in
fewer categories.

In the ART2-A algorithm, starting with an empty set of prototypes, each input pattern
X(t) is compared to the k stored prototypes in a WTA fashion. If the degree of similarity
between the current input pattern and the most similar category Wc is at least as high
as the vigilance parameter �, this category is chosen to represent the input and its pro-
totype is adapted by the previous competitive update rule in Eq. (2.3). Otherwise, a
new category is created, where the example is used as the prototype initialization. Due
to its dynamic nature, ART2-A uses a constant learning rate � � 1, chosen to prevent
prototype Wc from moving too fast and therefore destabilizing the learning process.

The vigilance parameter � imposes a perceptive field around the categories; if using the
Euclidean distance to measure dissimilarity, this can be seen as an hyper-sphere around
a prototype, acting as a distance threshold to decide if the closest category should be up-
dated or a new dynamically created.

This competitive learning scheme may seem more adequate to data streams, since the
ART2-A network maintains an indefinite plasticity over time. However, estimating � is
not easy. A high vigilance parameter can lead to the creation of numerous categories,
which violates the model compactness requirement (recall Section 2.3.1). On the other
hand, a low vigilance parameter can, in the worst-case scenario, result in only one cat-
egory. Even with a properly estimated � value, the non-stationary characteristic of data
streams could lead to the unbounded growth of the number of categories. Also, and

2In ART literature a cluster centroid is frequently referred to as a category.
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Figure 2.2: Structure of a 8�5 SOM network. It follows the same structure as the competi-
tive learning network, but with a two-dimensional output layer where lateral connections
impose cooperation among neurons.

more importantly, the stability aspect means that old information is not discarded in the
presence of change.

2.4.2 SOM Model and Algorithm

The SOM is a topology-preserving competitive learning model, based on a WTM strategy
— soft competitive learning. It is also biologically inspired by the way the brain organizes
itself, in the sense that different parts of the brain specialize in different sensory inputs.
The SOM network has the same structure as the competitive learning network and lateral
connections impose cooperation among neurons. The SOM is a one-, two-, or higher-
dimensional lattice of neurons, albeit the two-dimensional case is the most common, due
to the data visualization aspect, introduced later in Section 2.4.5. Figure 2.2 depicts a two-
dimensional SOM network, where each unit in the Kohonen (competitive) layer contains
a prototype vector Wk, as previously defined. Neurons are organized into a rectangular
lattice of sizeK = width�height. To enable data visualization, the SOM must use a higher
number K of prototypes than a predefined number of desired clusters, as in k-means (see
Section 2.4.3).

The classical SOM algorithm, referred hereafter as the Online SOM algorithm, pro-
ceeds iteratively over time. For each observation X(t), the best matching unit (BMU), de-
noted by c, is determined likewise by Eq. (2.1). Next, the prototype vectors are updated
in a WTM fashion: the BMU and its topological neighbors are moved towards the exam-
ple in the input space by the Kohonen learning rule, which is a major development in
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competitive learning:

Wk(t+ 1) = Wk(t) + �(t)hck(t) [X(t)� Wk(t)] (2.4)

where:

t iteration;

�(t) learning rate;

hck(t) neighborhood kernel centered on the BMU.

The winning neuron locates the center of a topological neighborhood3 of cooperating
neurons. Therefore, based on this observation, the topological neighborhood should de-
crease with lateral distance. The Gaussian function is often taken for the neighborhood
function — Eq. (2.5), because it exhibits this behavior and is independent of the location
of the winning neuron:

hck(t) = e
�
krc�rkk

2

�(t)2 (2.5)

where rc and rk are positions of units c and k on the SOM lattice. The parameter �(t)
establishes the width of the topological neighborhood and decreases monotonically over
time, as well as �(t): The monotonic decrease of these learning parameters is a critical
condition to achieve convergence and any decreasing function, e.g., annealing scheme,
can be used (considerations on parameterization are presented in Section 2.4.4).

This process produces a topological ordering of the map, in the sense that adjacent
neurons in the lattice will have similar prototype vectors that, overall, approximate the
probability distribution function (PDF) p(x) of the underlying distribution. This implies that
the prototype vectors will order themselves with approximately equal distances between
them if input vectors appear with even probability throughout a section of the input
space. If input vectors occur with varying frequency throughout the input space, the
map tends to allocate neurons to an area in proportion to the frequency of input vectors
there.

It should be noted that with very small datasets, the algorithm must endure through
a predefined number of epochs to allow an initial global ordering and posterior conver-
gence of the prototypes (this is addressed in Section 2.4.4). With data streams this is not
an issue, since a large volume of observations is expected. Also, in data stream settings, it
is assumed that the underlying process generating the observations will be in a persistent
state throughout some period of time (Gama 2010).

3Neurobiologically, a neuron that is firing tends to excite the neurons in its immediate neighborhood
more than those far away.
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2.4.2.1 The Batch Algorithm

There is a Batch version of the SOM algorithm, where prototype updates are deferred to
the end of a learning epoch. The batch update rule is given by:

Wk(tf ) =

Pt0=tf
t0=t0

hck(t
0)X(t0)Pt0=tf

t0=t0
hck(t0)

(2.6)

where t0 and tf stand for the beginning and end of the current epoch, respectively. Con-
sequently, �(t) and �(t) are decreased monotonically by epoch. The BMU is computed
from W(t0) within each epoch. If the unit k is not affected by any of the examples
during a learning epoch, i.e., the unit is not a BMU nor a neighbor of any BMU, then
Wk(tf ) = Wk(t0). By comparing Equations (2.4) and (2.6) the learning rate is implicitly
given by:

�(t0) =
1Pt0=tf

t0=t0
hck(t0)

(2.7)

and does not need to be parameterized as in the Online algorithm, thus eliminating a po-
tential source of poor convergence (if badly estimated). Although being computationally
faster, some authors (Fort, Letremy, and Cottrel 2002) point out that the quality of the
clustering produced by the Batch algorithm is somewhat inferior to the one of the Online
SOM algorithm. However, for the purposes of exploratory cluster analysis, this research
did not find any significant differences that would hinder the use of the Batch variant.

2.4.2.2 Limitations on Data Streams

By keeping the number of prototypes fixed, the SOM suffers from the same problems as
simple competitive learning schemes when dealing with data streams. Annealing pro-
cedures for the learning parameters cannot be devised when N ! 1 and as time pro-
gresses the network loses the ability to “learn” new distributions arising from the data
stream, i.e., loses plasticity. Clearly, the Batch algorithm is not suited for data streams,
since it can only be applied when the whole data is present.

2.4.3 Related Algorithms

The SOM algorithm is related to some other algorithms and methods, as discussed in the
following paragraphs:

k-means. As discussed in Section 2.4.1.1, the k-means clustering algorithm is closely
related to competitive learning and is a special case of the SOM. By setting the width � of
the neighborhood kernel hck to zero, the SOM degenerates in a WTA scheme, similar to
the incremental k-means (Kohonen 2001). However, in (Bação, Lobo, and Painho 2005a),
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it is shown that a one-dimensional SOM can outperform k-means clustering, since the
SOM is less sensitive to local minima (due to the WTM strategy).

Despite this close relation, the best way of using both algorithms in data mining is
different. Whereas in the k-means clustering algorithm the number of K clusters should
be chosen according to the number of clusters that are present in the data, in the SOM
the number of prototype vectors should be chosen to be much larger, irrespective of the
number of clusters (Ultsch 1995). Doing so, the cluster structures and descriptions can
become visible by means of special visualization techniques that are presented in Section
2.4.5.

Vector Quantization. Vector quantization (VQ) is a classical method for approximating
a PDF of the vector variable X 2 Rd by using a finite number of vector prototypes. The
set of prototypes fW1; : : : ; WKg 2 Rd is referred to as the codebook. Approximation of X is
to find the prototype Wc from the codebook that is closest to X. This is the nearest-neighbor
paradigm. The density matching property of VQ is powerful, especially for identifying
the density of large and high-dimensioned data.
The SOM is a VQ method and the set of prototypes of the SOM is indeed frequently
referred to as the SOM codebook. The SOM, however, is not an optimal VQ procedure due
to the “tension” induced by neighboring relationships among prototypes.

One of the most well-known methods to perform VQ is the LBG algorithm (Linde,
Buzo, and Gray 1980), which solves the prototype initialization issue by splitting an ini-
tial prototype centered in the input space untilK prototypes are obtained. In (Yair, Zeger,
and Gersho 1992) the SOM algorithm was adapted for optimal VQ by changing the learn-
ing scheme from WTM to WTA later in time. A similar approach is used in the Neural
Gas (NG) algorithm (Martinetz, Berkovich, and Schulten 1993), however not imposing
neighboring relations. In NG, the magnitude of the prototype updates is not based on
a distance kernel hck, but ranked-based instead, sorting the prototypes based on their
distance to the input pattern.

Principal Curves. Principal curves and surfaces (Hastie and Stuetzle 1989) are very sim-
ilar to the SOM in their concept. The goal is to find the central curve (or surface) in the
input space. Each point in the principal curve averages all the points that project to it.
One way to create a principal curve is to apply a one-dimensional SOM to the multidi-
mensional data (Wesolkowski 2002), since the SOM prototype vectors can be interpreted
as conditional averages of the data.

Vector Projection. In vector projection (VP) algorithms the objective is to find low-
dimensional coordinates for representing high-dimensional observations, while preserv-
ing the relationships among the input data. Thus, the goal is dimensionality reduction
and visualization if the output space is two- or three-dimensional. Probably the most
known vector projection algorithms are multi-dimensional scaling (MDS) (Kruskal 1964),
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Sammon’s mapping (Sammon 1969), Principal Component Analysis (PCA) and Curvilin-
ear Component Analysis (CCA) (Demartines and Hérault 1997). By examining each error
function used by these algorithms, they differ mainly in the importance given to local or
global topology. While in MDS the global organization is emphasized, in Sammon’s map-
ping and CCA more importance is given to local topology. The SOM is a vector projection
algorithm because each pattern of the input space is projected into well defined position
in a, e.g., two-dimensional map.

2.4.4 Ordering, Convergence and Parameterization

The theoretical foundations of the SOM have been discussed thoroughly by (Cottrell,
Fort, and Pagès 1998). Mathematical proof of ordering and convergence of the SOM al-
gorithm has only been reported for the one-dimensional map (Erwin, Obermayer, and
Schulten 1992) and in particular circumstances: only when the neighborhood function
is convex (e.g., the Gaussian neighborhood function is). In higher dimensional maps no
mathematical proof of ordering and convergence has been achieved, probably because
the SOM does not minimize a known cost function (the neighborhood kernel makes it
difficult to derive one), so estimation of its learning parameters have been based on em-
pirical and numerous experimental results obtained over the years. Notwithstanding the
absence of mathematical proof, the SOM algorithm has proved experimentally across lit-
erature that it is reliable if parameterized correctly (Pöllä, Honkela, and Kohonen 2009).

2.4.4.1 Learning Phases

According to (Kohonen 2001), starting from a state of complete disorder, the SOM algo-
rithm gradually achieves an organized representation of the input space, provided that
the parameters of the algorithm are chosen properly. Also, the adaptation process of
the algorithm should be decomposed into two phases: an ordering phase followed by a
convergence phase:

Ordering phase. It is during this first phase of the adaptation process that the topolog-
ical ordering of the prototype vectors takes place. This ordering phase is relatively short
in comparison to the convergence phase. Large values for the neighborhood radius �(t)
and learning rate �(t) should be used, such that the prototype vectors initially take large
steps all together toward the area of input space where input vectors are occurring —
this can be thought as the “unfolding” of the map. These values then should decrease to
their tuning values and encompass only the closest neighbors. During this phase the map
tends to order itself topologically over the presented input vectors. Kohonen advises that
the ordering phase should consist at least in the presentation of 1000 input patterns; at
this point the network should be fairly well-ordered.
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t=0 t=20 t=100

t=1000 t=5000 t=100 000

Convergence

Figure 2.3: Ordering and convergence phases of the SOM over an uniform 2D distribu-
tion.

Convergence phase. This phase lasts for the rest of the adaptation process and is neces-
sary to fine tune the prototype vectors and, therefore, provide a good quantization of the
input space. During this phase the prototype vectors converge to their “correct” values.
To achieve such approximation, the neighborhood should be fairly small, encompassing
only the immediate neighbors. This should also apply to the learning rate, such that the
magnitude of the prototype updates is very small. The convergence phase is usually sev-
eral times longer than the ordering phase, e.g., at least 10 times longer (Kohonen 1996).

The above phases are illustrated in Figure 2.3 with a 20�204 SOM iteratively process-
ing 100 000 observations that describe a two-dimensional uniform distribution. It can be
seen that a global topological ordering of the map occurs in a relatively short amount of
time, e.g., t = 1000. This is produced during the ordering phase, after which the network
is fine-tuned slowly towards a stable state in the convergence phase. It is clear that the
extent of the persistence in data will allow increasingly better approximations of the un-
derlying distribution. Is the provided example, after the ordering phase, at, e.g., t = 5000,
there is already a good approximation of the underlying distribution by the SOM.

2.4.4.2 Parameterization

Appropriate selection of the initial learning parameters for the SOM algorithm is of crit-
ical importance to obtain topologically correct maps. Besides the random initialization

4Although rectangular SOM lattices are advised, in this illustrative case a square map allows to more
easily convey the principles.
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of the prototype vectors, the parameters that govern the algorithm are the learning rate
�(t) and the width �(t) of the neighborhood kernel hck. Also, the size of the lattice can
influence the initial estimation of �(t). As previously discussed, the parameterization of
the SOM is performed empirically, where in some cases heuristics have been proposed.

Size of map. The main virtue of the SOM regards the visualization of the data space,
whereupon the clustering structures ought to become visible (Kohonen 2013). Because
the SOM is also a vector quantization method, it has a limited resolution. To be able
to detect fine structures in data, large maps, containing some hundreds of neurons, are
needed (Ultsch and Siemon 1990). This is a critical necessity for the aims of this thesis.
Along these larger maps and regarding heuristics, in (García and González 2004) the au-
thors suggest setting the number of units to K = 5 � pN . Setting the number of neurons
approximately equal to the number of input samples seems to be a useful rule-of-thumb
for many applications, when data sets are relatively small (Kaski 1997). However, such
heuristics can only be applied with static data.
More importantly, having a two-dimensional output layer, the lattice should take a rect-
angular form, rather than square, because the "elastic network" formed by the prototype
vectors Wk must be oriented along with p(x) and be stabilized during the learning pro-
cess. Note that if the shape were to be, e.g., circular, it would have no stable orientation
in the input data space. Hence, any rectangular form is to be preferred (Kohonen 2013).

Initialization of prototypes. There are more sophisticated ways of initializing the pro-
totype vectors than random initialization, but are only possible with static data, e.g., using
input patterns or taking advantage of a PCA analysis of the input data (Kohonen 2001).
The later has the effect of stretching the SOM along a direction that roughly approximates
p(x), accelerating the ordering phase. However, assuming a data stream scenario, these
type of initializations are out of reach. Nevertheless, the SOM successfully unfolds over
an underlying distribution, in a relatively short period of time, given the initial learning
parameters are set correctly (recall Figure 2.3).

Learning parameters �(t) and �(t). Both �(t) and �(t) should be some monotonically
decreasing functions of time and their exact form is not critical; they could thus be se-
lected linear. If the initial values for the prototype vectors are chosen randomly, both
learning rate �(t) and neighborhood radius �(t) should begin with relatively high values,
thereafter decreasing gradually (Kohonen 2001); the neighborhood should be very wide
in the beginning and shrink monotonically with time, until it only encompasses the ad-
jacent neighbors. As discussed before, this is because a wide initial neighborhood kernel
coupled with high learning rate, corresponding to a coarse spatial resolution in the learn-
ing process, first induces a rough global order in the prototypes, after which narrowing
the kernel and decreasing the learning rate improves the spatial resolution of the map;
the acquired global order, however, is not destroyed later on during the convergence phase.
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(a) (b)

Figure 2.4: Topological ordering of the SOM when using: (a) a wide initial neighborhood
kernel, and (b) a narrow initial neighborhood kernel. If the neighborhood’s kernel is not
wide enough in the ordering phase, then the map may exhibit topological defects.

As a general rule, neither should be decreased to zero (Kohonen 2013).
The decreasing exponential function is common for both �(t) and �(t):

�(t) = �i

�
�f
�i

�t=T
; �(t) = �i

�
�f
�i

�t=T
; (2.8)

where �i and �f are respectively the initial and final neighborhood width and �i and
�f are respectively the initial and final learning rate; T is the number of iterations for
which the decay is to happen. From (Kohonen 2001) it is suggested that the width of the
neighborhood should be decreased from a width approximately on the order of half of
the diameter of the lattice, e.g., �i = 1=2

p
(width� 1)2 + (height� 1)2, for an initial global

ordering of the prototypes, down to only encompassing the adjacent neurons, e.g., �f =

1; the learning rate should, for example, decrease from �i = 0:1 to �f = 0:01. Problems
may arise if the initial neighborhood radius is too small to begin with, as depicted in
Figure 2.4b. In this case, the network may get stuck in a “metastable state”, corresponding
to a configuration with a topological defect.

2.4.4.3 Limitations on Data Streams

Competitive learning limitations regarding annealing procedures for the learning param-
eters have already been discussed in Section 2.4.1. Nonetheless, one still has to provide
�i and �i. Despite no clear mathematical rules exist for establishing these values, ex-
perimentation and empirical analysis have provided some “rules-of-thumb” for setting
them, as discussed above; these values normally perform well over any distribution.
Also, from the above discussion, other limitations can be pointed out. The SOM indeed
needs a relatively short period of time to globally order the prototypes, i.e., � 1000 it-
erations. However, considering that data streams surely span this number of iterations
by some orders of magnitude, it does not seem too problematic to “sacrifice” these first
observations to allow the unfolding of the map. Ways of traditionally speeding up the
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unfolding rely on different strategies to initialize the prototypes, e.g., over input patterns
or resorting to PCA-based linear initialization, but can only be performed having a batch
of data in advance.

Regarding the size and dimensions of the map, a sufficiently large rectangular lattice,
e.g., 20� 40 (800 prototypes), should be sufficient to detect fine structures in the underly-
ing distributions of data streams. There are alternate SOM variants that can approximate
an optimal number of prototypes (see Section 2.5.2), but they all fail to maintain a proper
regular topology of the map and prevent the use of visualizations for exploratory knowl-
edge discovery (see next section).

2.4.5 Visualizations and Exploratory Knowledge Discovery

The currently established way of employing the SOM for knowledge discovery is through
the use of large maps. This was popularized in (Ultsch and Siemon 1990), where the au-
thor called them Emergent self-organizing maps. From such large maps, one can perform
data exploratory analysis, e.g., detect clusters of arbitrary shape and non-linear correla-
tions between features, by using specialized visualizations. These visualizations are only
possible due to the topological ordering of the prototypes, input density matching and
the fixed-sized lattice of the SOM.

The SOM visualizations use colors as a visual representation of specific values —
different color scales can be used. This makes them available not only to experts, but
laymen, when analyzing them and can be easily understood if one is familiar with the
representation. The basic visualizations5 that can be derived from a SOM model are the
following:

Component Planes. By component plane representation we can visualize the relative com-
ponent distributions of the input data. Component plane representation can be
thought as a sliced version of the SOM. Each component plane has the relative dis-
tribution of the values of one feature. In this representation, and using a temperature-
like color scale, “cooler” colors represent relatively small values while “warmer”
colors represent relatively large values. By comparing component planes we can
see if two components correlate. If the outlook is similar, the corresponding fea-
tures correlate; if they seem like the “negative” of each other, then the correspond-
ing features are inversely correlated.

Unified Distance Matrix. The unified distance matrix, or simply U-Matrix, presents dis-
tances between neurons. The distances between adjacent neurons are calculated
and presented with different colorings between the adjacent neurons (prototypes).
Following the same temperature-like color scale, a warmer coloring between neu-
rons corresponds to a large distance and thus a gap between the codebook values

5A third basic visualization concerns the Hit Histogram which shows how many observations are mapped
onto each SOM neuron. Since it cannot be derived directly in a stream setting, it was purposely left out of
this list. A similar visualization is later introduced in Chapter 7.
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in the projected space; a cooler coloring means codebook vectors are close to each
other in the input space. Cooler areas can be thought as clusters and warmer areas
as cluster separators. This is specially powerful to understand the underlying struc-
ture of data, i.e., when one tries to find clusters in the input data without having
any a priori information about the clusters. Consequently, the detection of complex
clusters is achieved not by regarding single units, but by regarding the topological
structure map.

Hence, while component planes allow discovery of relationships among features, the U-
Matrix allows the visual discovery of clusters of data. Used in conjunction, one may
infer which features best describe the detected clusters, i.e., a description of the clusters.
It must be emphasized that this knowledge discovery through visual exploration is the
main motivating factor for using SOMs over data streams, regarding current available
methods.

A simple illustrative example of these visualizations is provided in Figure 2.6 for
the well-known Fisher’s Iris dataset (Lichman 2013), obtained from a 20 � 40 SOM. In
summary, the dataset contains 150 observations from three species of flowers, namely
Iris setosa, Iris versicolor and Iris virginica, regarding measurements of petal and sepal width
and length in centimeters, hence d = 4; both observations and SOM lattice are depicted in
three-dimensions using PCA projection (Section 2.4.3). It is well-known that one cluster
(containing Iris setosa flowers) is linearly separable from the other two. From the U-
Matrix these two clear clusters can be derived. Note that in this example the dataset
consists in only 150 observations, while the SOM contains 800 prototypes; for this reason,
the projection is very detailed and several micro structures seem to be contained inside
each detected cluster. Also, the input space density matching of the SOM gives an idea
of relative cluster sizes, e.g, the top cluster is approximately half the size of the bottom
cluster. Indeed, the dataset contains 50 observations of each flower. Through component
planes we observe that values for petal length and petal width are distributed in a similar
manner and, consequently, these features are correlated. By comparison with the U-
Matrix we detect that the top cluster is composed of flowers that have smaller petals,
which is actually the description of the Iris setosa flowers and what makes this cluster
linearly separable.

Another aspect depicted in this example regards the non-optimal quantization per-
formed by the SOM, where several “unrepresentative” prototypes can be seen. Although
they do not represent actual observations they can be seen as interpolators in the sense of
data generalization. Nonetheless, the SOM concentrates much more, and closer, proto-
types in the denser input areas, which is ultimately captured in the U-Matrix.
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Figure 2.5: Depiction of a 20 � 40 SOM quantizing the IRIS dataset from different visual
perspectives (PCA projection was used to obtain a 3D visualization).
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Figure 2.6: Examples of visualizations derived from a 20� 40 SOM after learning the Iris
dataset.

2.4.6 Quality Assessment

In the context of static data, although some optimal map exists for a particular dataset,
depending on the parameterization, different maps arise. Consequently, it is important
to know whether the map has properly adapted itself to the input data. Within many
other methods the evaluation is usually performed against a cost function that defines the
optimal solution, e.g. the MSE. However, as mentioned in Section 2.4.4, no cost function
has been derived for the SOM. Hence, other quality measures are used. Measuring the
quality of obtained maps can be done in several ways, but all require the presence of
the entire dataset. Two of the most important properties these measures usually try to
evaluate are the somewhat conflicting goals of VQ and VP. This conflict is especially
obvious when the dimension of the input data is higher than the dimension of the output
network (Kirk and Zurada 1999). Being both a VQ and VP method, the most simple
and used quality measures regarding these goals are the mean quantization error (QE) and
topographic error (TE) (Kohonen 2001). While measuring the quality of an obtained SOM,
consideration must be taken for both these quality measures.
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2.4.6.1 Mean Quantization Error

The mean quantization error QE is related to all forms of vector quantization and com-
petitive learning clustering algorithms, disregarding map topology. The mean QE mea-
sures how well the map quantizes the input data and the best map is expected to yield
the smallest mean quantization error between X(t) and corresponding Wc(t). It is com-
puted by determining the mean distance of input patterns to the prototype vectors of the
BMU’s that represent them, i.e., mean of the “local” quantization errors Eq(t):

QE =
1

N

t=N�1X
t=0

Eq(t) (2.9)

Eq(t) =k X(t)� Wc(t) k (2.10)

where N is the number of input patterns. A SOM with a lower QE is more accurate than
a SOM with higher mean error.

2.4.6.2 Mean Topographic Error

The mean topographic error TE measures how well the topology is preserved by the
map. Unlike the mean quantization error, it considers the structure of the map. It is the
most simple measure for topology preservation. For all input patterns, the respective
BMU and the second-BMU are determined. If these are not adjacent on the map lattice,
this is considered an error. Let Wc(t) and Wc0(t) be the BMU and second-BMU, respec-
tively, for the observation X(t). Then the TE is given by the mean of all local topographic
errors Et(t):

TE =
1

N

t=N�1X
t=0

Et(t) (2.11)

Et(t) =

8<
:0 if adjacent

�
Wc(t);Wc0(t)

�
1 otherwise

: (2.12)

The TE can be seen, basically, as a measure of continuity of the mapping, where low
values indicate a smooth mapping, with similar observations mapped to close-by units.
The topographic error aims at detecting cases where topological defects occur, such as
the one illustrated in Figure 2.4b. However, even with perfect topology preservation,
the topological error may not be zero due to the way the SOM covers the input space —
this will be specially obvious when presenting examples of the SOM mapping a single
Gaussian distribution, e.g., Figures 4.14a and 5.14.
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2.4.6.3 Other Quality Measures

Several other quality measures exist, such as the topographic product (Bauer and Pawelzik
1992), distortion (Vesanto, Sulkava, and Hollmen 2003) and trustworthiness and neighbor-
hood preservation (Venna and Kaski 2001). The topographic product can be used to assess
whether the size of the map is appropriate to fit onto the dataset, while the SOM distor-
tion measure can be used to select the best fitting map from several trained maps with
the same dataset. Trustworthiness and neighborhood preservation measures are similar
and provide a value that indicates if vectors close in the input space are mapped to neigh-
boring neurons in the map. Further discussion and comparison of these measures can be
found in (Polzlbauer 2004).

Overall, application of any of the above quality measures over data streams implies
their adaptation to unbounded data.

2.4.7 Comparison of Clustering Methods

A plethora of clustering methods have been developed over the years, mainly because
the notion of similarity/dissimilarity, and consequently “cluster”, is not precisely de-
fined. Therefore, different clustering methods may generate different clusterings on the
same data. Authors in (Han, Kamber, and Pei 2006) suggest categorizing clustering meth-
ods into five main categories: partitioning, hierarchical, density-based, grid-based and model-
based. Some proposed methods may fit into more than one category. While based on
competitive learning and therefore having a partitioning aspect, the SOM is more so-
phisticated because the topology preservation property enables it to provide a compact
model of the data from where, through visualizations (Section 2.4.5), insight on the data
structure can be obtained without prior assumptions (Ultsch 1995). Hence, the SOM can
be characterized as a model-based method in this taxonomy of methods.

A brief summary of the most well-known methods that fit into the above taxonomy is
provided with two aims: (i) to provide a clear comparison of the SOM clustering results
regarding other methods, and; (ii) because clustering methods operating on data streams
generally use adaptations of some of these methods, as will be surveyed in Section 2.6.
Together, they should provide a clear motivation for the use of self-organizing maps in
exploratory cluster analysis over data streams. The following subsections focus on the
problem of clustering observations, while feature clustering is addressed separately in Sec-
tion 2.4.7.6.

Examples of the type of clustering results provided by the compared methods are il-
lustrated in Figure 2.7. using the same data. Each of the individual results were obtained
through the ELKI framework (Achtert et al. 2012), where a SOM implementation was
contributed from this research, and are referenced in the following subsections. The Den-
sity dataset (Figure 2.7a) is already in normalized form, i.e., X 2 [0; 1]2, and is provided
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with the framework. The described distribution is composed by two different shaped
clusters (100 and 270 points marked as + and �, respectively) with similar densities and
containing outliers (20 points marked with �), totaling 390 observations.

2.4.7.1 Partitioning Methods

Partitioning methods relocate objects by moving them from one cluster to another, start-
ing from an initial partitioning. Such methods typically require that the number of clus-
ters K will be defined a priori. The global optimal solution is a NP-hard problem, there-
fore greedy heuristics are used in the form of iterative optimization. The simplest and
most commonly used algorithm, employing a MSE criteria, is the k-means algorithm. This
algorithm partitions the data into K clusters fC1; C2; : : : ; CKg, represented by their cen-
ters or means (centroids). The k-means algorithm begins with an initial set of K cluster-
centers and updates it so as to decrease the error criterion. The incremental k-means
— whose relation with competitive learning was addressed in Section 2.4.1.1, is suitable
for a training set that is obtained on-line. In the batch k-means at each step the patterns
keep changing from one cluster to the closest cluster Cj , according to the nearest-neighbor
rule, and the prototypes are then recalculated as the mean of the samples in the clusters
during a predefined number of iterations (epochs in competitive learning terminology).
K-means is susceptible to local minima of its objective function, depending on the ini-
tialization of the centers Cj . Also, selecting the appropriate value of k is a difficult task
without a prior knowledge of the input data. Also, they can be sensitive to noise and
outliers and are based on the assumption that clusters are spherical and of equal density.
A variation, more robust to noise and outliers, is the k-medoids method (Kaufman and
Rousseeuw 1987). This algorithm is very similar to the k-means algorithm, but each clus-
ter is represented by the most centric observation of a cluster, i.e., the medoid, rather than
by the implicit mean that may not belong to the cluster. Batch k-means has a time com-
plexity ofO(NKdT ) and space complexity ofO(Kd), where T is the number of iterations.
This linear complexity is one of the reasons for the popularity of the k-means algorithm.
Even if the number of instances is substantially large, this algorithm is computationally
attractive.

Figure 2.7b illustrates the resulting k-means clustering over the Density dataset, set-
ting K = 2. This dataset clearly depicts the deficiencies of the algorithm in detecting
the natural clusters by assuming spherical clusters; the outliers also affect the centroid
positions.

The clustering performed by ART networks (described in Section 2.4.1.2) falls into
partitioning methods, although realizing a variable number K of prototypes, dependent
on the vigilance parameter �. Time complexity is of O(NKd) and space complexity of
O(Kd), but with varying K. Figure 2.7c illustrates the clustering performed by the ART2-
A algorithm, setting � = 0:95, and the resulting perceptive fields. This illustrates the critical
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(a) Density dataset.
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(b) k-means, with K = 2.
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(c) ART2 with p = 0:95.
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(d) Hierarchical (agglomerative,
single-linkage). Dendrogram
cutoff at K = 20.
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(e) DBSCAN, with � = 0:05 and
MinPts = 4.
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(f) CLIQUE, with � = 0:2 and
� = 10.
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(g) EM algorithm, with K = 2.
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Figure 2.7: Comparison of clustering results by different algorithms.

36



2. RATIONALE AND LITERATURE REVIEW 2.4. The Self-Organizing Map

impact of the vigilance parameter and the fact that ART2-A networks are not robust to
outliers. If we were to adjust the vigilance parameter � to obtain exactly 2 clusters, the
results could be similar to k-means, but would heavily depend on the order of presented
observations. A more recent variation of the ART2-A algorithm, called Regional and On-
line Learnable Fields (ROLF) (Schatten, Goerke, and Eckmiller 2005), establishes an indi-
vidual width parameter � to each individual category, describing the variance of points
assigned to them. The suggested clustering result relies on sets of overlapping perceptive
fields, defined by their radius (r = � � �), to establish the natural clusters; it would be
successful in detecting the two underlying clusters in the illustrative example.

2.4.7.2 Hierarchical Methods

Hierarchical clustering is a nested sequence of partitions. A clustering result is created
by building a tree (also called a dendrogram) either from the leaves to the root (agglom-
erative approach) or from the root down to the leaves (divisive approach) by merging or
dividing clusters at each step. In order to decide which clusters should be combined
(agglomerative) or split (divisive), any distance measure can be used and the linkage
criterion determines the distance between sets of existing clusters as a function of the
pairwise distances between observations included in the clusters. Here single-, complete-
or average-linkage criteria can be used, which define the cluster distances based on the
minimum, maximum or average distance between observations in any two clusters, re-
spectively. Outliers may be easily identified in hierarchical clustering, since they, e.g.,
merge much later in the clustering process.

A partitioning clustering of the data can be obtained by cutting the dendrogram at a
desired similarity level or, more commonly, such that the cut traverses exactlyK branches
of the dendrogram. The number of clusters K need not be specified in advance and the
local minimum problem arising from initialization does not occur. Also, it can detect
clusters with arbitrary shapes. However, hierarchical clustering is static, and observa-
tions committed to a given cluster cannot move to a different cluster. Also, the linkage
criteria deeply affects how the clusters are merged or split.

Building a tree using either an agglomerative or a divisive approach can be pro-
hibitively expensive for large datasets. Hierarchical methods require O(N2) space for
the similarity matrix. Time complexity is O(N2d) for distance computation and O(N3d)

for complete clustering procedure.

Figure 2.7d depicts the resulting clustering obtained from an agglomerative proce-
dure with single linkage criterion by cutting the dendrogram to obtain 20 clusters. This
was the cutoff point that effectively matched the two natural clusters, while the remain-
ing 18 clusters contain single noise observations. Although being able to detect arbitrarily
shaped clusters, determining the correct cutoff point is not an easy task.
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2.4.7.3 Density-based Methods

Density-based methods group observations into clusters based on density conditions:
clusters are dense regions of observations in the data space and are separated by regions
of low density. Their general idea is to continue growing a given cluster as long as the
density (number of observations) in the “neighborhood” exceeds some threshold. For
example, for each observation within a given cluster, the neighborhood of a given radius
has to contain at least a minimum number of other observations to effectively be consid-
ered a cluster; otherwise they are considered as noise. Such methods can be used to filter
out noise or outliers and discover clusters of arbitrary shape.

One example is the Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN) method (Ester et al. 1996). DBSCAN features a well-defined cluster model called
"density-reachability". It is based on connecting objects (observations) within certain dis-
tance thresholds. However, it only connects objects that satisfy a density criterion — in
the original variant defined as a minimum number of other objects within this radius.
A cluster consists of all density-connected objects (which can form a cluster of arbitrary
shape) plus all objects that are within these objects range. DBSCAN needs two global pa-
rameters, namely � and MinPts, which determine the threshold for density-reachability
and minimum number of objects to generate a cluster, respectively. Its time complexity is
O(N(log N)d) and space complexity is O(Nd). Since it needs access to the entire dataset,
by itself alone it is not applicable to data streams.

Figure 2.7e illustrates the DBSCAN algorithm, with � = 0:05 and MinPts = 4. It
is successful in detecting both clusters and identifying the outliers (because of the point
threshold count). However, the quality of the results depend heavily on the correct choice
of parameters that match the density of the clusters. With clusters of different densities,
the DBSCAN algorithm produces inferior results, given the fixed set of parameters as-
sumes similar densities.

2.4.7.4 Grid-based Methods

Grid-based methods discretize the input space into a finite number of non-overlapping
cells (hyper-rectangles), i.e., the “grid”, and then perform the required clustering opera-
tions on the discretized space. The main advantage of grid-based method is its fast pro-
cessing time which depends on number of cells in each dimension in discretized space
(Ilango and Mohan 2010). Therefore, grid-based methods are often integrated with other
clustering methods such as density-based methods and hierarchical methods. However,
selecting the appropriate size for the grid may not be straightforward.

One example of an algorithm that makes simultaneous use of concepts of grid and
density-based methods is the Clustering In Quest (CLIQUE) algorithm (Agrawal et al.
1998). Its purpose is to automatically find subspaces within high-density clusters in high
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dimensional data. The basic idea is that if a collection of objects P is a cluster in a d-
dimensional space, then P is also part of a cluster in any (d�1)-dimensional projections of
this space. The grid is obtained by partitioning every dimension into intervals of length
�. A cell is considered dense if the total number of points contained in it is more than
the threshold � . By comparing the density of points in individual dimensions, subspace
clusters can be identified as well as a minimal description for the clusters. Compared to
DBSCAN it is easy to observe that the density-reachability criteria is replaced by adja-
cency of grid cells.

Figure 2.7f presents an illustrative result of the CLIQUE algorithm, with � = 0:2 and
� = 10, where the individual counts of objects assigned to each cell dimension-wise are
visible. The algorithm finds dense clusters in the subspaces (individual dimensions), that
can be later compared to find overlapping areas in any arbitrary two or more dimensions.
The established cell size and minimum number of points filters the outliers, but also some
cluster objects.

2.4.7.5 The SOM and Other Model-based Methods

These methods attempt to optimize the fit between the given data and some mathemat-
ical model. Besides allowing the detection of clusters, model-based clustering methods
may also find characteristic descriptions for each cluster. Some of the most frequently
used methods are decision trees, Gaussian Mixture Models (GMM) and neural networks,
being the SOM the more predominant method of the later.

Decision trees are mostly well-know for their use in classification tasks, but they have
been developments for their use in unsupervised learning (Liu, Xia, and Yu 2000). GMMs
are probability distributions used in clustering and density estimation, and a subset of fi-
nite mixture models (Melnykov and Maitra 2010). A GMM assumes the PDF is composed
by K Gaussians, by maximizing data likelihood. While k-means can only find spherical
clusters, a GMM is able to refine such clusters to ellipsoid shapes. Maximum likelihood
estimation is possible via the Expectation-Maximization (EM) algorithm (McLachlan and
Krishnan 2007). It follows an iterative, sub-optimal, approach which tries to find the
parameters of the probability distributions, e.g., the mean and co-variance Gaussian pa-
rameters , that has the maximum likelihood of its attributes. The main disadvantages
are the same as for k-means, i.e., assumption of regular shaped clusters and providing
the desired number of clusters K. Figure 2.7g illustrates the result of a GMM obtained
via the EM algorithm, setting K = 2. In this case, the established GMM fail to detect
the natural clusters, but, given the shape of the cluster on the right, this was expected.
By establishing K = 3, this cluster is effectively represented by two Gaussians. The EM
algorithm does not predict the existence of outliers and noise.

A more or less extensive description of the SOM has already been given, reinforcing

39



2. RATIONALE AND LITERATURE REVIEW 2.4. The Self-Organizing Map
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Figure 2.8: Two-stage clustering of the SOM: (a) First abstraction level is obtained by
creating a set of prototype vectors using the SOM. Clustering of the SOM creates the
second abstraction level; (b) Example of SOM-Ward method over SOM lattice of Figure
2.7h.

its potential in exploratory cluster analysis, not only by visual inspection of the underly-
ing cluster structure in data by means of the U-Matrix, but by also providing a descrip-
tion of those clusters via component planes visualizations (see Section 2.4.5). Figure 2.7h
illustrates a 20 � 40 SOM lattice obtained after learning the Density dataset, with the pa-
rameters empirically set in Section 2.4.4, using 10 ordering epochs and 40 convergence
epochs. The corresponding U-Matrix is also depicted, where two clear clusters are easily
seen. The robustness to the outliers is somewhat satisfactory. What remains relevant is
the fact that no assumptions were needed regarding the desired number of clusters; the
SOM application enabled the detection of two clusters with arbitrary shape.

Clustering of the SOM

Although not applied in this thesis, if the goal is to create a few, but quantitative clus-
ters, the SOM has to be clustered. In such situations, a two-level approach was proposed
(Vesanto and Alhoniemi 2000), where a dataset is used to obtain a SOM model, which is
then clustered through other methods. This concept is illustrated in Figure 2.8a. How-
ever, the detection of complex clusters is achieved not by regarding single prototypes,
but by regarding the topological structure map, using methods such as the SOM-Ward
(Viscovery SOMine 6.0) and Lake (Matos, Marques, and Cardoso 2014) methods. For ex-
ample, the former method employs an agglomerative hierarchical algorithm with the
Ward criteria (Ward Jr 1963), but attending to the topology of the SOM by assigning infi-
nite distances between prototypes that are not adjacent in the lattice. An example of the
SOM-Ward method applied to the previous SOM over the Density dataset is depicted in
Figure 2.8b, by establishing the cutoff on the Ward dendrogram such that K = 2. Then
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each prototype is labeled with the specific color. This can aid visual inference on the U-
Matrix, but more importantly allows a partitioning of data following a classification task
approach: for each observation, find the BMU and assigning the corresponding label to
the observation. Several studies have shown the effectiveness of this approach over some
classical clustering algorithms, namely k-means (Lee, Gu, and Suh 2006; Samarasinghe
2006; Vesanto and Alhoniemi 2000). However, the SOM-Ward method is not effective in
detecting all types of clusters. An example is the cluster structure described in the Com-
plex data stream used later in this thesis (Figure B.1b); it cannot detect clusters within
clusters.

2.4.7.6 Clustering Features

The task of clustering features can have different aims, such as dimensionality reduc-
tion and corresponding feature selection or simply detecting correlated features (Dash
and Liu 2000). The later can be a simple process of knowledge discovery to comprehend
data. For the objective of dimensionality reduction, PCA is a is a popular dimension re-
duction technique, but its interpretation of input space is not as good. An alternative is
to group strongly correlated features and perform selection of representative features in
all groups, effectively performing dimensionality reduction (James et al. 2013). A simple
and frequently used approach for clustering a set of features is transpose the dataset and
apply a traditional clustering algorithm, such as the ones presented in the previous sec-
tion. More usually, hierarchical methods are employed over a dissimilarity matrix. The
dissimilarities between data can be computed either with Euclidean distances or corre-
lation coefficients, e.g., Pearson correlation coefficient. The later allows the discovery of
either directly and inversely correlated features. Such example is the VARCLUS6 proce-
dure from the R language, which has different similarity metrics to choose from.

While discussing the SOM visualizations in Section 2.4.5, the component planes were
presented as a means to give a description of the detected clusters on the U-Matrix, but
also as a means to detect correlated features. Indeed, in SOM literature this is referred to
as correlation hunting (Vesanto and Ahola 1999). By transforming component plane values
into vectors, e.g., row- or column-wise, clustering of the features can be indirectly per-
formed. Works such as (Pérez-Uribe 2007; Vesanto and Ahola 1999) use this reasoning to
reorder the presentation of the component planes, allowing the user to more easily detect
correlated features when their number is very high. Both works achieve this by cluster-
ing the component planes with another SOM, varying in the way they are presented to
the user.

As mentioned previously, clustering features is strongly related to time-series cluster-
ing, where the objective is to find time-series that somehow behave similarly along time
or are correlated. Time series clustering has been shown effective in providing useful

6http://www.inside-r.org/packages/cran/hmisc/docs/varclus
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Figure 2.9: Iris dataset represented as a data stream.

information in various domains. There seems to be an increased interest in time series
clustering as part of the effort in temporal data mining research. A lot of research effort
has been put into this task, either considering time-series of equal or different lengths an
subsequences, with raw-based methods (that apply similar strategies to feature cluster-
ing), feature-based or model-based methods. However, clustering subsequences in time-
series has generated some controversy in literature (Keogh and Lin 2005). An in-depth
overview of these methods can be found in (Liao 2005).

An indication that the SOM can be successful in such tasks is exemplified by plotting
the previous Iris dataset as a multivariate time-series, see Figure 2.9, where each type of
flower is plotted sequentially. If we recall Figure 2.6b with the corresponding SOM com-
ponent planes, petal length and petal width (bottom time-series in Figure 2.9) were found to
be correlated. As such, we can extrapolate that such methodology can be applied to time-
series clustering (of equal length). Based on this assumption and correlation hunting in
general, this research proposed a general feature clustering method for SOM’s compo-
nent planes, based on hierarchical clustering, which was applied successfully to financial
time-series for the purpose of portfolio selection (Silva and Marques 2010a).

2.5 Evaluation of the SOM and Related Variants for Data Streams

From the previous comparison between clustering methods, it should be clear that the
SOM excels in data visualization and exploratory cluster analysis, consequence of the
topological models from where simple visualizations highlight the data structure. How-
ever, as discussed, the original SOM is not suited for unbounded and non-stationary data
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streams due to the annealing schemes used in determining the learning parameters evo-
lution, i.e., they are time-dependent and as time passes the model loses plasticity. In
this section we are interested in determining requirements SOM variants should possess
regarding data streams and evaluate if existing variants fit some or all of them.

2.5.1 Proposed Requirements

In Section 2.3 the characteristics clustering algorithms should possess regarding data
streams were enumerated. Consequently, these are desirable requirements we should
have in mind. Furthermore, the SOM derives all of its usefulness in exploratory clus-
ter analysis from its visualizations, which rely on a fixed and regular output layer (the
rectangular lattice). Also, the time-dependent learning parameter estimation is a serious
deterrent aspect on its applicability to data streams. On the other hand, the annealing
schemes are critical for proper convergence of the maps (Section 2.4.4). As such, the
requirements SOM variants should address regarding data streams are established as
follows:

i. Fixed topology, i.e., a regular lattice of neurons to allow visualization procedures;

ii. Time-independent learning parameter estimation;

iii. Proper convergence to the underlying distribution in the sense of a VQ procedure;

iv. Incremental and efficient processing of individual observations;

v. Compactness of model;

vi. Dealing with evolving data (non-stationarity);

vii. Robustness to noise, and;

viii. Handling high-dimensional data.

The first three enumerated properties are SOM-related, while the remaining are general
to any data stream clustering algorithm (see Section 2.3.1).

2.5.2 Variants of the SOM

From its inception the original SOM algorithm has led to the proposal of dozens of re-
lated algorithms and variants aiming at different particular purposes and applications.
In (Bação, Lobo, and Painho 2008) three main areas in which the original SOM can be
modified are identified:

• Topology and connection between neurons;

• Matching mechanism, i.e., determining the BMU, and;

• Learning rule, i.e., prototype update mechanism;
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Variants of the SOM that change the matching mechanism are usually variants that tar-
get heterogeneous types of features, e.g., including spatial data (Bação, Lobo, and Painho
2005b) and categorical data (Chen and Marques 2005), usually also changing the update
rule to take into account these different types of features. Another example is the use of
“conscience” mechanisms (DeSieno 1988) to reduce the number of unrepresentative pro-
totypes in the SOM codebook, by attaching counters to each neuron so as to enable each
neuron to have the same opportunity (probability) to represent an observation.

Despite the huge amount of literature around SOM and SOM-like networks, there is
surprisingly and comparatively very little work dealing with incremental learning. In-
cremental learning addresses the ability of repeatedly training a network using new data,
without destroying old prototype patterns (Furao, Ogura, and Hasegawa 2007). This is
somewhat related to evolving and non-stationary data, but may not predict forgetting
old information. Most of these works alter the structure of the network, creating and
deleting nodes as necessary. There are also variants that use (possibly growing) hierar-
chies of SOM, e.g., (Rauber, Merkl, and Dittenbach 2002), to represent parts of the input
space with different granularities, but they are out of scope for this research. Given fixed
topology is one of the main concerns for data visualization, surveyed proposals will be
distinguished between models that vary the topology of the lattice and others that keep
it fixed.

2.5.2.1 Varying Topology

Proposals that vary the topology of the lattice are able to deal more easily with evolving
data by adding and removing neurons from the network. This may have impact on the
compactness of the model requirement, but more importantly, hinder or make data visu-
alization very difficult. They indirectly ensure convergence, i.e., proper VQ, by inserting
neurons in denser areas of the input space.

Growing Cell Structures

The Growing Cell Structures (GCS) model (Fritzke 1994) allows nodes to be added and re-
moved dynamically, but without imposing obligatory neighboring relations, i.e., a node
may not have connections with others. The model starts with a predefined number of
nodes in a specified arrangement, i.e., neurons can have an arbitrary number of neigh-
bors. The rationale is to represent increasing complex regions of the input space with
denser lattices. The growing process is based on a counter value attached to each node,
which is incremented by one every time the neuron is identified as the BMU. Upon reach-
ing a threshold value, the corresponding node is considered to be a good place to insert
a new node into the network. The neighbor with the largest distance to this node is se-
lected and a new node is inserted between these two, defining the respective neighboring
relationships. The principle behind this idea is that if cells match very well over a long
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period of time, then they must be in a region of dense input patterns where more nodes
are needed. All counters are decreased within each time step by a small fraction in order
to keep track of time. The same principle applies to cell removals. As soon as a counter
value falls bellow another threshold, the corresponding cell is regarded as laying in a
region of low density probability and is therefore removed from the network. The input
space mapping may result in several separate regions of neurons with varying number
of neighboring relations. It uses constant learning rates. The same author, shortly after,
proposed the Growing Neural Gas (GNG) algorithm (Fritzke 1995), which shares a lot of
similarities.

Evolving Self-Organizing Map

The Evolving Self-Organizing Map (ESOM) (Deng and Kasabov 2003) is based on an in-
cremental network quite similar to GNG that creates nodes dynamically based on the
distance measurement between the BMU and the current observation, but the new node
is created at the exact data point instead of the mid-point as in GNG. The ESOM net-
work starts without nodes. During learning, the network updates itself from sequential
observations, creating new nodes when necessary. Nodes are created if no suitable node
is found to represent an observation, based on a distance threshold �, i.e., if Eq(t) > �. It
uses a constant learning rate, otherwise. Connections between nodes are used to maintain
the neighborhood relationships between close nodes. The strength of the neighborhood
relation is determined by the distance between connected nodes. If the distance is too
big, giving a weak strength under a threshold, the connection can be pruned. Deriving
from connection pruning, isolated neurons are also deleted. In this way the feature map
can be split apart and data structures such as clusters and outliers can emerge (noise is
considered outlier data). However, no implicit or explicit forgetting mechanism exists.
By removing only isolated neurons, the network is unable to forget a portion of the input
space that may have become obsolete.

Enhanced Self-Organizing Incremental Neural Network

Self-Organizing Incremental Neural Network (SOINN) (Furao and Hasegawa 2006) and its
Enhanced version (ESOINN) (Furao, Ogura, and Hasegawa 2007) are also based on an
incremental structure, where the former version uses a two-layer network and the later a
single layer network. The ESOINN algorithm starts with two randomly initialized proto-
types (neurons) and is very similar to GCS. New nodes are always inserted between two
existing nodes, uses edge aging to remove neighboring relations and forgets old informa-
tion based on counter values attached to each neuron. The insertion criteria is different,
leading to triangle-mesh like mappings of the input space. It also uses an annealing
scheme for the learning rate.
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2.5.2.2 Fixed Topology

Some SOM variants that preserve topology, keep the size of the map fixed and use time-
independent learning parameters have been more recently proposed. By keeping a fixed
topology and allowing the application of the visualization procedures, these variants are
of particular interest and will be presented in more detail.

The basic idea behind the following proposals is that for an input pattern that the
network already represents well, there is no need for large adjustments — learning rate
and neighborhood radius are kept small. On the other hand, if an input pattern is very
dissimilar of what was previously seen, then those parameters are adjusted to produce
large adjustments. However, both proposals use the local error Eq(t) to estimate learn-
ing parameters, which makes them very sensible to noise. Also, despite inducing an
indefinite plasticity, they are unable to properly converge to a density mapping VQ —
recall that monotonically decreasing learning parameters are needed to ensure this con-
vergence (Kohonen 2001). In summary, what is actually mapped by these proposals is
the structure or support of the distribution rather than the density.

Parameter-Less SOM

The Parameter-less Self-Organizing Map (PLSOM) (Berglund 2010) was initially pro-
posed as a way to reduce the parameter-space of the original SOM algorithm. It has
only one constant parameter  (neighborhood range) that needs to be specified, after
which learning parameters are estimated dynamically at each iteration. In the PLSOM
the amplitude and range of the prototype updates are not dependent on time t, but on
how well the map fits the input data. The “fit” d(t) 2 [0; 1] is continuously estimated as
in Eq. (2.13) and scales the local quantization error relative to the diameter of the union
of observed inputs.

d(t) = min

�
Eq(t)

S
; 1

�
(2.13)

where S is computed as in Algorithm 1, which approximates the diameter of the input
space learned until t. The function diam(�) gives the diameter of a set, i.e., the largest
distance between any two members of the set according to the Euclidean distance. There-
fore, if d(t) is large, the network fits the data poorly and needs large readjustments. Con-
versely, if d(t) is small, the fit is likely to already be satisfactory for that input and no large
updates are necessary at time t.

The neighborhood size is determined by d(t) as in Eq. (2.14); the neighborhood range
 is an upper bound for the neighborhood size, and does not change during training.

�
�
d(t)

�
=  ln

�
1 + d(t)(e� 1)

�
(2.14)

where ln(�) is the natural logarithm and e is the Euler number. Note that the scaling factor
(e� 1) is chosen to ensure that the range of d(t) 2 [0; 1] maps into the range of � = [0; ].
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Algorithm 1: PLSOM input space diameter estimation algorithm.

1 begin
/* Let n = d+ 1, where d is the dimensionality of the input

space, since d+ 1 is the smallest number of vertices
that can span a d-dimensional volume. */

2 n d+ 1
3 A  ?

4 S  �1
5 foreach X(t) do
6 s diam(A [ X(t))
7 if s > S then
8 while size(A) > n do
9 Remove the element of A that is closest to X(t)

10 end
11 A  A[ X(t)

12 end
13 end
14 end

The value of � is used in the PLSOM neighborhood function:

h
0

ck = e
� 1

�

krc�rkk
2

d(t)2 (2.15)

Finally, the PLSOM update rule is given by Eq. (2.16).

Wk(t+ 1) = Wk(t) + d(t)h
0

ck(t) [X(t)� Wk(t)] (2.16)

If we compare the above update rule with the of the original SOM in Eq. (2.4), the PLSOM
learning rate is given by the fit d(t) and the later is also used to scale the neighborhood
radius. To compute the diameter of the input, it has to store some observations, which
is some sense violate the data stream model (Section 2.3.1). Also, with evolving data
the “diameter” of the input space may change. Although having only one parameter, it
is problem-dependent, i.e., rarely one chosen value performs well across more than one
data stream. In (Berglund 2010) no evaluation was performed regarding the estimation
of this parameter besides trial and error.

Dynamic SOM

The Dynamic Self-Organizing Map (DSOM) (Rougier and Boniface 2011) is also a variation
of the SOM algorithm, where the original time-dependent (learning rate and neighbor-
hood) learning function is replaced by a time-invariant one. It uses a constant learning
rate and a constant plasticity parameter. The update rule of the DSOM is formalized in
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Eq. (2.17):

Wk(t+ 1) = Wk(t) + � k X(t)� Wk k h00ck(t) [X(t)� Wk(t)] (2.17)

h
00

ck = e
� 1

�2
krc�rkk

2

Eq(t)2 (2.18)

where � is a constant learning rate and � is the elasticity or plasticity parameter, which
is also constant. If X(t) = Wc, then h

00

ck = 0. Therefore, the magnitude of the updates
(learning rate) is dependent on the distance between the prototype and the input pattern,
while the range (neighborhood size) depends on the distance of the later to the BMU. This
update scheme reflect two main ideas: (i) if a neuron is close enough to the data, there
is no need for others to learn anything, the BMU can represent the data, and; (ii) if there
is no neuron close enough to the data, any neuron learns the data according to its own
distance to the data. The later idea is maybe somewhat inspired by the NG algorithm,
where the magnitude of the updates is determined by the ordered rank of distances to
the BMU. This works well for NG, but only because it does not impose neighboring re-
lations between nodes. In DSOM they continue to exist and by adopting such strategy, a
lot of topological defects can arise mainly during the unfolding of the map. The former
idea seems logical, but is also very sensible to the initialization of the prototypes as dis-
cussed in the next paragraph. Finally, the parameter-space of DSOM is smaller than the
original SOM, i.e., only 2 parameters, but from several tests that were performed they are
also problem-dependent. No particular combination of values performs satisfactorily on
more than one data stream.

From the above presentation of PLSOM and DSOM we can see they are similar in
most aspects. Both implicitly estimate learning parameters based on the local error Eq(t),
but this makes these variants very sensible to the random initialization of the prototypes,
e.g., if they initially cover the underlying distribution, but in an unordered manner, the
magnitude of the updates will be small and the unfolding of the map hindered. The only
way to overcome this is to use higher values in their parameters to force bigger initial
updates. However, as they are constant, the lattice will never be able to stabilize over
the distribution, i.e., prototypes fluctuate around their positions. Moreover, even with
optimal parameters (very hard to determine) they fail to match the density of the input
space.

2.5.3 Evaluation

Table 2.1 summarizes the fulfillment of the requirements established in Section 2.5.1 by
the previous surveyed variants. Regarding the Original SOM algorithm, as described,
the learning parameters are time-dependent, i.e., uses a time-dependent annealing pro-
cedure to monotonically reduce learning parameters and ensure convergence; possesses
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a compact model in the sense that the size of the codebook is fixed and independent
of the number of examples it processes; robustness to noise is not guaranteed when the
learning parameters have high values.

Variants that do not keep the regular topology of the original SOM, i.e., GCS, ESOM
and ESOINN, seem attractive from a pure VQ perspective, but they all assume limitations
in visualizing the models and must resort to other algorithms (Deng and Kasabov 2003),
e.g., Sammon’s mapping (Sammon 1969).

Finally, fixed topology variants, e.g., PLSOM and DSOM, maintain the regular lattice
structure, but do not converge properly in the sense of a VQ procedure. By failing to
do so, visualizations may also be hindered. Also, using the localized error to estimate
learning parameters is a simple approach, but does not provide a global measure of the
model adaptation to the underlying data. It is important to note that in both proposals,
authors also never address the visualizations of the obtained models.

Any distance-based clustering or VQ algorithm is affected by the curse of highdimensional
data. However, most SOM models are deemed suited for high-dimensional data, given
its VP capabilities (Penn 2005).

Given none of the above proposals satisfies the requirements established for self-
organizing maps in dealing with the characteristics of data streams and allowing visual
knowledge discovery, we can see that there is room for improvement in proposing new
methodologies and/or variants that are better suited for the established requirements.

2.6 Current Methods for Cluster Analysis on Data Streams

The data stream clustering problem is defined as to maintain a continuously consistent
good clustering of the sequence observed so far, using a small amount of memory and
time (Gama 2010). The issues are imposed by the continuous arriving data points, and
the need to analyze them in real time. These characteristics require incremental clustering
and maintaining cluster structures that evolve over time, i.e., the data stream may contin-
uously evolve, and new clusters might appear, others disappear, reflecting the dynamics
of the stream.

Most of the work in incremental clustering of data streams has been concentrated
on clustering observations rather than feature clustering. Clustering features (e.g., time
series) is a very useful tool for some applications, such as sensor networks, electrical
power demand, stock market, etc. The basic idea behind clustering streaming time series
is to find groups of features that behave similarly through time.

2.6.1 Clustering Observations

Most current approaches seem to have settled on a two-phase approach to the problem:
an online phase to abstract the incoming stream, i.e., maintaining summarizations, and;
an offline phase performed at user request where traditional clustering methods (Section
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2.4.7) are applied over the previous summarizations. Most abstraction methods use some
variation of the concept of cluster feature (Zhang, Ramakrishnan, and Livny 1996).

According to the taxonomy presented in (Silva et al. 2013), existing methods can be
characterized by the way they abstract the incoming stream (abstraction method), how
do they deal with non-stationarity of data (window model) and the clustering algorithm
that is used. The latter determines the shape of clusters that can be detected and if the
goal is traditional example clustering or feature clustering. CluStream (Aggarwal et al.
2003) is a landmark publication in the sense that it popularized the two-phase approach
to data streams, combining an online summarization of the incoming stream with an of-
fline cluster analysis; it finds its roots in BIRCH (Zhang, Ramakrishnan, and Livny 1996).
Regarding feature clustering methods in a stream setting the number of proposals is very
scarce, e.g., (Rodrigues, Gama, and Pedroso 2008), and must employ different strategies
from the ones found in “traditional” clustering.

Table 2.2 presents a set of proposed methods that perform cluster analysis over data
streams, ordered historically. It summarizes the characteristics of the following methods,
regarding the used taxonomy: BIRCH (Zhang, Ramakrishnan, and Livny 1996), Scalable
k-means (Bradley, Fayyad, and Reina 1998), Single-pass k-means (Farnstrom, Lewis, and
Elkan 2000), Stream (Guha et al. 2000), Stream LSearch (O’callaghan et al. 2002), CluStream
(Aggarwal et al. 2003), DenStream (Cao et al. 2006), D-Stream (Chen and Tu 2007), SWClus-
tering (Zhou et al. 2008), ODAC (Rodrigues, Gama, and Pedroso 2008), SWEM (Dang et
al. 2009), ClusTree (Kranen et al. 2011) and StreamKM++ (Ackermann et al. 2012). This
set illustrates the variety of combinations of methodologies used until today and a brief
overview is given next in respect to methodologies involved. More comprehensive sur-
veys regarding clustering data streams methodologies can be found in (Amini, Wah, and
Saboohi 2014; Silva et al. 2013).

2.6.1.1 Abstraction Method

In short, the data abstraction procedure aims at summarizing the data stream into a com-
pact representation that captures the properties of the underlying distribution. The sum-
mary technique is directed towards the offline algorithm that is applied for the cluster
analysis.

Four major types of data structures used for data abstraction are listed below. The
data abstraction procedure exploits the fact that the input space of the data stream is
usually not uniformly occupied. Thereby, the problem of cluster analysis is reduced to
the set of summaries, which is much smaller than the original data stream input space.
Hence, the data stream is somewhat pre-clustered by summarizing the data stream into
dense regions, according to the used data structure. It should be noted as this point that
evolving data is dealt within the abstraction method, usually by means of a window
model, discussed next.
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Prototype array is a simplified summarization structure that, as the name implies, con-
sists in an array of prototypes (e.g., centroids or medoids) that summarizes the data par-
tition (Guha et al. 2000).

Cluster features (CF) is a compact representation of a set of points (Zhang, Ramakrish-
nan, and Livny 1996). A CF structure is a triple fm; LS; SSg, used to store the sufficient
statistics of a set of points: m is the number of data points, LS is a vector of the same
dimension of data points that store the linear sum of the m points and SS is a vector
of the same dimension of data points that store the square sum of the N points. Let
CF1 = fm1; LS1; SS1g and CF2 = fm2; LS2; SS2g. Cluster features are incremental and
additive. If an observation X is added to the cluster, the sufficient statistics are computed
as:

LS1 = LS1 + X

SS1 = SS1 + X2

m1 = m1 + 1

and the additive property allows merging two clusters by the sum of their parts, as:

CF1 + CF2 = fm1 +m2; LS1 + LS2; SS1 + SS2g:

A CF-triple has sufficient information to define variances along the ith-dimension as
(SSi=m)� (LSi=m)2 and the centroid as (LS=m). Distances can also be easily computed
from the available information.

One can think of a CF as a set of objects, but only the CF triple stored as summary.
This CF summary is not only efficient because it stores much less than all the data objects
in the CF, but also accurate because it is sufficient for calculating pertinent measurements
needed to make clustering decisions. The use of clustering features is of major impor-
tance in current state-of-the-art algorithms for large data sets and/or streaming data, and
some variations are found in literature. BIRCH maintains a height-balanced CF-tree as a
summary structure. It is a very compact representation of the data stream because each
entry in a leaf node is not a single data object but a sub-cluster. In CluStream this concept
was extended to include temporal information (TCF) and called micro-cluster (Aggarwal
et al. 2003). The TCF was combined with histogram information in SWClustering into a
structure called Exponential Histogram of Cluster Features (EHCF).

Grids partition the d-dimensional space into density grid cells and each example is
incrementally mapped onto a cell (Cao et al. 2006). This differs from previous structures,
in the sense that cluster analysis algorithms that perform over grids are concerned not
with the data objects but with the value space that surrounds the data objects. Hence,
density-based algorithms are usually applied over grids.
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Coreset tree is a binary tree where each node stores a mixture of sufficient statistics
and prototypes, i.e., coresets. A coreset is a small weighted set of objects that approximates
the original object set (Agarwal, Har-Peled, and Varadarajan 2005). The aim is to reduce
2m objects (data objects or previous centroids) to m objects, by performing merge-reduce
operations. This tree approximates the data points from the data stream regarding the
k-means optimization problem.

2.6.1.2 Window Model

In a data stream scenario, recent information can reflect changes in the data distribution.
This information can be used to explain the evolution of the process under observation.
The established way of dealing with this non-stationarity of data is through window mod-
els (Gama 2010), which can be divided into three types:

Sliding window models imply that only the most recent information is stored in the
data abstraction structures, whose size can be fixed or variable (Zhou et al. 2008). It can
be seen as a queue and methods that use this model only update the summaries of the
data inserted into the window, giving equal importance to each example.

Damped window models, or time-fading models, are similar to the sliding window
model, but associate higher weight to newer data using an exponential decay function
(Cao et al. 2006).

Landmark window models proceed by dividing the stream into disjoint portions (chunks),
which are separated by landmarks (Farnstrom, Lewis, and Elkan 2000). Landmarks can
be defined either in terms of time (e.g., daily or weekly basis) or in terms of the number
of examples processed since the last landmark.

Evolving Data

Overall, evolving data is dealt by maintaining the abstraction structures updated over a
specific window model. In general, observations are absorbed by existing CFs/micro-
clusters if they rely within a specified distance threshold. Otherwise, new ones are cre-
ated. BIRCH limits the size of the CF-tree by available memory and resorts to merging
“crowded subclusters into larger ones” — (Zhang, Ramakrishnan, and Livny 1996). It does
not address “old information” because the CF does not possess temporal information, i.e.,
it was designed for incremental learning by generating an hierarchical cluster structure.
Micro-clusters, on the other hand contain temporal information, and allow the deletion
of old micro-clusters because “a given micro-cluster might correspond to a point of consider-
able cluster presence in the past history of the stream, but may no longer be an active cluster in
the recent stream activity” — (Aggarwal et al. 2003). CluStream generates a pyramidal time
frame of micro-clusters. In this technique, micro-clusters are stored at differing levels of
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granularity depending upon the recency, until a specific maximum past horizon. This
provides a trade-off between the memory constraints and the ability to recall summary
statistics from different time horizons. Although this allows a “peek” into the past, it
sacrifices the available expressiveness of the micro-clusters to abstract the current distri-
bution. Differently, whenever a significant change happens in the stream’s distribution,
SWEM re-distributes the set of micro-clusters in the entire data space by using split and
merge operations. D-Stream, which uses a grid abstraction, also takes into account evolv-
ing data by assigning a decay counter to each grid cell.

None of the reviewed methods provide ways to explicitly detect changes in the dis-
tribution, i.e., signal some kind of warning to the user.

2.6.1.3 Cluster Algorithm

Some of the enumerated methods maintain a clustering result within the abstraction
structure as approximations of the k-means optimization problem, e.g., Scalable k-means,
Single-pass k-means and StreamKM++, or k-medoids, e.g., Stream and Stream LSearch, through
landmark windows.

All other methods rely on summary structures to where traditional clustering algo-
rithms are applied, offline. Comparison between the SOM and other traditional cluster-
ing methods was already discussed in Section 2.4.7, together with their strengths and
weaknesses. As most overviewed methods apply traditional methods to summariza-
tions structures (see Table 2.2), the same strengths and weaknesses apply. CluStream
proposed applying the k-means algorithm to the pyramidal time frame, containing the
micro-clusters, allowing extracting of micro-clusters of different time horizons. ClusTree
was tested with k-means and DBSCAN. Other surveyed methods that rely on DBSCAN
also apply it to CF-like structures, e.g., DenStream, or to grid structures, e.g., D-Stream.
BIRCH is an exception, as it maintains an hierarchical clustering of the CFs.

2.6.2 Clustering Features

The above methods are devised to perform traditional clustering of observations. On the
other hand, one may be interested in clustering the features in a data stream setting. If
we consider each feature of the data stream as an individual time-series, then the goal of
an incremental clustering system for multiple time series is to find (and make available
at any time t) a partition P of those streams, where streams in the same cluster tend to
be more alike than streams in different clusters. Let X = fx1; x2; :::; xdg be the complete
set of d data streams and X(t) = fxt1; xt2; :::; xtdg be the example containing the observa-
tions of all streams xi at the specific time t. An example partition could be defined as
Pt = ffx1; fx3; x5gg; fx2; x4gg, stating that data streams x1; x3; x5 have some similarity
between them (more pronounced between x3 and x5 ), being at the same time somehow
more dissimilar from x2 and x4 .
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One of the first works for this task was presented in (Rodrigues, Gama, and Pedroso
2008), with the Online Divisive-Agglomerative Clustering (ODAC) proposal. The ODAC
is a feature clustering algorithm that constructs a hierarchical tree-shaped structure of
clusters using a top-down strategy. The system uses the Pearson’s correlation coefficient
between time series as a similarity measure, but performs these computations over suffi-
cient statistics of each time series, maintained over time — a variation of CFs.

2.6.3 Collaborative and Distributed Learning

Current ubiquitous environments require that data mining systems should be designed
not to operate as a monolithic centralized application, but as a distributed collaborative
process. Instead of centralized relevant data in a single server and perform the data min-
ing operations later, the entire process should be distributed and paralleled throughout
the entire network of processing units (Rodrigues and Gama 2014). A brief overview of
proposed methods is provided, but more in-depth surveys can be found in (Gaber et al.
2014; Rodrigues and Gama 2014).

Consider a network of sensors. A traditional approach would consist of a centralized
process that would gather data from sensors and then perform a clustering procedure.
However, this raises two problems: first, the amount of data that each node needs to
communicate is restrained by the available bandwidth; second, and consequently, as the
number of sensors grow, the scalability of the approach degrades. In a different two-level
approach, as sensors evolve to “smart” sensors with processing abilities, each sensor can
separately cluster its own data and then combine the results on a centralized process
which defines the final clusters, based on the models transmitted by each sensor. This
has the advantages of clustering models becoming assets of the respective sensors and
limits data to be transmitted; this is similar to a strategy of cluster ensembles (Strehl and
Ghosh 2003).

In (Datta et al. 2006), a distributed k-means clustering technique is presented: local
algorithms monitor the data distribution and when they signal change, data is central-
ized and centroids updated; the new centroids are pushed back to the local nodes. A
different approach, but with local and global computations is proposed in (Cormode,
Muthukrishnan, and Zhuang 2007; Gama, Rodrigues, and Lopes 2011), with the same
overall goal. Also, in (Kargupta et al. 2001) the same strategy was previously devised
with PCA. The disadvantage of these approaches is that they all depend on a centralized
clustering procedure.

On the other hand, more interesting local and global clustering approaches have
been proposed, namely (Klusch, Lodi, and Moro 2003) for density-based clustering and
(Bandyopadhyay et al. 2006) for k-means. These techniques involve producing local
models at each node, that are later combined with other nodes (through P2P networks)
or centralized — this is considered the best strategy to be pursued in this thesis.
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Although collaboration is implicit in the previous proposals, it can be better under-
stood in a mobile setting. The interest is on how the knowledge available in the commu-
nity can be integrated in local models to improve them; the goal is not to learn a global
model, but to learn from other devices their models, while maintaining a local or subjec-
tive perspective. For example, (Wurst and Morik 2007) explore this idea by investigating
how communication among peers can enhance individual local models without aiming
at a common global model, in distributed media organization platform. The motivation
is similar to what is proposed in transfer learning (Pan and Yang 2010), assuming, how-
ever, a batch scenario.

Nonetheless, leveraging the trade-off between local and global models in ubiquitous
environments, either through centralization or collaboration, is dependent of the local
processing of data streams, hence the emphasis was given to this primary problem.

2.7 Critical Overview

The fundamental purpose of this chapter was to provide answers to the initial research
questions (Section 1.1), namely:

RQ1 What are the limitations of Self-Organizing Maps regarding streaming data?

RQ2 Can Self-Organizing Maps provide a valuable tool for data stream cluster analysis regard-
ing current methods? If so, which research paths should be pursued in terms of relevant
contributions?

RQ3 How to address the use of Self-Organizing Maps in ubiquitous environments?

In respect to RQ1, an overview was given regarding the original SOM algorithm and
its limitations in processing data streams, in particular the time-dependent learning pa-
rameters that affect the incremental learning capability of the algorithm in response to
non-stationary environments. Although the original Online SOM algorithm allows in-
cremental processing of observations, it was devised for static data, where N is known
in advance, and the PDF of the underlying distribution is considered stationary. In Sec-
tion 2.5 requirements for SOM variants dealing with the characteristics of data streams
were established. Some derive from constraints imposed by the data stream model and,
consequently, general characteristics algorithms should provide in performing cluster
analysis from data streams (Section 2.3.1). The remaining requirements are SOM-related,
i.e., maintaining the strengths of the original SOM in performing exploratory knowledge
discovery (Section 2.4.5), and to remove the time dependency when estimating learn-
ing parameters. Most surveyed proposals (Section 2.5.2) deal with non-stationarity by
adding or removing neurons from the network, e.g., GCS, ESOM, ESOINN — this alters
the regular topology of the SOM lattice and makes the application of the visualizations
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impossible. Others, e.g., PLSOM and DSOM, maintain the fixed topology and estimate
learning parameters through the instant quantization error Eq(t). While this allows the
SOM to retain an indefinite plasticity, this strategy does not allow proper convergence of
the prototypes towards a density matching vector quantization of the input space, which
also hinders the effectiveness of the visualizations. Hence, there is room for improvement
concerning new variants of the SOM algorithm specifically tailored for cluster analysis
over data streams. As an initial hint, such algorithms should include some kind of global
assessment metrics to gauge the trend of the learning process towards the current un-
derlying distribution of the data stream, e.g., global error estimates. With this, learning
parameters should be kept high if this error trend is increasing (the distribution is drift-
ing from the current mapping of the prototypes) and allow the map to globally adjust
to the new distribution. On the other hand, if the error trend is decreasing (the model
is converging) the learning parameters should decrease monotonically to allow proper
convergence of the map.

In respect to RQ2, most current proposals have, inspired by BIRCH and popularized
by CluStream, settled in a two-phase approach to data streams: (i) online summarization
of the data stream, and; (ii) offline cluster analysis. Most attention is focused on efficient
abstraction structures and methods that summarize the data stream. Mechanisms to deal
with change are embedded into these methodologies, following particular window mod-
els. In the context of data streams and limited memory it is impossible to summarize an
infinite time horizon. Therefore, abstraction procedures also aim at forgetting past sum-
maries that represent past persistent states (stationary moments) of the underlying distri-
bution. If, somehow, change detection mechanisms can be introduced, this may allow to
store past summary models for later evolutionary cluster analysis (Chakrabarti, Kumar,
and Tomkins 2006), if desired. However, none of the surveyed proposals address this
scenario. This approach contrasts with the CluStream approach to keep summaries over a
longer timespan. In the offline stage, current proposals provide clustering results, at user
request, through modifications of hierarchical, partitioning (e.g., k-means) or density-
based (e.g., DBSCAN) algorithms, being the later two the most common, applied to the
summary structures.

In Section 2.4.7 a comparative analysis between the SOM and other traditional cluster-
ing methods was presented regarding clustering results and knowledge discovery. Un-
doubtedly, the SOM is far more attractive for purposes of visual and exploratory knowl-
edge discovery, one of the main reasons for its popularity. The SOM is widely used as
a tool for mapping high-dimensional data into a two-dimensional representation space.
This mapping retains the relationship between input data as faithfully as possible, thus
describing a topology-preserving representation of input similarities in terms of distances
in the output space. The main advantage of such a mapping is the ease by which a user
gains an idea regarding the structure of the data by analyzing the map. Through visual-
ization techniques readily obtained from maps, it is possible to visually identify clusters
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(and cluster descriptions) on the map, without imposing any notion and number of clus-
ters. This characteristic is not found in other current data stream clustering methods. K-
means imposes previous knowledge of the number of clusters, which can vary through-
out the data stream; it also assumes the clusters are spherical and of equal importance.
Density-based algorithms depend on the parameterization of the required inter-distance
of a set of data points to consider them a cluster; but with high-dimensional data all
points are somewhat far from each other. However, in a streaming environment what is
the relevance of the information we can obtain from these methods, where timely knowl-
edge discovery is even more critical, apart from a grouping of summarized observations?
In streaming environments maximum knowledge should be obtained in the least amount
of time, e.g., monitoring applications. Here is where we should realize the SOM becomes
interesting. Also, apart from parameterization, the SOM exploratory knowledge discov-
ery is readily interpretable by the everyday person, if we intend to make it available to
anyone besides experts.

Cluster analysis over data streams begs for fast and timely knowledge discovery.
Apart from SOM and its visualization abilities, other methods involve some kind of trial
and error approach to obtain pertinent results. In (“Visual Data Mining” 2005) strong and
compelling arguments are made regarding visual knowledge discovery, quoting: “Visu-
alization has proven to be an essential support throughout the KDD process in order to extract
hidden information from huge amount of data. Visualization techniques enable the direct inte-
gration of the user to overcome major problems of automatic machine learning methods such as
presentation and interpretation of results, lack of acceptance of the discovered findings or limited
confidence in these. Since computers are still much less useful than the ability of the human eye
for pattern matching, visual data exploration techniques provide the user with graphic views or
metaphors that represent potential patterns and data relationships. (...) Human perception can
identify data relationships when a data set is two or three-dimensional. However, multidimen-
sional data sets with more than three dimensions require some kind of visual transformation to
be explored and analyzed.”. We cannot avoid considering the SOM as a realization of these
arguments.

From the above discussion, motivation for the use of SOMs in a streaming setting
should be clear. Moreover, current methods do not possess the versatility to cluster both
observations and features. Most of the literature is devoted to clustering of streaming ob-
servations, whereas literature regarding clustering the features, e.g., time-series, is scarce.
The SOM also has the ability to detect correlated features through component planes. In
respect to cluster analysis of data streams, an overall depiction of the current state-of-the-
art and the identified research gap is depicted in Figure 2.10.

Finally, regarding RQ3, the trade-off between local and global knowledge is now the
key point for clustering procedures over ubiquitous data streams (Rodrigues and Gama
2014). If data streams, pertaining the same problem, are being generated at distributed
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Figure 2.10: Panorama of available methods for clustering data streams before research.
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sites or devices, the favored approach is to allow the existence of local modes that cap-
ture the subjective view (clustering result) of the problem. Then, these models can be
centralized and/or shared to generate (more) global models in order to obtain a global
view of the problem. Having a SOM model that can produce a local clustering result, the
prototypes themselves describe the underlying distribution in a very compact way and
can be transmitted to other sites or devices to produce (more) global SOM models.

2.7.1 Research Paths and Additional Research Questions

Directed towards the above research questions, the following research paths were iden-
tified. In respect to using the SOM over data streams, two approaches can be taken,
namely:

Two-Phase Approach. First, inspired by the popular two-phase approach to data streams,
generate SOM models from summaries of the data stream. SOM models can potentially
be generated from existing abstraction procedures using CF-like structures or grid sum-
maries. However, these are generally very reduced in their number and SOM needs a
bigger pool of observations. If we intend to keep methodology proposals in the ANN
domain, ART networks seem attractive for this purpose (please recall Figure 2.7c for an
example of generated ART categories that are able to summarize a distribution). The
ART2-A algorithm (Section 2.4.1.2) predicts evolving data (proposed to solve the sta-
bility–plasticity dilemma) in some extent by creating new categories when the existing
are too different — based on a distance threshold, for the current observation. But two
problems remain: first, the computation of this threshold is, however, dependent of the
vigilance parameter, that when poorly estimated can lead to the proliferation of cate-
gories (high vigilance), violating the compact model requirement, or very coarse data
representation (low vigilance) leading to a poor abstraction of the input space; second,
a means to allow forgetting of old information must also be addressed. Noise will be
treated by ART as new categories, hence not being robust to noise, without further modi-
fications. Nonetheless, with a sufficient number of categories (composing a static dataset)
it should be possible to use the original SOM algorithms in an offline stage and perform
exploratory knowledge discovery.

Therefore, this research path raises the following research question:

• Can ART networks produce an efficient data stream summary from where SOM models can
be generated?

Online Approach. This approach is more ambitious and addresses a SOM variant tai-
lored for non-stationary data streams, obeying the requirements established in Section
2.5. Due to the topological ordering of the SOM prototypes and high-dimensional data
projection abilities, the SOM may be the most compact way to abstract a data distribution,
with immediate visualization capabilities. Global assessment metrics should be devised
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from where learning parameters are monotonically increased or decreased dependent on
the adaptation of the SOM lattice to the underlying distribution. This proposal has the
benefits of allowing real-time knowledge discovery from data streams.

Consequently, the additional research question this research path raises is the follow-
ing:

• Can Self-Organizing Maps learn non-stationary data streams, while keeping the original
SOM properties intact?

Distributed/Collaborative Learning. Having achieved the later approach, the collab-

orative/distributed aspect can be more easily tackled. Considering summary models
represent the local “knowledge” acquired in a particular site/device, obtaining global
models imply the “merge” of these local models. However, we should not transmit all
prototypes of the codebooks, since some of them may be “unrepresentative” prototypes,
that do not actually represent the local underlying distribution (recall Section 2.4.5, illus-
trating the non-optimal VQ procedure of the SOM). In a distributed collaborative setting,
we can envision mobile devices with sensing capabilities sharing their models with other
passerby devices, in an attempt to obtain global knowledge in a shared physical environ-
ment. In a centralized approach, we can imagine a large network of monitoring sensors
deployed in a city, e.g., monitoring air quality, where local models describe a particular
location and a global model depicts the entire city.

The additional research question raised in this setting is the following:

• Can distributed and collaborative learning strategies over ubiquitous data streams be de-
vised using Self-Organizing Maps?

Real-World Applications. Finally, from the fulfillment of the above research directions,
a set of real-world problems that could benefit from the research should be presented.
Hence, the final research question raised is:

• What sort of real-world problems can benefit from this research?

These additional research questions guide the main contributions made in this thesis
and are the focus of the following chapters.
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The scientist is not a person who gives the right answers,
he’s one who asks the right questions.

CLAUDE LÉVI-STRAUSS, FRENCH ANTHROPOLOGIST

(1908-2009)

This thesis addresses the use of Self-Organizing Maps in a data stream setting, also
contemplating their ubiquitous or distributed aspect. Such approach was motivated in
the previous chapter, where the use of Self-Organizing Maps was deemed relevant as a
versatile model-based exploratory cluster analysis method. From obtained SOM models,
and in particular the U-Matrix visualization, traditional cluster analysis (clustering ob-
servations) can be performed, without assumptions regarding the shape and number of
clusters. Also, a description the detected clusters can be obtained through the component
planes visualizations. As seen, these later visualizations can be used to detect correlated
features, consequently allowing the SOM to additionally perform clustering of features,
which, in a stream setting, is closely related to time-series clustering.

The following four sections concern the additional formalized research questions es-
tablished in Section 2.7.1, their aims and methodology summary — each of these sections
introduce the following four chapters, respectively. After, some considerations regarding
the normalization of data streams and assumptions made throughout the proposals of
this thesis are discussed in Section 3.5. Finally, artificial data streams used in evaluating
various algorithms and methodologies are briefly described in Section 3.6.
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3.1 A Two-Phase ART/SOM Approach to Data Streams

As surveyed in Section 2.6.1, most current state-of-the-art approaches to clustering data
streams have settled in a two-phase approach: an online summarization procedure cou-
pled with an offline cluster analysis stage at user request. The established goal is to inves-
tigate the feasibility of such approach based on an online data stream abstraction by ART
networks, towards offline SOM model generation. As an additional secondary goal, to
devise an assessment metric of fit regarding the current abstraction and the underlying
distribution of the data stream.

Research Question

Can ART networks produce an efficient data stream summary from where SOM models
can be generated?

Aim

Perform cluster analysis over non-stationary data streams.

Objectives

• Achieve summarizations of data streams through an ART algorithm;

• Produce SOM models on-demand from the previous summarizations;

• Test whether the mean quantization error metric can be adapted to an evolving
codebook for model assessment.

Methodology Overview

Establishment of the micro-category as the summarization basic structure. Micro-categories
are continuously generated over a landmark window through a constrained ART2-A al-
gorithm to produce an evolving codebook. The Batch SOM update rule is adapted to take
into account information from micro-categories. A set of micro-categories is composed,
regarding a specified elapsed time interval of the data stream. The average quantization
error is established as a primary metric to assess model adaptation by averaging local
quantization errors in a sliding window. Parameter sensitivity analysis is performed
for the introduced parameters of the summarization procedure. Evaluation of proposed
methodology is carried out using artificial data streams.
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Streams

3.2 The Ubiquitous Self-Organizing Map for Non-Stationary Data
Streams

The SOM is probably one of the best summarization structures available, from where
knowledge discovery can be readily derived through its visualizations. However, current
SOM variants, that would be fit for data streams, lack the combined desired properties
proposed in Section 2.5.1. Of particular interest is to increase or decrease the learning
parameters proportionally to the trend of the model adaptation to the underlying distri-
bution of the data stream. The established goal is to investigate if such an algorithm can
be realized by estimating learning parameters from global assessment metrics of fit be-
tween the current codebook and the underlying non-stationary data stream. Devising an
aforesaid variant allows real-time exploratory cluster analysis (and knowledge discov-
ery, in general) by means of the SOM visualizations. A second goal regards proposing an
automatic feature clustering method for SOM models.

Research Question

Can Self-Organizing Maps learn non-stationary data streams, while keeping the original
SOM properties intact?

Aim

Develop a new variant of the SOM tailored for non-stationary data streams and real-time
exploratory cluster analysis.

Objectives

• Derive global assessment metrics of fit for the SOM regarding the underlying data
stream;

• Modify the SOM update rule to estimate time-independent learning parameters
from the above metrics;

• Introduce a feature clustering method based on component planes;

• Evaluate the capabilities of the obtained algorithm for performing exploratory clus-
ter analysis over observations and features.

Methodology Overview

The average quantization error and average neuron utility metrics are proposed and com-
bined in a drift function that is used to estimate learning parameters. After an initial
ordering phase over the data stream, the remaining of the learning procedure is guided
solely based on the previous function — the algorithm implements a finite state machine
composed by two states corresponding to the ordering and convergence phases suggested
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by Kohonen (please recall Section 2.4.4); the algorithm transitions between both states de-
pending on specific conditions. The algorithm is named Ubiquitous Self-Organizing Map
(UbiSOM), already predicting applications for ubiquitous data streams. Parameter sen-
sitivity analysis for two newly introduced parameters is performed. Comparison of the
UbiSOM against the Original SOM algorithm, PLSOM and DSOM is presented. Finally,
evaluation of the algorithm (and methodology) in performing cluster analysis over ob-
servations and features is presented. All results are obtained using artificial data streams.

3.3 Distributed and Collaborative Learning of Ubiquitous Data
Streams

Given the possible distributed nature of data streams in some applications, the estab-
lished goal concerns addressing the trade-off between local and global models, leverag-
ing the capabilities of the UbiSOM in maintaining models over local data streams.

Research Question

Can distributed and collaborative learning strategies over ubiquitous data streams be
devised using Self-Organizing Maps?

Aim

Distributed and collaborative learning of ubiquitous data streams.

Objectives

• Introduce a mechanism to filter out unrepresentative prototypes from UbiSOM
codebooks;

• Devise methodology to transmit and centralize UbiSOM codebooks and allow the
generation of global models;

• Differentiate the above strategy from collaborative learning, where devices inter-
acting over the physical space are able to share models.

Methodology Overview

Both distributed and collaborative learning methodologies involve the communication
or exchange of “filtered” UbiSOM codebooks, from where unrepresentative prototypes
are removed. These codebooks are then centralized or shared between devices to com-
pose dynamic datasets, from where the global models are generated; a simple method
to remove similar prototypes is also introduced as a way to avoid overvaluing shared
regions of the input space. Evaluation of proposed methodologies is performed using
artificial data streams.
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3.4 Real-World Applications

Algorithms and methodologies are only as useful as their real-world applicability. The
established goal is to investigate the potential of the proposed algorithms and method-
ologies in a set of real-world problems.

Research Question

What sort of real-world problems can benefit from this research?

Aim

Real-world applications of proposed algorithms and methodologies.

Objectives

• Selection of a real-world problem from where to perform traditional cluster analysis
over data streams;

• Use real-world distributed data streams to illustrate the generation of global mod-
els;

• Perform feature clustering over a real-world data stream.

Methodology Overview

Application of the UbiSOM algorithm to an household electric consumption data stream
to continuously provide a clustering result of electric consumption patterns. A similar
application to distributed air quality monitoring data is presented, but with local Ubi-
SOM models generated at each monitoring station and global models generated to assess
air quality in the overall area. Finally, an application to stock market data, to illustrate
the potential of the feature clustering abilities of the SOM, is presented using the Strea-
mART2A/SOM methodology. The goal is to cluster similarly behaved time series, that
can be later used for portfolio selection and/or monitoring.

3.5 Considerations on the Normalization of Data Streams

Any distance-based clustering algorithm is sensible to the numerical range of features. It
is a well-known fact that performing normalization has a huge impact on the quality of a
clustering (or VQ) process. This is due to the distance computations, where some features
can dominate the results, e.g., when they have a higher dynamic range. Normalization
is then suggested to avoid this problem (Shalabi, Shaaban, and Kasasbeh 2006). Regard-
ing data streams, no clear discussion of this problem was found in literature; in general,
works assume the normalization. One should note that there are “range-insensitive”
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Figure 3.1: Maximum distance in the assumed normalized input space of data streams.

metrics, e.g., the dot product, which can be used in clustering tasks, but are not useful
for the purposes of this research, in the sense that they do not permit the generation of
prototypes of data (abstraction of the input space).

Therefore, proposed methodologies in the following chapters assume that a min-max
normalization can be performed on the data streams. This type of normalization scales
all features within the same range, based on their minimum and maximum values, and
usually yields the best results in most data mining tasks (Shalabi, Shaaban, and Kasasbeh
2006); it is also easy to perform over incoming observations in an online fashion. To
clarify, the assumptions made regard knowing beforehand lower and upper bounds for
the features, allowing the normalization to be performed. With this information, we can
derive the maximum distance possible between two examples in the normalized input
data space, denoted by j
j. It is common for this normalization to scale features in the
range [0; 1], but this is not strictly necessary. In general, if all features are normalized and
bounded between[x

0

min; x
0

max], this yields a hypercube, where the maximum distance
between any two points is given by Eq. (3.1) and illustrated in Figure 3.1. This can be
seen as the largest diagonal of the normalized input space.

j
j = (x
0

max � x
0

min)
p
d : (3.1)

The value j
j is later used to maintain Euclidean distances in the interval [0; 1] and
applied in particular situations, e.g., easily translate between ART vigilance � 2 [0; 1] and
distance thresholds, and maintain global assessment metrics of the UbiSOM also in the
[0; 1] interval.
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In real-world applications, computing j
j requires that lower and upper bounds of
individual features values are known. In sensor data, for example, data is bounded to
the range of the sensor outputs themselves. In financial data, one can establish bounds
from historical information or within a window model (Ogasawara et al. 2010). Further
research on this subject is traversal for data streams.

3.6 Artificial Data Streams

In the following three chapters several artificial data streams are used to evaluate algo-
rithms and methodologies. Table 3.1 summarizes these data streams together with refer-
ence to chapters were they are used. Below a brief description of each and intended usage
is given — note that, besides a specific aim, all data streams (except Correlated) were used
in the parameter sensitivity analysis of algorithms in Chapters 4 and 5.

Except data streams d2k20, d3k20 and d5k20 — obtained from publicly disclosed data
in (Frahling and Sohler 2008), all others were generated for this research study. Reposi-
tory information and illustrative images of these data streams can be found in Appendix
B.

Gauss Two-dimensional stationary data stream containing 100 000 points from a bi-variate
normal (Gaussian) distribution, centered at the origin and identity co-variance ma-
trix; used to evaluate if proposed and compared methods can model the input space
density properly;

Complex Two-dimensional stationary data stream containing 100 000 points describing
a complex cluster structure, with seven clear clusters; used to evaluate if the clus-
ters are detectable in the U-Matrix visualization of obtained SOM models. It is also
split into four quadrants when illustrating the distributed and collaborative learn-
ing methodologies;

Chain Three-dimensional stationary data stream containing 100 000 points describing
two interlocked rings (clusters); used to evaluate if the clusters are detectable in the
U-Matrix visualization of obtained SOM models;

d2k20, d3k20 and d5k20 Stationary data streams consisting of 300 000 points in d dimen-
sions, describing 20 Gaussian clusters in different dimensions. The data stream is
used to evaluate if the clusters are detectable in the U-Matrix visualization of ob-
tained SOM models; it is also used to test scalability of algorithm in Chapter 4.

AbruptOneTwo Two-dimensional non-stationary data stream containing 200 000 points
describing an abrupt-changing (change point at t = 50 001) simple cluster struc-
ture with one Gaussian cluster splitting in two; aims at evaluating how different
algorithms react to sudden change in the distribution;
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Name d N Stationary Change at #Clusters Chapters

Gauss 2 100 000 Y - 1 4, 5, C

Complex 2 100 000 Y - 7 4, 5, 6

Chain 3 100 000 Y - 2 4, 5, C

d2k20 2 300 000 Y - 20 4, 5, C

d3k20 3 300 000 Y 20 4, 5, C

d5k20 5 300 000 Y 20 4, 5, C

AbruptOneTwo 2 100 000 N 50 001 1/2 4, 5, C

DriftTwoOne 2 200 000 N [50 001; 150 000] 2/1 4, 5, C

Clouds 2 200 000 N [50 001; 150 000] 2/3/2 4, 5

Hepta 3 150 000 N 100 001 7/6 4, 5

Correlated 10 100 000 N 50 001 NA 5

Table 3.1: Summary of artificial data streams, where d is the dimensionality of the data
stream and N is the number of observations.

DriftTwoOne Two-dimensional non-stationary data stream containing 200 000 points
describing a gradual change in a simple cluster structure, i.e., two Gaussian clusters
merging into one (change occurs during t = [50 001; 150 000]); aims at evaluating
how different algorithms react to gradual change in the underlying distribution;

Clouds Two-dimensional non-stationary data stream containing 200 000 points describ-
ing a gradual changing cluster structure of three Gaussian clusters (change occurs
during t = [50 001; 150 000]); aims at evaluating how different algorithms react to
gradual change in the underlying distribution;

Hepta Three-dimensional non-stationary data stream containing 150 000 points describ-
ing an abrupt-changing cluster structure (change point at t = 100 001). From the
initial seven Gaussian clusters (hence the name), one disappears; aims at evaluating
how different algorithms react to sudden change in the underlying distribution and
to motivate the proposal of the average neuron utility assessment metric in Chapter
5;

Correlated As opposed to the previous data streams, this is utilized to evaluate the fea-
ture clustering methodology, i.e., time-series clustering. The data stream contains
5 pairs of correlated time-series (d = 10) with different degrees of correlation. The
pairwise correlations abruptly change at t = 50 001 and are described in Chapter 5
and also in Appendix B.
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A Two-Phase ART/SOM Approach to

Data Streams

Simplicity is the ultimate sophistication.

LEONARDO DA VINCI, ITALIAN POLYMATH (1452-1519)

The SOM is a valuable tool in knowledge discovery with numerous applications
found throughout literature. However, its adaptation to a streaming context is far from
straightforward. On the other hand, ART networks exhibit a natural incremental learn-
ing capability that can be explored to provide an online abstraction of the data stream,
with the intent to generate offline SOM models for exploratory cluster analysis. The goal
is to replicate the popular two-phase approach to data streams within the ANN field.

4.1 Chapter Overview

This chapter addresses a two-phase ART/SOM approach to data streams through the
proposal of the StreamART2A/SOM methodology. The StreamART2A is a data stream
abstraction procedure that operates online; from this abstraction, offline SOM models are
generated. The (moving) average quantization error metric is also introduced is this chapter
as a primary metric of fitness between a competitive learning codebook and the underly-
ing distribution.

The chapter is organized as follows. Section 4.2 presents the motivation and aim for
the overall proposal. The two-phase approach is described in Section 4.3, with particu-
lar attention devoted to the StreamART2A summarization procedure, presentation of the
modified update rule for the Batch SOM algorithm, used to generated the offline SOM
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models, and formalization of the average quantization error assessment metric. Analysis of
the StreamART2A algorithm and its parameters is performed in Section 4.4. In Section
4.5, evaluation of the overall methodology is performed, including a parameter sensi-
tivity analysis for the StreamART2A algorithm and evaluation of obtained offline SOM
models for exploratory cluster analysis. Section 4.5.6 provides an empirical validation of
the introduced average quantization error. Finally, some final remarks and future work are
discussed in Section 4.6.

4.2 Motivation and Aim

Motivated by the popular way of addressing data streams using a two-phase approach
(reviewed in Section 2.6), one of the outlined research paths was to devise such a method-
ology adapted for offline exploratory cluster analysis by the SOM. With the intent to keep
proposals in the ANN domain, the ART2-A algorithm (see Section 2.4.1.2) exhibits incre-
mental learning properties — through the dynamic creation of categories representing a
group of observations (recall Figure 2.7c), that is interesting to derive an online summa-
rization procedure. However, as previously discussed, the vigilance parameter is hard to
estimate and plays a critical role in the number and granularity of categories generated:
if too high, it leads to the proliferation of fine categories; if too low, coarser categories are
generated that may not capture a more detailed abstraction of the underlying distribu-
tion. ART networks also do not forget old information, one of the required characteristics
for data streams regarding the non-stationarity problem.

Hence, the main aim is to develop an online abstraction methodology based on the
ART2-A algorithm that can be leveraged offline by the SOM. Another aim is to develop a
method that can be used to assess the fitness of the abstraction to the underlying distri-
bution of the data stream, by adapting the standard quantization error Eq(t) (see Section
2.4.6) to a stream setting. This can potentially allow the development of change detection
mechanisms and therefore enable, e.g., storing snapshots of current abstractions for later
cluster analysis.

4.3 A Two-Phase StreamART2A/SOM Methodology

In (Silva and Marques 2012) the proposed methodology was presented, using a con-
strained variant of the ART2-A algorithm (Carpenter, Grossberg, and Rosen 1991a) for
the abstraction step of the data stream, called StreamART2A. Contrary to the common
usage of ART networks to find cluster centers, the idea from the micro-clustering strategy
of CluStream (Aggarwal et al. 2003) was followed, with the goal of generating representa-
tive prototypes (micro-categories) of the streaming observations to produce an abstraction
model. From this model, an offline SOM model were generated and exploratory cluster
analysis performed. The average quantization error metric for model assessment and
change detection was initially proposed and applied in (Silva and Marques 2012; Silva,
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Figure 4.1: StreamART2A/SOM methodology overview.

Marques, and Panosso 2012).

4.3.1 Methodology Overview

The proposed methodology is illustrated in Figure 4.1. The methodology consists in a
two-phase approach to data streams: an online phase where the StreamART2A algo-
rithm generates a fixed amount of micro-categories over a landmark window. There is an
explicit differentiation between a category, i.e., a cluster center in ART terminology, and a
micro-category, i.e., a representative prototype of a group of observations. The number of
generated micro-categories should be much lower than the number of observations pro-
cessed in the landmark window, effectively acting as a summarization procedure. The
number of generated micro-categories per landmark window is kept fixed by the dy-
namic reduction of the vigilance parameter and a micro-category merge procedure. The
idea of an ART network that restricts the number of categories has already been proposed
in (Yin and Shen 2011). However, the proposed StreamART2A algorithm differs in many
aspects, but share the limit test and vigilance update case. The generated micro-categories
are maintained in a first-in-first-out fashion and correspond to the stored model, or code-
book1.

Each micro-category contains a prototype of data, the number of observations it rep-
resents within the landmark window and a timestamp. After the processing of each land-
mark window, resulting micro-categories are added the stored model (codebook), which
can be limited in its capacity. From the stored model, and leveraging the timestamp in-
formation, micro-categories from a specific and available elapsed interval of the learned
data stream can be recovered and used offline as training observations by a Batch SOM
algorithm (see Section 2.4.2.1) — with a modified update rule to take into account the
observation counter of each micro-category. The offline exploratory cluster analysis is
performed through the U-Matrix visualization (see Section 2.4.5).

1This terminology is often associated with a VQ procedure and with the SOM. The terminology is also
applied to the model maintained by the StreamART2A algorithm for uniformity purposes.
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For model assessment (and change indication) of the underlying data stream, the local
quantization error is computed between the current observation being processed and the
“closest” micro-category in the codebook. The sequence of these errors are averaged
through a sliding window that can effectively indicate certain changes in the stream.

4.3.2 Notation

The StreamART2A operates over a multidimensional stream of continuous real-valued
observations X1; X2; : : : ; XN , potentially unbounded (N ! 1), from a manifold 
 2 Rd.
Each observation presented at time t is described by a d-dimensional feature vector, i.e.,
X(t) = [xjt ]

d
j=1. The process is maintained over a landmark window (see Section 2.6.1.2)

of size L where q micro-categories (q � L) are generated. Each micro-category is a tuple
Qi = hWi; N

Q
i ; T

Q
i i, where Wi is a prototype vector, NQ

i is the number of observations
assigned to the micro-category within the landmark window and TQ

i is the timestamp
indicating the create or last update time of the micro-category. Starting from an empty
set Q of micro-categories (m = 0) and � = 1, the final set is obtained through dynamic
reduction of �, which is a measure of similarity, and a micro-category merge procedure
which limits their amount by the q threshold, i.e., m � q. After each landmark window
the resulting q micro-categories are added to the set K (the stored model or codebook)
and older ones removed. The codebook size is bounded by a parameter K.

4.3.3 The StreamART2A Algorithm

Given the assumed normalization of the input space (discussed in Section 3.5), the rela-
tion between distance and similarity of two vectors A and B is defined by:

dist(A; B) =
k A � B k
j
j (4.1)

similarity(A; B) = 1� dist(A; B) (4.2)

Each streaming observation X(t), presented at time t, is compared to the m current
prototypes in a search stage and the most similar prototype Wc(t) is found. A vigilance
test, defined in Eq. (4.3), is performed to verify if the degree of similarity between the
example and most similar prototype Wc is at least as high as the vigilance parameter �.

match =

8<
:true if similarity

�
X(t);Wc(t)

� � �

false otherwise
(4.3)

If so, a match is found — the observation lies within the perceptive field of the micro-
category, and the corresponding micro-category Qc is chosen to represent the observa-
tion. Following a WTA strategy, the prototype Wc(t) is updated by Eq. (4.4), where � is a
constant learning rate, the value NQ

i is incremented and the timestamp is set to the current
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Notation Description

d data stream dimensionality

t time, i.e., iteration number

X(t) observation presented at time t, where X(t) 2 Rd
L size of landmark window

q maximum number of micro-categories within a landmark window

m number of micro-categories generated in the current landmark window

Qi a micro-category — a tuple hWi; N
Q
i ; T

Q
i i

Wi prototype vector of micro-category Qi

NQ
i number of observations represented by Qi

TQ
i timestamp of Qi (create or last update time)

Q set of all micro-categories per landmark window, bounded by q

K set of all stored micro-categories (codebook), bounded by K

K maximum number of micro-categories to hold in the codebook

E0
q(t) normalized local quantization error for X(t)

j
j normalized input space manifold diagonal (see Section 3.5)

qe(t) average quantization error at time t

T size of sliding window for qe(t) computation

Table 4.1: Notation for the StreamART2A algorithm.
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time, i.e., TQ
c = t.

Wc(t+ 1) = � X(t) + (1� �) Wc(t) (4.4)

Otherwise, a new micro-category is created, where the current observation is used as
the prototype initialization. Until now, this follows the original ART2-A algorithm in its
essence.

To limit the number of micro-categories created to q, a limit test is performed before
processing the example. If the number of current micro-categories m exceeds q, the two
most similar micro-categories are merged. Let

fQi; Qjg = max
�

similarity(Wi;Wj) : i; j = f1; : : : ;mg; i 6= j
	

(4.5)

be the most similar pair of micro-categories. A new micro-categoryQmerge is created with
the prototype given by Eq. (4.6) and corresponding tuple by Eq. (4.7).

Wmerge =

 
NQ
i

NQ
i +NQ

j

!
Wi +

 
NQ
j

NQ
i +NQ

j

!
Wj (4.6)

Qmerge = hWmerge; N
Q
i +NQ

j ; ti: (4.7)

The vigilance parameter is dynamically updated according to Eq. (4.8) only if the sim-
ilarity between the prototypes of the merged micro-categories is lower than the current
vigilance value.

�new =

8<
:similarity(Wi;Wj) if similarity(Wi;Wj) < �

� otherwise
(4.8)

Finally, the micro-categories Qi and Qj are discarded from the set Q and Qmerge is
added. Consequently, after a landmark window is processed we obtain the set Q =

fQ1; Q2; : : : ; Qqg.

The StreamART2A model (or codebook) K of micro-categories is maintained by this
procedure: at the end of each landmark window the resulting q micro-categories are
added to K and the oldest removed. The maximum size of this codebook is defined
by a user-defined parameter K, which is ultimately limited by the available memory or
secondary storage space. Hence, the codebook effectively contains the last K generated
micro-categories. The entire procedure is formalized in Algorithm 2. Optionally, ob-
tained micro-categories that represent only one observation, or below some threshold,
can be discarded in an attempt to deal with noisy observations. However, this study is
reserved for future work and discussed in Section 4.6.
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Algorithm 2: The StreamART2A algorithm.
Input:
X : A sequence of observations X(t)
L: Size of landmark window
q: Maximum number of micro-categories per landmark window
�: Learning rate used for updating a micro-category prototype
K: Maximum number of micro-categories to hold in the model

Output: A codebook K, containing K micro-categories

1 begin
2 Q  ?

3 K  ?

4 m 0
5 � 1
6 t 0
7 foreach Xt do
8 if m > q then // limit test
9 Find most similar micro-categories fQi; Qjg using Eq. (4.5)

10 Create Qmerge using Eq. (4.7)

11 s similarity(Wi;Wj)
12 if s < � then
13 � s
14 end
15 Q  Q� fQi; Qjg
16 Q  Q[ fQmergeg
17 end

18 Find Wc(t) and perform vigilance test using Eq. (4.3)
19 s similarity(X(t);Wc(t))

20 match false
21 if s � � then // vigilance test
22 match true
23 end

24 if match = true then // update micro-category Qc

25 Wc(t+ 1) = � X(t) + (1� �) Wc(t)

26 NQ
c  NQ

c + 1

27 TQ
c  t

28 else // create new micro-category
29 Qnew  hXt; 1; ti
30 Q  Q[ fQnewg
31 end

32 t t+ 1
33 if t mod L = 0 then // check end of landmark window
34 K  K [Q
35 Q  ?

36 m 0
37 � 1

38 end
39 end
40 end 77
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One consequence of this process is that during the first L observations of the data
stream the model is effectively empty. Also, when processing a landmark window, their
respective micro-categories are not yet part of the codebook. While we can also use the
current m micro-categories as part of the model, there is no guarantee that they had the
opportunity to converge to truly representative prototypes. However, misrepresentations
should be diluted in a bigger pool of micro-categories.

The maximum time horizon (ht) permitted by the codebook is given by Eq. (4.9).
Consequently, it is possible to recover micro-categories that are within the interval [t �
ht; t] — if additionally using the micro-categories contained in the landmark window (see
above).

ht = L
K

q
(4.9)

Consequently, evolving data, i.e., non-stationarity of the data stream, is dealt by an
implicit sliding window imposed by K, where only the more recent micro-categories are
retained. This strategy is similar to ones of current surveyed methods in Section 2.6.1.

4.3.4 Modified Batch SOM Algorithm

From the maintained codebook of the StreamART2A algorithm, micro-categories for a
specific elapsed interval [t1; t2], with t1 � t2, of the data stream can be recovered to com-
pose a dataset D =

�
Qi : T

Q
i 2 [t1; t2]

	
, which is used to generate an offline Batch SOM

model from where to perform exploratory cluster analysis on the underlying distribution
during the period [t1; t2]. The Batch SOM variant was chosen because it is faster, has one
less parameter and we do have all necessary input patterns. Consequently, each input
pattern presented to the Batch SOM algorithm is a prototype from a micro-category in
the dataset, i.e., X(t) � Wi 2 D. We shall refer to these particular input patterns as input
prototypes.

A modification to the update rule, enabling it to account the “weight” of an input
prototype, is introduced. Only by this way can we keep the input space density matching
in the SOM projection. Equations (4.10) and (4.11) formalize the weight computation and
modified Batch SOM update rule, respectively.

�X(t) = �Wi =
NQ
i

maxfNQ
j : Qj 2 Dg

(4.10)

Wk(tf ) =

Pt0=tf
t0=t0

�X(t)hck(t
0)X(t)Pt0=tf

t0=t0
�X(t)hck(t0)

(4.11)

The weight of an input prototype is the ratio between the number of observations the
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respective micro-category represents and the maximum number of observations repre-
sented by any other micro-category in D. Therefore, �X(t) 2 ]0; 1]. This modified Batch
SOM update rule is similar to the original — see Eq. (2.6), but weighs the contribution of
each input prototype in the self-organization process.

A direct benefit of this methodology is that by comparing models at different inter-
vals, cluster evolution analysis is possible.

4.3.5 Trend of Model Adaptation by the Average Quantization Error

Since N ! 1, the quantization error (QE) measure was adapted to data streams as a
moving average2 and denominated average quantization error, denoted by qe, based on the
premise that the error of a learner will decrease over time for an increasing number of ex-
amples if the underlying distribution is stationary; otherwise, if the distribution changes,
the error increases (Gama et al. 2004). Ultimately, it gives us the trend of the codebook
adaptation to the underlying stream. Afterwards, change detection mechanisms can be
attempted over qe.

Hence, for each incoming observation X(t) we find the prototype Wc(t) 2 K that is
closest to X(t) and compute the normalized local quantization error E0

q(Xt) according to
Eq. (4.12). These values are averaged over a window of length T � 1 to obtain the
average quantization error qe(t), as in Eq. (4.13). It should be obvious that the first qe(t)
is only available at t = T + 1, starting from t = 0.

E
0

q(t) = dist
�

X(t);Wc(t)
�
=
k X(t)� Wc(t) k

j
j (4.12)

qe(t) =
1

T

t�T+1X
t

E
0

q(t) (4.13)

Consequently, the value of T establishes a short, medium or long-term trend of the
model adaptation, but is bounded by K.

4.4 StreamART2A Algorithm Analysis

The StreamART2A algorithm provides a summarization of the data stream, in the form
of micro-categories, through a landmark window. One could be led to believe that the
observations are processed in batches of L observations, but this is not the case. Obser-
vations are processed sequentially and no past observations are kept in memory by the
algorithm.

An analysis regarding the processing within each landmark window should be made.
The ratio L=q can be seen as the summarization ratio, e.g., for L = 1000 and q = 20 this

2In signal processing a moving average can be seen as a low-pass filter. Low-pass filters provide a
smoother form of a signal, removing the short-term fluctuations, and leaving the longer-term trend.
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Figure 4.2: StreamART2A: example of procedures in a landmark window, where q equal
to the number of underlying clusters.

gives us a ratio of 50. In this concrete case, and as an example, a micro-category can
represent an average of 50 observations if these are drawn from a well defined 20 Gaus-
sian cluster structure with equal probability; the prototypes adjust to the centers of the
clusters by gradient descend and the perceptive field established by � covers each cluster.
This example is illustrated in a two-dimensional case in Figure 4.2, showing the result-
ing micro-categories within the first landmark window, after specific iterations (starting
from t = 0): (A) t = 19, (B) t = 20, (B) t = 21, (B) t = 22, (B) t = 23 and (B) t = 999. In
(A) there is one micro-category assigned to an observation of each cluster. In (B) a new
micro-category is created, totaling m = q + 1 micro-categories. In (C) the limit test trig-
gers a merge procedure, where the two identified micro-categories are merged and � is
decreased (resulting m = q); the observation processed in this iteration leads to the cre-
ation of a new micro-category (again, m = q+1). In (D) a similar processing to (C) occurs,
but in this iteration � is not updated — the similarity between those two micro-categories
is at least equal to the vigilance. In (E) another two micro-categories are merged and �

updated (m = q); the current observation is assigned to an existing micro-category. This
endures until the end of the landmark window, where (F) depicts the resulting q micro-
categories.

Although the previous parameterization coped well with the data, real data is not this
well-behaved. If just analyzing the StreamART2A algorithm over one landmark window,
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Figure 4.3: StreamART2A: alternate result regarding Figure 4.2, with q greater than the
number of underlying clusters.

it can be deemed unstable, because the micro-categories that are generated are dependent
upon the order of the observations. In the previous example, if the first q observations
were not drawn uniformly from all clusters, the consequence would be that some micro-
categories would represent more than one cluster and their centers may not lie over any
input data. Consequently, a value of q smaller than the total number of underlying clus-
ters forces one micro-category to represent more than one cluster.

However, the purpose of the StreamART2A algorithm is not to produce categories
representing clusters, but micro-categories, in the sense that the goal is for a micro-
category to represent a group of observations, not necessarily a cluster. The cluster
analysis is later performed by the SOM algorithm. Figure 4.3 presents the result with
L = 1000, but q = 50, in a situation where the observations are not drawn uniformly from
the natural clusters. We can see that each cluster is being represented by more than one
micro-category, effectively abstracting the underlying cluster structure. It is expected that
micro-categories from subsequent landmark windows have different prototypes. Thus, a
set of several landmark summarizations used as input prototypes should allow the SOM
to converge to the natural clusters. Other examples of resulting landmark windows over
different data streams are later provided in Section 4.5.4.

As a final observation regarding the value K, besides establishing the maximum
micro-categories in the codebook, it should at least allow the recovery of sufficient micro-
categories to train a SOM of a given size; in this case the dataset will be relatively small
(see Section 2.4.4).

4.4.1 Time and Space Complexity

Before discussing the time and space complexity of the algorithm, we should discuss
the storage mechanism of the codebook, which can impose an additional computational
overhead, dependent of the parametersK and q. IfK is a multiple of q, then the codebook
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Figure 4.4: A StreamART2A codebook implemented by means of a balanced binary tree.

can be implemented as a simple queue with a fixed size. However, if it K is not a multiple
of q, the most efficient way (regarding access/insert/delete operations) to ensure that
only the lastK micro-categories are kept is by using a binary tree, with the timestamp as a
node comparator, as shown in Figure 4.4. However, this imposes an additional overhead
at the end of each landmark window, since the insert and delete operations in a binary
tree have an average complexity of O(log n) and O(n) in the worst case (if not balanced),
contrary to the linear complexity offered by an efficient implementation of a queue.

Consequently, establishing K as a multiple of q is recommended. The time complex-
ity analysis will assume a queue is used.

The processing of each observation has a time complexity of O
�
(qd)2 + qd

�
in the

worst case, i.e., one merge procedure and the search stage; a micro-category create/up-
date procedure is performed in O(1). However, it is expected that most observations
within the landmark window, with decreasing �, do not trigger a merge between micro-
categories. At the end of each landmark window there is an overhead of O(q) to move
the generated q micro-categories to the codebook K. Notwithstanding the variability in
the number of actual operations needed per observation, the StreamART2A algorithm
processes the observations in constant average time. Regarding space, the StreamART2A
imposes a total space complexity of O(qd + Kd), i.e., the memory needed to hold the
micro-categories within the current landmark window and the micro-categories in the
codebook. The computation of the average quantization error imposes additional time
and space constraints upon the StreamART2A algorithm: each observation requires ad-
ditional O(Td) time and space is increased by O(T ) to store the last T values (assuming
an efficient queue is used).

4.5 Experimental Evaluation

A series of experiments was conducted to evaluate the proposed methodology using
stationary and non-stationary artificial data streams. Artificial data was chosen for this
purpose so we can establish the ground truth of the expected outcome and illustrate some
key points.
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Data Stream Type of Evaluation

Name d N Stationary Change at #Clusters PSA VIL ECA MA

Gauss 2 100 000 Y - 1 ; X X

Complex 2 100 000 Y - 7 X X X X

Chain 3 100 000 Y - 2 ; X X

d2k20 2 300 000 Y - 20 ; X

d3k20 3 300 000 Y - 20 ; X

d5k20 5 300 000 Y - 20 X X X

AbruptOneTwo 2 100 000 N 50 001 1/2 X X X

Clouds 2 200 000 N [50 001; 150 000] 2/3/2 X X X X

Hepta 3 150 000 N 100 001 7/6 ; X X X

Table 4.2: Experimental evaluation overview for the StreamART2A/SOM methodology.
The symbol Xidentifies results presented in this chapter; experiments marked with ;are
presented in Appendix C. Parameter sensitivity analysis (PSA); Vigilance impact and
landmark examples (VIL); exploratory cluster analysis (ECA), and; model assessment
and change indication (MA).

4.5.1 Overview

The presented experiments focus on the following evaluations:

i. Parameter sensitivity analysis (PSA) for the StreamART2A algorithm to assess the
impact of the parameters fL; q; �g in the summarization procedure. This is pre-
sented in Section 4.5.3 and the objective is to derived good empirical all-around
parameters from the tested data streams.

ii. Obtained vigilance � values and comparison of micro-categories generated within
a landmark window for different parameterizations — presented in Section 4.5.4.

iii. Offline exploratory cluster analysis by Batch SOM models generated from micro-
categories extracted at specific time-intervals of the data streams; the visually in-
ferred clusters are compared with the expected outcome — presented in Section
4.5.5 and aims at evaluating the presented methodology.

iv. Change indication in the underlying data streams through the use of the qe(t)

model assessment metric — presented in Section 4.5.6.

Table 4.2 summarizes the artificial data streams used in each type of evaluation previ-
ously described. This table also identifies some additional results that can be found in
Appendix C, namely in Section C.1.
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4.5.2 Data Normalization and Algorithm Parameters

All artificial data streams were normalized in the unit hypercube, i.e., X(t) 2 [0; 1]d.
The StreamART2A algorithm parameters are derived after the PSA analysis of the fol-
lowing section. The parameterization of the Batch SOM algorithm is performed em-
pirically, since only “rules-of-thumb” exist towards finding good parameters (Kohonen
2001). Concerning the lattice size it should be rectangular in order to minimize projection
distortions, hence we use a 20�40 lattice. The remaining parameters values were �i = 0:1,
�f = 0:01, �i = 1=2

p
202 + 402 and �f = 1 with training enduring 10 and 40 ordering and

convergence epochs, respectively. Justification for the choice of these parameters can be
found in Section 2.4.4.

4.5.3 Parameter Sensitivity Analysis

This section presents a parameter sensitivity analysis (PSA) for the StreamART2A algo-
rithm to assess the impact of the parameters fL; q; �g in the summarization procedure,
regarding the relative quantization errors of resulting micro-categories and the mean
number of merges in the landmark windows. The parameter L determines the size of
the landmark window, q establishes the maximum number of micro-categories to gener-
ate for each landmark window and � dictates the gradient descend step size adjustment
of a micro-category prototype update, i.e., the learning rate.

The parameter sensitivity analysis was performed in three dimensions with L = {500,
1000, 1500, 2000}, q = {20, 50, 100, 200} and � = {0.05, 0.1, 0.2, 0.5} as the parameter-space,
against the following two statistics:

Mean quantization error. After a landmark is processed and q micro-categories are gen-
erated, the presented L observations are reused to compute the mean quantiza-

tion error of the landmark window, i.e.,
�Pt+L�1

i=t E
0

q(t)

�
=L, being E

0

q(t) computed

with Wc(t) inside the landmark window. The final obtained statistic (Mean E
0

q(t)) is
the mean value obtained between all landmark windows until the end of the data
stream.

Mean number of merges. Computes the mean number of merges across all landmark
windows, i.e., for each landmark window the number of micro-category merges is
accumulated and averaged between the total number of landmark windows used
throughout the data stream.

Figure 4.5 presents the results of the PSA analysis for the Complex and d5k20 station-
ary data streams. Analogously, Figure 4.6 presents the results for the AbruptOneTwo and
Clouds non-stationary data streams. To preserve the flow of this chapter, results for the
other data streams can be found in Section C.1.
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Figure 4.5: Parameter sensitivity analysis results for the StreamART2A algorithm over
stationary data streams.
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Figure 4.6: Parameter sensitivity analysis results for the StreamART2A algorithm over
non-stationary data streams.
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We are interested in the best balance between a low Mean E
0

q(t) and the minimum
mean number of merges, since the later penalizes the computational cost of a landmark
window. There is also a trade-off to achieve regarding the summarization ratio L=q, i.e.,
although it should be obvious that a lower ratio yields better results (less observations
to represent by the same number of micro-categories), we are interested in summarizing
the higher number of observations by the least amount of micro-categories to keep the
model more compact.

First, regarding the learning rate �, it becomes clear that the value 0:5 yields the worst
results. This is expected, since a value this high induces more pronounced updates in
the prototypes, preventing them to converge steadily to the center of the represented
observations. As for the other values, results are similar, but � = 0:05 seems to globally
attain better results independently of the other parameters.

As for the parameter q, the value q = 50 seems to give an overall best balance between
a lower mean quantization error and lower mean number of merges across the tested
data streams. Higher values of q naturally achieve a best quantization procedure, but the
smallest perceptive fields induce a higher number of merges. The contrary happens with
q = 20, for example. Moreover, if we take into account the example provided in Section
4.4 regarding the possible number of underlying clusters, indeed q = 50 seems like a
better value.

Finally, in respect to the parameter L, and assuming � = 0:05 and q = 50, a lower L
value provides better results as expected. However, since the aim is to also obtain a good
summarization ratio, the choice of L = 1000 seems a good compromise. Also, pertaining
the offline SOM models generation and corresponding lattice size of 20� 40: by choosing
this value we can obtain 1000 micro-categories for each 20 000 presented observations to
the StreamART2A algorithm, which should be sufficient to generate a good SOM model
for a time interval of that length. If we opted for L = 2000, then for such a time interval
we would only obtain half of the micro-categories, i.e., 500. This highlights the fact that
the choice of the parameters may be influenced by the size of the target SOM model to
produce and granularity of time intervals of interest. Consequently, the recommended
ground parameters derived from this PSA and discussion are L = 1000, q = 50 and
� = 0:05.

Additionally, Figure 4.7 exhibits the behavior of the mean number of merges using
the d5k20 data stream. Naturally, the mean number of merges converges to the L asymp-
totic value as q increases.

A brief analysis of the impact of increasing dimensionality of the data stream is il-
lustrated in Figures 4.8 and 4.9 regarding the mean number of merges and scalability of
the algorithm, respectively. For this purpose, the d2k20, d3k20 and d5k20 data streams
were used, since they describe a similar cluster structure in different dimensional spaces.
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Figure 4.8: Impact of data dimensionality, with varying q, in mean number of merges.

In respect to the mean number of merges, they increase together with data dimension-
ality, given the relative higher distances encountered in higher dimensional spaces. As
for the scalability of the summarization procedure, the cost increases due to the number
of dimensions to consider in the distance computations; the impact of the parameter q
is higher due to the higher number of merges necessary. The scalability regarding q, al-
though not linear, is proportional to q (plus the overhead of the merges) which is in line
with the algorithm analysis performed in Section 4.4.1.

4.5.4 Vigilance and Landmark Window Illustrations

This section provides an evaluation and illustrations of the effect of the StreamART2A al-
gorithm parameterization on the generated micro-categories within landmark windows.
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Figure 4.9: Impact of data dimensionality, with varying q, in the computational cost of a
landmark window.

In particular, the q value has a direct impact on the vigilance values obtained within land-
mark windows, i.e., higher values produce “smaller” micro-categories regarding their
perceptive fields and, by consequence, higher vigilance values. In the opposite direction,
a lower number of micro-categories to represent the same amount of observations yields
“larger” perceptive fields and lower vigilance values.

Table 4.3 presents the vigilance � values obtained for all used data streams in the
present evaluation regarding the mean and standard deviation across all landmark win-
dows. The ground parameters derived from the PSA were used, together with some vari-
ations for comparison and illustration purposes. Overall, we can see that the standard
deviations value are very low, an indication that the summarization process is stable over
stationary and non-stationary data streams. Also, for the same ground parameterization,
the attained vigilance values vary for the different underlying cluster structures of the
data streams. This is an indication that there is no fixed value that can be derived for all
problems, further justifying the dynamic adjustment of the vigilance values within land-
mark windows. Moreover, the results confirm the relationship between the parameter q
and the obtained vigilance values stated in the previous paragraph.

Concerning particular cases chosen to illustrate some key points:

• Figures 4.10a and 4.10b illustrate the resulting micro-categories for the first land-
mark window of the Complex data stream, varying the parameters L and q, but with
the same summarization ratio. It is visible that using q = 100 produces a finner ab-
straction of the cluster structure, but with a higher computational cost, i.e., a higher
mean number of merges exhibited in the PSA. However, in practical terms we must
recall that micro-categories are generated continuously for subsequent landmark
windows, which allow a larger group of coarser micro-categories generated with
q = 50 to also describe the underlying cluster structure with success, e.g., subse-
quent prototypes will rarely be in the same positions. This is demonstrated in the

89



4. A TWO-PHASE ART/SOM APPROACH TO DATA STREAMS 4.5. Experimental Evaluation

Data Stream Parameters �

Name d Stationary L q � Mean Std. Illustration

Gauss 2 Y 1000 50 0.05 0.95309 0.00169

Complex 2 Y
1000 50 0.05 0.95242 0.00119 Figure 4.10a

2000 100 0.05 0.96852 0.00049 Figure 4.10b

Chain 3 Y
1000 50 0.05 0.95256 0.00097 Figure 4.11a

2000 50 0.05 0.95241 0.00101 Figure 4.11b

d2k20 2 Y 1000 50 0.05 0.96913 0.00094

d3k20 3 Y
1000 50 0.05 0.96882 0.00084 Figure 4.12a

1000 20 0.05 0.94636 0.00426 Figure 4.12b

1000 10 0.05 0.81622 0.02049 Figure 4.12a

d5k20 5 Y 1000 50 0.05 0.97116 0.00062

AbruptOneTwo 2 N 1000 50 0.05 0.97686 0.00412

Clouds 2 N 1000 50 0.05 0.97646 0.00145

Hepta 3 N 1000 50 0.05 0.95669 0.00179

Table 4.3: Obtained vigilance values across all tested data streams for various parameter-
izations.

following section when generating the offline SOM models;

• Figures 4.11a and 4.11b depict the first landmark window for the Chain data stream
with L = 1000 and L = 2000, respectively. Two things can be inferred: first, from
the previous PSA (Figure 4.5) we can see that the later parameterization leads to
more micro-category merges, but looking at the obtained vigilance values they are
identical. From here we can infer that, with q = 50, in a stationary phase of the
data stream, no more than 1000 observations are necessary to derive a good overall
vigilance � value;

• In the StreamART2A algorithm analysis, a recommendation was made in relation
to choosing values of q at least as high as the maximum number of expected clusters
in the underlying distribution. The d3k20 data stream describes a cluster structure
composed by 20 clusters in three-dimensional input space. Figures 4.12a, 4.12b
and 4.12c illustrate example micro-categories generated within a landmark win-
dow using q = f50; 20; 10g, respectively. While the larger values allow a correct
summarization of the cluster structure, using q = 10 generates micro-categories
whose centers do not lie over the cluster centers. The consequence of this is further
illustrated in the obtained offline SOM models of the next section.

Finally, using the same parameterization, the obtained vigilance values for the d2k20,
d3k20 and d5k20 do not vary significantly. However, this is because the derived vigilance
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Figure 4.10: Generated micro-categories for first landmark window over the Complex data
stream.

(a) L = 1000, q = 50, � = 0:05.

(b) L = 2000, q = 50, � = 0:05.

Figure 4.11: Generated micro-categories for first landmark window over the Chain data
stream.
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(a) L = 1000, q = 50, � = 0:05.

(b) L = 1000, q = 20, � = 0:05.

(c) L = 1000, q = 10, � = 0:05.

Figure 4.12: Generated micro-categories for first landmark window over the d3k20 data
stream.
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Figure 4.13: Obtained d5k20 offline SOM models for t1 = 0, t2 = 20 000, with varying q
values.

values are obtained with normalized distances — see Equations (4.1) and (4.2).

4.5.5 Exploratory Cluster Analysis

In this section, offline 20� 40 Batch SOM models — using the new update rule presented
in Eq. (4.11), for a time horizon of 20 000 observations are presented, from where ex-
ploratory cluster analysis is performed through the derived U-Matrix visualization. For
such a time horizon, this yields a necessary value of K � 1000 — Eq. (4.9). All results
were obtained with parameters L = 1000, q = 50 and � = 0:05, except were stated. The
parameterization of the Batch algorithm remains as in Section 4.5.2, namely: �i = 0:1,
�f = 0:01, �i = 1=2

p
202 + 402 and �f = 1, with training enduring 10 and 40 ordering and

tune epochs, respectively.

Figure 4.13 presents the U-Matrices of SOM models obtained from the micro-categories
generated in the time interval t = [0; 20 000] for the d5k20 data stream, with varying q val-
ues. In the sequence of the discussion in Section 4.5.4, we can confirm that q = f20; 50g
allows the detection of 20 clear clusters, while using q = 10 does not allow to derive the
expected cluster structure.

Other examples of obtained models and U-matrices for stationary data streams are
presented in Figure 4.14, namely for the Gauss, Complex and Chain data streams. To-
gether the results indicate that indeed the presented methodology of micro-categories
and weighted batch update rule is able to capture the underlying cluster structure and
match the input space density. The later is more obvious in the Gauss data stream model
with the lattice concentrating more neurons in the denser input space region; in this case
the resulting U-Matrix is unintelligible because there is a single cluster in the underlying
distribution. U-Matrices for the Complex and Chain data streams clearly indicate, 7 and 2
clusters, respectively, which conforms with the expected outcome.
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Figure 4.14: Batch SOM models, and derived U-Matrices, generated from specific time
intervals over the stationary Gauss, Complex and Chain data streams.
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In respect to the non-stationary data streams more than one interval was used to pro-
duce the offline SOM models in the attempt to derive the evolution of the underlying
cluster structure. Figure 4.15a depicts the U-Matrices obtained from models generated
from the set t =

�
[0; 20 000]; [80 000; 100 000]; [130 000; 150 000]

	
of time intervals for the

Clouds data stream. The expected evolution from 2=3=2 clusters can be derived from the
visualizations. As for the Hepta data stream two time intervals were used, namely before
and after the disappearance of the central cluster, e.g., t =

�
[80 000; 100 000]; [100 000; 120 000]

	
,

and results are presented in Figure 4.15b. Again, the correct evolution from 7 to 6 clus-
ters is correctly identified. The previous identified cluster structures are correct and can
be confirmed by the data streams illustrations and in Appendix B by attending to the
extracted intervals.

4.5.6 Model Assessment

The resulting average quantization values qe(t) of the model assessment methodology
in Section 4.5.6 are presented in this section. Four data streams were chosen to illustrate
the proposed method which are either stationary or contain different types of changes
in the underlying cluster structure over time. All results used T = 500 aiming at a
medium-term change indication, where present. The codebooks were generated by a
StreamART2A algorithm with ground parameters L = 1000, q = 50 and � = 0:05. The
computation of the qe(t) metric uses the current observation and the corresponding clos-
est micro-category found in the current codebook K. The size of the codebook was set
with K = 1000, hence it contains micro-categories for a time horizon of 20 000 past sum-
marized observations. Please note that there are only micro-categories in the codebook
after the processing of the first landmark window and the qe(t) metric needs T observa-
tions to produce the initial value. Consequently, the following qe(t) values can only be
computed after L+ T observations have been presented to the StreamART2A algorithm.

The metric was proposed with the premise that the quantization quality of the code-
book will improve, at least until it reaches its maximum size, if the underlying distribu-
tion is stationary, i.e., the error of the “learner” decreases as it learns more observations.
If the underlying distribution changes, we expect that current micro-categories in the
codebook temporarily (until sufficient new ones are added) fail to properly represent the
new observations. Hence, the qe(t) resulting curve should rise as an indication of change.

Figure 4.16a presents the results for the stationary Complex data stream. Indeed, the
qe(t) values decrease until the codebook is full, i.e., t = 20 000, and the curve is stable
throughout the remaining learning procedure. In Figure 4.16b, depicting the result for the
AbruptOneTwo data stream, we can also observe the same decreasing behavior. However,
the abrupt change in the data stream at t = 50 000 is immediately indicated by the qe(t)
curve, followed by a similar decrease in the new stationary phase of the data stream. The
Clouds data stream contains a gradual change in the underlying distribution from t =
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50 000 to t = 150 000, where two of the clusters centers move throughout the input space.
This type of gradual change is harder to detect, but the sequence of qe(t) values illustrated
in Figure 4.16c actually indicate a gradual and continuous change in that period. Finally,
the Hepta data stream presents a even harder change to detect with this metric alone.
Until t = 100 000 the observations are drawn from an underlying distribution consisting
of 7 Gaussian clusters with equal probability. At the change-point one clusters disappears,
but the corresponding probability is divided equally among the remaining 6 clusters.
Results are illustrated in Figure 4.16d and we can see that the error does not increase, but
decreases slightly, because the available micro-categories will now have to represent only
6 clusters. Hence, improvements are necessary in this model assessment methodology in
dealing with the disappearance of clusters and an overall automatic change detection
mechanism. Both these aspects are discussed in the next section.

4.6 Remarks and Future Work

In this chapter the popular two-phase approach to data streams (see Section 2.6) was
replicated towards using the SOM to perform offline exploratory cluster analysis. The
data stream abstraction procedure is performed by a constrained ART2-A algorithm,
called StreamART2A, that introduces the concept of micro-category. A set of K micro-
categories — the codebook or StreamART2A model, is maintained and updated by a
continuous procedure that generates representative micro-categories within consecutive
landmark windows. This allows the codebook to represent only more recent information
and implicitly deal with the non-stationary characteristics of data streams. A comprehen-
sive evaluation of the abstraction procedure performed by the StreamART2A algorithm
was performed, including a parameter sensitivity analysis from where recommended
parameters were proposed. These parameters should work well across many different
problems. Exploratory cluster analysis performed with the SOM over selected periods of
the artificial data streams confirmed the expected clustering results.

In this chapter only the clustering of observations task was addressed using artificial
data streams. Application of the presented methodology to real-world data can be found
in Chapter 7, after the feature clustering methodology for SOM models is presented in
Section 5.6.

There are some open issues that are reserved for future work. These are addressed in
the following paragraphs.

Noisy data. As suggested in Section 4.3.3, using a sufficient high q value, e.g., q = 50,
some noisy observations (e.g., common in sensor applications) can be detected within
micro-categories, attending on the respective number of observations they represent. By
the competitive learning scheme, which minimizes the MSE, it is expected that micro-
categories represent in average the same number of observations. However, due to the
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Figure 4.16: Behavior of E
0

q(t) and qe(t) over various data streams with L = 1000, q = 50,
� = 0:05, K = 1000 and T = 500.
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dynamic creation of micro-categories this may not uphold in practice. Consequently, if a
noisy observation (in particular an outlier) arrives in the beginning of a landmark win-
dow, there is a high probability that it will be “contained” inside a single micro-category,
far apart from the others created. In this case, at the end of the landmark window one
can discard micro-categories that represent one or a small number of observations, based
on some threshold. This is similar to strategies employed by grid-based methods, e.g.,
D-Stream (see Section 2.6); however, discarding micro-categories can have an impact on
the underlying data structure used to hold the codebook — as discussed in Section 4.4.1,
regarding the relation between q and K. On the other hand, if noisy observations are
processed after the q micro-categories have been reached, then they will have to be in-
corporated in an existing micro-category or cause merges. In this later case, the vigilance
parameter may be altered artificially by the presence of noise, which has a global impact
within that landmark window. This problem may be attenuated in subsequent landmark
windows, as the offline models will necessarily use micro-categories from more than a
single landmark window (very few are generated inside each landmark window, not
sufficient to generate a large SOM model, as the ones explored). Therefore, the impact of
noise on the StreamART2A procedure is a problem that should be studied.

Model assessment. From the results presented in Section 4.5.6, it became clear that the
model assessment strategy based on qe(t) values may not indicate change in a consistent
manner, i.e., increase of the qe(t) values in the presence of change. For example, the
disappearance of clusters decreases the error (recall Figure 4.16d).

Some possible strategies for automatic change detection over qe(t) values should al-
ways expect error increase in the presence of change; otherwise, the convergence of the
model would be seen as change. In the next chapter, when the UbiSOM algorithm is
presented, this problem is solved by introducing another assessment metric used in con-
junction with the qe(t) metric (namely, in Section 5.3.3). In the case of the StreamART2A
model assessment procedure, this additional metric would require that we monitor the
ratio of micro-categories (belonging to the codebook) that have been active in the last T
observations; “active” meaning a micro-category was selected as the BMU3 in the qe(t)
computation. If a high number of micro-categories cease to be active, then this implies
that some region in the input space has disappeared. As such, this technique would allow
the previous required consistency in error increase in the presence of any type of change,
and may be explored in future work.

Automatic change detection. With automatic change detection mechanisms, upon de-
tection, a snapshot of the codebook K can be stored for later offline analysis. Otherwise,
the time horizon from which offline models can be generated is limited by the Strea-
mART2A parameterization, namely by Eq. (4.9). Towards this improvement, some sug-
gestions are made regarding developing or using existing separate methods in future

3This SOM terminology was used to convey the idea in a more succinct way.
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work.

Some time was devoted pursuing automatic change mechanisms that could be ap-
plied to the average quantization error qe(t). In (Silva, Marques, and Panosso 2012) the
StreamART2A algorithm was employed over a data stream containing the Dow Jones
Index values and other computed technical statistics, with the overall goal of detect-
ing change in financial markets. The methodology consisted in computing two average
quantization errors

�
qe1; qe2

	
of different lengths, i.e., T2 � T1, so as to obtain a short and

a relatively longer trend. By subtracting the latter from the former, a detection threshold
around the value of zero is obtained, i.e., when the subtraction exceeds zero, change is
detected. This methodology stems from a widely used technique in financial markets to
detect changes in the trend of stock values. While this application was successful in de-
tecting changes, the estimation of appropriate window sizes is not straightforward and
may require expert domain knowledge.

Other strategies were explored, namely some inspired by statistical process control
(Bošnjak and Cisar 2010). Let an anomalous behavior be signaled by:

E
0

q(t) � (�+ 1)qe(t)

where 0 < � < 1 is the percentage above the average quantization error that is considered
anomalous. This, by itself, could lead to false positive alarms in the presence of noise.
Hence, change can be signaled when anomalous behavior is detected for C consecutive
violations of the threshold:

X
1tn=t�C+1fE’q(n)�(�+1)qe(n)g � C:

Such strategy makes it very easy to automatically detect abrupt changes in the data
stream, e.g., Figure 4.16b. However, gradual changes, e.g., Figure 4.16c, are harder to de-
tect with this strategy. If the previous anomalous behavior is instead defined by qe(t) �
(�+ 1)qemin, then gradual changes may be possible to detect.

Notwithstanding these possible directions, there are other generic proposals in lit-
erature that can potentially be used, such as the use of martingales (Ho and Wechsler
2007) or differences between estimated distributions inside two consecutive sliding win-
dows (Kifer, Ben-David, and Gehrke 2004); differences are based on statistical tests, e.g.,
Kolmogorov-Smirnov test. However, they are completely separate procedures with their
own time and space complexity costs that do not make use of assessment metrics that
could be derived from the StreamART2A codebook. All these methods (discussed and
cited) are non-parametric. Parametric change detection in unsupervised learning may
be impossible, e.g., the errors E

0

q(t) do not fit into any known distribution — this was
verified experimentally during the research.
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5
The Ubiquitous Self-Organizing

Map for Non-Stationary Data
Streams

A belief is not merely an idea the mind possesses; it is an
idea that possesses the mind.

ROBERT OXTON BOLT, ENGLISH PLAYWRIGHT (1924-1995)

The previous methodology already allows SOM models to be obtained in a stream
setting, although in an offline manner. This imposes a delay in obtaining such models
for exploratory cluster analysis. Hence, a SOM variant that can learn directly for data
streams is of great interest for, e.g., real-time monitoring applications. However, the clas-
sical Online SOM algorithm relies on time-dependent annealing schemes to guide the
evolution of learning parameters, so as to ensure convergence of the map. Consequently,
it implicitly assumes the underlying distribution is stationary. This chapter addresses the
problem of learning non-stationary data streams with the SOM, towards the established
requirements for such variants.

5.1 Chapter Overview

This chapter presents and evaluates the Ubiquitous Self-Organizing Map (UbiSOM) (Silva
and Marques 2015a; Silva and Marques 2015b), a novel SOM algorithm tailored for non-
stationary multidimensional data streams.

The chapter is organized as follows. In the next section, motivation and aims are
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presented, which support the methodology. In Section 5.3, the proposed model and algo-
rithm are detailed and formalized, after which some considerations are made in Section
5.4 regarding the dynamics of the algorithm and its computational complexity. A compre-
hensive validation and experimental evaluation with artificial data streams is presented
in Section 5.5, targeting parameter sensitivity analysis, convergence over stationary and
non-stationary data streams, visual exploratory cluster analysis and comparison with ex-
isting variants. Section 5.6 addresses the clustering of features (related to time series
clustering), namely the methodology and evaluation with artificial data. In Section 5.7,
after the algorithm is presented and evaluated, its characteristics are compared against
the proposed requirements of Section 2.5.1. Finally, Section 5.8 concludes the chapter,
including foreseen future work.

5.2 Motivation and Aim

In Chapter 4 the use of the SOM for exploratory cluster analysis was addressed in a two-
phase approach to data streams, where SOM models are obtained offline from summa-
rizations provided by the StreamART2A algorithm. This is a viable approach comparable
with other surveyed methods (Section 2.6), but leveraging the powerful data visualiza-
tion abilities of the SOM. However, some applications may benefit from a real-time use
of the SOM in streaming environments, e.g., monitoring applications, where cluster anal-
ysis can be performed readily from the SOM visualizations. This is supported by the fact
that the SOM codebook may be regarded as one of the best abstraction models, due to the
topology-preserving mapping and readily derived visualizations, as discussed in Section
2.7. Also, the feature clustering capabilities of the SOM can be explored in this setting,
which are intrinsically related to clustering time series (see Section 2.6.2). Hence, a SOM
variant that learns directly from non-stationary data streams is of significant relevance.

In Section 2.5.1, desirable requirements SOM variants should possess for this purpose
were proposed. The original SOM algorithm uses annealing schemes for the learning pa-
rameters �(t) and �(t) to ensure convergence. Although this results in a stable learning
process, fixed annealing schemes require that the total number of observations is known,
which is not the case with unbounded data streams. Even if an annealing scheme is
used only in the first iterations and then learning parameters remain with low values in
subsequent iterations, this completely removes the SOM ability to react to change in the
underlying distribution, because the magnitude of the prototype updates, i.e., loses plas-
ticity. Other variants, surveyed in Section 2.5.2, that can deal with non-stationarity and
use time-independent learning parameter estimation, either alter the SOM lattice regular
structure, by dynamically adding or removing neurons — which hinders the standard
visualization capabilities, or maintain the regular structure and estimate the parameters
based on the local quantization error Eq(t) alone, namely the PLSOM (Berglund 2010)
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and DSOM (Rougier and Boniface 2011). In theory, the later possess an indefinite plastic-
ity to cope with change, but by using only the local error they do not ensure the density
matching property of the original SOM, which can also affect the quality of the visualiza-
tions for exploratory cluster analysis.

Consequently, in Section 2.7.1, another path of research was established in order to
devise a new variant of the SOM algorithm that could overcome the above limitations,
which is the main objective of this chapter. The main idea expressed was to use global
assessment metrics from where learning parameters are monotonically increased or de-
creased dependent on the adaptation of the SOM lattice to the underlying distribution.
One of these metrics, namely the average quantization error qe(t), was introduced in Sec-
tion 4.3.5 and the results showed that its behavior matches the above desired behavior
that we wish to translate to the learning parameters. However, it does no allow to detect
all types of change, e.g., disappearance of clusters. Global assessment metrics can express
the fitness of the entire lattice to the underlying distribution, instead of local assessments
used by PLSOM and DSOM; also, they can potentially allow the monotonic decrease of
learning parameters during stationary phases of the data stream in order to ensure den-
sity matching. Consequently, the main goal of this chapter is dependent of the fulfillment
of another goals, namely: devising global metrics to assess the fitness of the model and
establishing how these metrics can be balanced to estimate learning parameters along
time, ensuring the model can react to the non-stationary aspect of data streams.

5.3 The Ubiquitous Self-Organizing Map

This chapter addresses the problem of maintaining a SOM model over potentially un-
bounded non-stationary data streams, by continuously estimating its learning parame-
ters adequately. The main intuition supporting this research is that the “fitness” of the
model to the underlying distribution should be continuously monitored and learning pa-
rameters adjusted accordingly, either to allow for convergence in stationary phases or to
increase plasticity in non-stationary phases.

5.3.1 Algorithm Overview

The proposed UbiSOM algorithm relies on two global assessment metrics, namely the
average quantization error and the average neuron utility, computed over a sliding window.
While the first assesses the trend of the vector quantization process towards the under-
lying distribution, the later is able to detect whether regions of the map have become
“unused”, given some changes in the distribution not detected by the previous metric,
e.g., disappearance of clusters. Both metrics are weighed by a drift function that gives
an overall indication of the performance of the map over the data stream, which is then
effectively used to estimate learning parameters.

Moreover, the UbiSOM implements a finite state-machine consisting of two states,
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namely ordering and learning states. The ordering state allows the map to initially unfold
over the underlying distribution with monotonically decreasing learning parameters; it
is also used to obtain the first values of the assessment metrics, transitioning afterwards
to the learning state. Hereafter, the learning parameters are decreased or increased based
on the drift function. This allows the UbiSOM to retain an indefinite plasticity, while main-
taining the original SOM properties, over non-stationary data streams. These states also
coincide with the two typical training phases suggested by Kohonen (see Section 2.4.4). It
is possible, however, that unrecoverable situations from abrupt changes in the underly-
ing distribution are detected, which leads the algorithm to transition back to the ordering
state.

5.3.2 Notation

The UbiSOM operates over a multidimensional stream of continuous real-valued set of
observations X1; X2; : : : ; XN , potentially unbounded (N ! 1), from a manifold 
 2 Rd.
Each observation is described by a d-dimensional feature vector X(t) = [xjt ]

d
j=1. As with

the classical model, UbiSOM establishes a topological ordered projection from the input
space manifold onto a set K of K “extended” neurons (the codebook), arranged in a
width � height regular lattice. Each neuron k in the UbiSOM model is a tuple Wk =

hWk; t
update
k ; tbmu

k i, where Wk 2 Rd is the data prototype, tupdatek stores the timestamp of
the last time its prototype was updated and tbmu

k stores the last time it was selected as
the BMU. The latter is not required in the methodology presented in this chapter, only
in collaborative and distributed learning mechanisms presented in Chapter 6, namely to
filter unrepresentative prototypes.

We assume all features of the data stream are equally normalized between [x
0

min;

x
0

max], as discussed in Section 3.5. For each incoming observation X(t), presented at time
t, two metrics are computed, within a sliding window of length T , namely the average
quantization error qe(t) and the average neuron utility �(t). The former was already in-
troduced in Section 4.3.5 and is adapted for the UbiSOM; the later �(t) metric averages
neuron utility �(t) values that are computed as a ratio of updated neurons during the last
T observations. Both metrics are defined between [0; 1] and are used in the drift function
d(t), where the parameter � 2 [0; 1] weighs the contribution of each metric.

The UbiSOM switches between the ordering and learning states, both using the clas-
sical Online SOM update rule, but with different mechanisms for estimating learning
parameters �(t) and �(t). The ordering state endures for T observations, until the first
values of qe(t) and �(t) are available, establishing an interval [ti; tf ], during which mono-
tonically decreasing functions �(t) and �(t) are used to decrease values between f�i; �fg
and f�i; �fg; respectively. The learning state estimates learning parameters as functions
of the drift function. Also, the UbiSOM neighborhood function is defined in such a way
that �(t) 2 [0; 1], as opposed to all existing variants, where the domain of these values is
dependent of the lattice size. The notation is summarized in Table 5.1.

104



5. THE UBIQUITOUS SELF-ORGANIZING MAP FOR NON-STATIONARY DATA STREAMS 5.3. The Ubiquitous

Self-Organizing Map

Notation Description

d data stream dimensionality

t time, i.e., iteration number

X(t) observation presented at time t, where X(t) 2 R
width width of the lattice

height height of the lattice

K total number of neurons, i.e., width� height

k neuron index

c index of BMU

Wk UbiSOM “extended” neuron: a tuple hWk; t
update
k ; tbmu

k i
Wk prototype of neuron k

tupdatek time stamp of last prototype update

tbmu
k time stamp of last selection as BMU

E
0

q(t) normalized local quantization error for X(t)

j
j input manifold diagonal, the normalization value used by E
0

q(t)

qe(t) average quantization error at time t

�(t) neuron utility at time t

�(t) average neuron utility at time t

d(t) drift function at time t

ti initial time of the ordering state

tf final time of the ordering state

Algorithm specific parameters

T size of sliding window / length of ordering state

� drift function weight factor

�i initial neighborhood for ordering state

�f final neighborhood for ordering state

�i initial learning rate for ordering state

�f final learning rate for ordering state

Table 5.1: Notation for the UbiSOM algorithm.
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5.3.3 Online Assessment Metrics

The purpose of the following metrics is to assess the “fitness” of the current UbiSOM
model to the underlying distribution. Both proposed metrics are computed over a sliding
window of length T and are later used to estimate learning parameters in the UbiSOM
algorithm.

Average Quantization Error

The average quantization error metric gives an indication of how well the map is currently
quantifying the underlying distribution. In most situations where the underlying data
stream is stationary, the metric is expected to decrease and stabilize. On the other hand,
if the shape of the distribution changes, it is expected to increase.

The widely used mean quantization error (QE) metric (see Section 2.4.6) is the stan-
dard measure of fit of a SOM model to a particular distribution. It is typically used to
compare SOM models obtained for different runs and/or parameterizations and used in
a static data setting. The rationale is that the model which exhibits a lower QE value is
better at abstracting the input space.

Regarding data streams, this metric, as it stands, is not applicable because data is po-
tentially infinite. Competing approaches to the proposed UbiSOM, name PLSOM and
DSOM — Section 2.5.2, estimate learning parameters proportionally to the local quan-
tization error Eq(t). However, the local error is very unstable because the topological
projection and quantization is a many-to-few mapping, where some observations are
better represented than others. Moreover, considering stationary distributions, Kohonen
recommended that both �(t) and �(t) should decrease monotonically with time, a critical
condition to achieve convergence (Kohonen 2001). As an example, with stationary data
the local error does not decrease monotonically over time, just the overall variance, e.g.,
see Figure 5.1 until t = 50 000.

In the UbiSOM algorithm, the mean quantization error was modified to a moving
average in the form of the proposed average quantization error qe(t), based on the premise
that the error of a learner will decrease over time for an increasing number of examples if
the underlying distribution is stationary; otherwise, if the distribution changes, the error
increases. For each observation X(t) the E

0

q(t) local quantization error is obtained during
the BMU search, as the normalized Euclidean distance:

E
0

q(t) =
k Xt � Wc k
j
j (5.1)

where j
j is the largest diagonal of the normalized input space, as discussed in Section
3.5. These values are averaged over a window of length T � 1 to obtain qe(t), defined in
Eq. (5.1). Consequently, the value of T establishes a short, medium or long-term trend of
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Figure 5.1: Example of behavior of local E
0

q(t) vs. average quantization error qe(t).

the model adaptation.

qe(t) =
1

T

t�T+1X
t

E
0

q(t) (5.2)

Despite the moving average also changing during gradual changes of the data streams
(as later illustrated in Section 5.5), it shall be exemplified first on an extreme case. Fig-
ure 5.1 depicts the behavior of both E

0

q(t) and qe(t) values (for T = 1000) during an
example run of the UbiSOM algorithm over a data stream containing an abrupt change
at t = 50 000, between two stationary phases. We can observe that E

0

q(t) values exhibit
a large variance throughout time, even during stationary intervals, as opposed to qe(t)

which is smoother and indicates the trend of the convergence. Therefore, the proposed
metric assumes that if qe(t) is decreasing, then the underlying distribution is stationary;
otherwise, it is changing. The first version of the UbiSOM algorithm proposed in (Silva
and Marques 2015a) only used this metric. However, it may fail to detect all types of
changes, therefore leading to the proposal of the following additional assessment metric.

Average Neuron Utility

The average neuron utility is an additional measure that gives an indication of the pro-
portion of neurons that are actively being updated. The decrease of this metric indicates
neurons with old information, which can reflect changes in the underlying distribution
not detected by qe(t).

The qe(t) metric may be a good overall indicator of the fitness of the model. Despite
that, it may be unable to detect the abrupt disappearance of clusters. For example, if we
have a stationary distribution composed of, e.g., seven Gaussian clouds of data points and
a UbiSOM model has converged over it, the qe(t) should be stable. If one of the clouds
disappears, there will be no increase in the qe(t) trend, since the “assigned” neurons for
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Figure 5.2: Example of a distribution change not detected by the average quantization error.
(A) Before change; (B) After the disappearance of the inner cluster, where it is visible a
region of unused neurons.

each cluster remain the same. Figure 5.2 illustrates this scenario, depicting an area of
the map with neurons that do not represent current observations, after the inner cluster
disappears. In this situation, the learning parameters should increase and allow the map
to recover from this situation. The average neuron utility �(t) was introduced to address
these situations.

To compute this assessment metric each UbiSOM neuron k contains a timestamp tupdatek

which stores the last time the corresponding prototype was updated, functioning as an
aging mechanism — this type of mechanism is popular in other SOM variants that add
and remove neurons dynamically (see Section 2.5.2) . A prototype is updated if it is
the BMU or if it falls in the influence region of the BMU, limited by the neighborhood
function. Initially, tupdatek = 0.

The neuron utility �(t) is computed with Eq. (5.3). It measures the ratio of neurons
that were updated within the last T observations, over the total number of neurons. Con-
sequently, if all neurons have been recently updated, then �(t) = 1. The values are then
averaged to obtain �(t), as formalized in Eq. (5.4).

�(t) =

PK
k=1 1ft�tupdate

k
�Tg

K
(5.3)

�(t) =
1

T

t�T+1X
t

�(t) (5.4)
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As a result, a decrease in �(t) indicates that there are neurons not being used to quan-
tize the data stream. In literature, these neurons are often called “dead-units” and the
existence of some of these neurons (units) may be considered normal when the SOM con-
verges over a relatively complex distribution, i.e., some units may lay between clusters
and never chosen as a BMU after convergence (recall example of Figure 2.5). Nonetheless,
a decreasing trend should alert for changes in the underlying distribution.

On the Use of Gaussian Moving Averages

Both qe(t) and �(t) effectively act as linear low-pass filters over a set of continuous values.
However, the presence of higher E

0

q(t) values, either caused by noise or abrupt change,
can also lead to non-differentiable responses of these metrics. With the goal of mono-
tonically decreasing/increasing learning parameters, we wish to avoid this behavior.
Smoother filter responses can be obtained with the use of Gaussian filters, at the expense
of a higher computational cost. A Gaussian filter is considered the ideal time domain fil-
ter whose impulse response is an approximation of a Gaussian function (Blinchikoff and
Zverev 2001). It also has additional advantages when compared to linear filters, namely
minimizing the rise and fall time of the response. To overcome the additional compu-
tation overhead, the fact that Gaussian filters can be approximated by cascading linear
filters, with decreasing window lengths by a specific factor (Wells 1986), was explored.

Consequently, instead of using one linear filter, i.e., simple moving average, of length
T , we can use a triple cascaded moving average of the same length to obtain a Gaussian
filter. Figure 5.3 depicts the same example of previous Figure 5.1, zoomed at the change
point, and two implementations for qe(t): a simple moving average (MA) and a triple
cascaded moving average (3MA), both with T = 1000. The later indeed exhibits better
properties to estimate learning parameters, namely a smoother response, e.g., differen-
tiable at all points, and minimization of rise and fall time in the presence of true change.
Also, sporadic high E

0

q(t) values caused by noise in the data stream, are also further
smoothed out by the 3MA. Appendix D contains additional information and implemen-
tation details on this particular moving average.

Thus, this research proposes the use of a 3MA for the assessment metrics qe(t) and
�(t) and all subsequent results for the UbiSOM algorithm also rely on a 3MA implemen-
tation.

5.3.4 The Drift Function

The previous metrics qe(t) and �(t) are both weighed in a drift function that is used by the
UbiSOM to estimate learning parameters. The drift function is defined as:

d(t) = � qe(t) + (1� �) (1� �(t)) (5.5)

where � 2 [0; 1] is a parameter that establishes the balance of importance between the
two metrics. Since both qe(t) and �(t) are only obtained after T observations, so is d(t).
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Figure 5.3: Behavior of a simple moving average versus a triple cascaded moving average
in the presence of abrupt change.

A quick analysis of d(t) should be made. First of all, it should be clear that if � = 1,
then the drift function is only defined by the qe(t) metric. With high learning parameters,
specially the neighborhood �(t) value, �(t) is expected to bet 1, which practically elimi-
nates the second term of the equation. Consequently, the drift function in only governed
by qe(t). When the neuron utility decreases, the second term contributes to the increase
of d(t) in proportion to the chosen � value. Empirically, � should be parameterized with
relatively high values, establishing qe(t) as the main measure of “fitness” and using �(t)

as a fail-safe mechanism.
Until the first T observations have been processed, the UbiSOM does not rely on the

d(t) function to estimate learning parameters, but on monotonically decreasing learning
parameters, as presented in Section 5.3.6.

5.3.5 The Neighborhood Function

The UbiSOM algorithm uses a normalized neighborhood radius �(t) learning parameter
and a truncated neighborhood function. The latter is what effectively allows �(t) to be
computed.

The performed normalization is based on the maximum distance between any two
neurons in the lattice. In rectangular maps the farthest neurons are the ones at opposing
diagonals, e.g., positions (0; 0) and (width� 1; height� 1) in Figure 5.4. Hence distances
within the lattice are normalized by the Euclidean norm of the vector DIAG = (width �
1; height� 1), defined as:

k DIAG k=
p
(width� 1)2 + (height� 1)2: (5.6)
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This effectively limits the maximum neighborhood width the UbiSOM can use and es-
tablishes � 2 [0; 1].

The neighborhood function of the UbiSOM variant is given by:

h0ck(t) = e
�

�
krc�rkk)

�(t) kDIAGk

�2
: (5.7)

Compared to the Original SOM neighborhood function (see Eq. 2.5), only the nor-
malization term is introduced. To get a grasp on how different � values determine the
influence region around the BMU, Figure 5.5 depicts Eq. (5.7) for different � values. Neu-
rons whose values of h

0

ck(t) are below a threshold of 0:01 are not updated. This is critical
for the computation of �(t), since h0ck(t) never reaches zero and all prototypes would still
be updated with very small values. The truncated neighborhood function is also a per-
formance improvement, avoiding negligible updates to prototypes. The threshold value
is empirical and has no significant consequence in the convergence of the map. For exam-
ple, the SOM is able to properly converge using the bubble function as the neighborhood
kernel (Kohonen 2013).

5.3.6 States and Algorithm Formalization

The UbiSOM algorithm implements a finite state-machine, i.e., it can switch between two
states. This design was, on one hand, imposed by the initial delay in obtaining values for
the assessment metrics and, consequently, for the drift function d(t). It was also seen as a
desirable mechanism to conform to Kohonen’s proposal of an ordering and a convergence
phase for the SOM (see Section 2.4.4). It was furthermore explored to deal with drastic
changes that may occur in the underlying distribution.

The UbiSOM algorithm switches between two states, namely ordering and learning,
where the same update rule is used, but with different parameter estimation methods.
The update equation is formalized in Eq. (5.8) and uses the neighborhood kernel of Eq.
(5.7). Please note that the prototypes are only updated above the established update
threshold. It is identical to the Online SOM algorithm (see Eq. 2.4), apart from the update
threshold.

Wk(t+ 1) =

8<
:Wk(t) + �(t)h0ck(t) [Xt � Wk(t)] if h0ck(t) > 0:01

Wk(t) otherwise
(5.8)

Figure 5.6 summarizes and depicts the two possible states of the UbiSOM algorithm
and when transitions occur. Each state is described next, together with the respective
learning parameter estimation methods.

Ordering State

The ordering state is the initial state of the UbiSOM algorithm and to where it reverts if it
cannot recover from an abrupt change in the data stream. It endures for T observations,

111



5. THE UBIQUITOUS SELF-ORGANIZING MAP FOR NON-STATIONARY DATA STREAMS 5.3. The Ubiquitous

Self-Organizing Map

Figure 5.4: Maximum lattice distance k DIAG k used for normalization of �(t).
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Figure 5.6: UbiSOM states and transitions.
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where learning parameters are estimated with a monotonically decreasing function, i.e.,
time-dependent, similar to the Online SOM algorithm. Thus, the parameter T simul-
taneously defines the window length of the assessment metrics, as well as dictates the
duration of the ordering state. The parameters should be relatively high, so the map can
unfold from a totally unordered initialization of the prototypes. This phase also allows
for the first value of the drift function d(t) to be available. After T observations the algo-
rithm switches to the learning state.

Let ti and tf = ti + T � 1 be the first and last iterations of the ordering phase, respec-
tively. This state requires choosing appropriate parameter values for �i, �f , �i and �f ,
which are the initial and final values for the learning rate and the normalized neighbor-
hood radius, respectively. The choice of values will greatly impact the initial ordering of
the prototypes and will affect the range of learning parameter values in the learning state.
Any monotonically decreasing function can be used, but the proposed algorithm uses the
decreasing exponential function for both learning parameters:

�(t) = �i

�
�f
�i

�t=tf
; �(t) = �i

�
�f
�i

�t=tf
8t 2 fti; ti+1; : : : ; tfg (5.9)

The same functions were suggested for the classical SOM algorithms in Section 2.4.4,
namely Eq. (2.8), and are effectively used in their implementations.

At the end of the tf iteration, the first value of the drift function is obtained and the
UbiSOM algorithm transitions to the learning state.

Learning State

The learning state begins at tf + 1 and is the main state of the UbiSOM algorithm, during
which learning parameters are estimated in a time-independent manner. Here, learning
parameters are estimated solely based on the drift function d(t), decreasing or increasing
relative to the first computed value d(tf ) and final values (�f ; �f ) of the ordering state.

Learning parameters �(t) and �(t) are estimated for an observation presented at time
t by Eq. (5.10), where d(t) was previously formalized in Eq. (5.5). One can easily see
that learning parameters are estimated proportionally to d(t). Also, final values of the
ordering state for �f and �f establish an upper bounded for the learning parameters in
this state.

�(t) =

8<
:

�f
d(tf )

d(t) d(t) < d(tt)

�f otherwise
�(t) =

8<
:

�f
d(tf )

d(t) d(t) < d(tf )

�f otherwise:
(5.10)

The outcome of these equations is that if the distribution is stationary the learning
parameters accompany the decrease of the drift function values, allowing the map to
converge to a stable state. On the contrary, if changes occur, the drift function values rise,
consequently increasing the learning parameters, and increase the plasticity of the map

113



5. THE UBIQUITOUS SELF-ORGANIZING MAP FOR NON-STATIONARY DATA STREAMS 5.4. UbiSOM Algorithm

Analysis

Parameter
Estimation
(based on state)

UbiSOM
Model

X(t), σ(t), η(t)

Assessment
Metrics

X(t) E′(t)

λ(t)
qe(t), λ(t)

UbiSOM

Figure 5.7: The UbiSOM algorithm seen as a feedback control system.

to a point where d(t) should decrease again. The temporarily increased plasticity should
allow the map to adjust to the distribution change.

Given that in this state the map is expected to start converging, the values of d(t)
should also decrease. Additionally, d(tf ) also limits the maximum values that learning
parameters can attain during this state. However, there may be cases of abrupt changes
from where the map cannot recover, i.e., the map does not resume convergence after
increasing d(t) values. Therefore, if it is detected that learning parameters are in their
peak values during at least T iterations, then this situation is assumed and the UbiSOM
transitions back to the ordering state. This transition event is detected using Eq. (5.11).

if
X

1fd(t)�d(tf )g � T ! ordering_state (5.11)

Algorithm Formalization

Based on the previous definitions of the assessment metrics, update rule, possible states
and correspondent learning parameter estimation methods, the UbiSOM algorithm is
formalized in Algorithm 3.

5.4 UbiSOM Algorithm Analysis

The UbiSOM is a deterministic algorithm given the same initialization of the map and
the same presentation order of observations. Non-determinism can only be introduced
by randomly selecting “tied” neurons in the BMU search. However, this is a very rare
event and all implementations of SOM algorithms present in this thesis select the first
BMU. No evidence was found in literature to favor an approach over the other.

In the ordering state, the UbiSOM algorithm behaves in an identical manner to the On-
line SOM algorithm, which has been validated empirically over decades of use. But, the
dynamics involved in the learning state are more intricate. At a higher level of abstrac-
tion, this phase of the UbiSOM algorithm resembles a feedback control system. A feedback
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Algorithm 3: The UbiSOM algorithm.
Input: X : A sequence of observations Xt
�i: Initial learning rate for the ordering state
�f : Final learning rate for the ordering state
�i: Initial neighborhood radius for the ordering state
�f : Final neighborhood radius for the ordering state
T : Window length for assessment metrics
�: Weight factor for the drift function

Output: A codebook K, containing K topologically ordered prototypes

1 begin
2 InitializeWk with random prototypes and tupdatek  0;
3 t 0;
4 ti  0;
5 tf  ti + T � 1;
6 current_state ordering_state;
7 foreach Xt do
8 for k  1 to K do
9 Wc  min

k
k X � Wk k;

10 Compute �(t) using Eq. (5.3) /* exploit loop */ ;
11 end

12 tbmu
c  t;

13 Compute E
0

q(t) using Eq. (5.1);

14 Process E
0

q(t) into qe queue;
15 Process �(t) into � queue;

16 if current_state = ordering_state then
17 Compute values of �(t) and �(t) using Eq. (5.9);
18 else /* learning state */
19 Compute values of �(t) and �(t) using Eq. (5.10);
20 end
21 for k  1 to K do
22 Update prototype Wk by (5.8);
23 tupdatek  t;
24 end

25 t t+ 1;

/* check state transitions */
26 if t = tf then
27 current_state learning_state;
28 else if

P
1fd(t)�d(tf )g � T then

29 current_state ordering_state;
30 ti  t;
31 tf  ti + T � 1;
32 Set all tupdatek  t;
33 end
34 end
35 end
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control system is a control system which uses the concept of an open loop system as its
forward path, but has one or more feedback loops (hence its name) or paths between
its output and its input. Effectively, by establishing the inputs X(t), �(t) and �(t) to the
UbiSOM model, there is a feedback loop in the form of averaged E

0

q(t) and �(t) values,
obtained as outputs. These, in turn, affect some of the next inputs, namely �(t) and �(t).
Figure 5.7 illustrates this feedback loop. These feedback control systems, also named
closed-loop control systems, are prevalent in the Process Control discipline, monitoring the
output of a process and “feeding” some of it back to compare the actual output with the
desired output so as to reduce the error; and, if disturbed, bring the output of the system
back to the original or desired response. However, the UbiSOM does not explicitly es-
tablish a desired response, but relies on the standard dynamics of the SOM to converge
during stationary phases of data streams. These dynamics are partially described in the
experimental results of Section 5.5.

The UbiSOM algorithm introduces two new parameters, namely T and �. Regarding
T , it establishes a short, medium or long term trend for the assessment metrics. Also, it
establishes the duration of the UbiSOM ordering state. As Kohonen recommended, the or-
dering phase of the SOM should comprise at least the presentation of 1000 observations
(Kohonen 2001), therefore we can establish T � 1000 as a starting point. With respect to �,
we should choose values in the upper-half of the [0; 1] range, so the average quantization
error metric is favored in the drift function d(t). Notwithstanding this empirical argu-
mentation, a parameter sensitivity analysis is presented in Section 5.5.3 to validate these
assumptions and to help select good values for these new parameters. Also, besides these
two specific UbiSOM parameters, the algorithm also relies on the same parameter-space
of the Online SOM algorithm for the ordering state, namely the parameters f�i; �f ; �i; �fg.
A discussion about the parameterization of the Online SOM algorithm can be found in
Section 2.4.4 and we should recall that these parameters are set empirically (Kohonen
2013). There, the following statement was made: “it is suggested that the width of the neigh-
borhood should be decreased from a width approximately on the order of half of the diameter of the
lattice, e.g., �i = 1=2

p
(width� 1)2 + (height� 1)2, for an initial global ordering of the proto-

types, down to only encompassing the adjacent neurons, e.g., �f = 1; the learning rate should,
for example, decrease from �i = 0:1 to �f = 0:01“. To transpose these suggestions to the Ubi-
SOM requires that we keep in mind two things: first, in the UbiSOM, the �(t) values are
normalized between [0; 1], dependent on the largest diagonal of the lattice (illustrative
values were depicted in Figure 5.5), and; second, when transitioning to the learning state,
we must allow the remaining of the learning process to be dependent of the assessment
metrics and, consequently, the drift function. That is, we do not want very small values
immediately for �(t) and �(t), but instead allow their estimation to be governed by the
drift function. With this in mind, and after hundreds of experimental tests, the following
values were found to work well for all tested data: �i = 0:1, �f = 0:08, �i = 0:6 and
�f = 0:2. Regarding the classical SOM algorithms, �i has the same recommended initial
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value as well as �i, the later in the sense that it is normalized. Based on Figure 5.5, the
value of �i = 0:6 imposes high updates on the order of half of the diameter of the lattice.
The final values of �f and �f are chosen to let the rest of the convergence be dependent
on the drift function. For example, in Section 5.5.4 when presenting the evolution of the
learning parameters with stationary data streams, it is frequent to see the estimated �(t)

and �(t) values in the learning state attaining values of 0:01 and 0:02, respectively; these
later values are comparatively very close to the recommended final values in the classical
SOM algorithms. Also, by normalizing �(t) values, they perform well independently of
the lattice size, because the reach of the neighborhood kernel is linearly proportional to
the lattice size.

5.4.1 Time and Space Complexity

The UbiSOM algorithm does not increase the time complexity of the Online SOM algo-
rithm, since all the potentially penalizing additional operations, namely the computa-
tions of the assessment metrics, can be performed in O(1). It should be noted that the
computation of �(t) values should be performed in parallel with the BMU search.

Regarding space complexity, it increases the space needed for: (i) storing two addi-
tional timestamps T update

k and T bmu
k for each neuron; (ii) storing two queues for the assess-

ment metrics qe(t) and �(t), each of length T: Therefore, after the initial creation of data
structures (map and queues) in O(K) time and O(Kd + 2K + 2T ) space, every observa-
tion X(t) is processed in constant O(2Kd) time and constant space. No past observations
are kept in memory.

Hence, the UbiSOM algorithm is scalable in respect to the number of observations N ,
since the cost per observations is kept constant. However, the increase of the number of
neurons K, i.e., the size of the lattice, and the dimensionality d of the data stream will
increase this cost proportionally to K and/or d.

5.5 UbiSOM Experimental Evaluation

Several experiments were conducted to evaluate the UbiSOM algorithm, using stationary
and non-stationary artificial data streams. Again, artificial data was chosen for this pur-
pose so we can establish the ground truth of the expected outcome and illustrate some
key points.

5.5.1 Experimental Evaluation Overview

The presented experiments focus on parameter sensitivity analysis (PSA) to determine
best values for the introduced parameters T and �; the impact of these values on the
evolution of learning parameters; convergence over stationary and non-stationary data
streams; exploratory cluster analysis over resulting maps, and; how the UbiSOM algo-
rithm compares against other variants, namely the Online SOM, PLSOM and DSOM.
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Data Streams Type of Evaluation

Name d N Stationary Change at #Clusters PSA LPC ECA COA

Gauss 2 100 000 Y - 1 X; ; X

Complex 2 100 000 Y - 7 X; X X

Chain 3 100 000 Y - 2 X; X X X

d5k20 5 300 000 Y - 20 X; ; ;

AbruptOneTwo 2 100 000 N 50 001 1/2 X; ;

DriftTwoOne 2 200 000 N [50 001; 150 000] 2/1 X; ;

Clouds 2 200 000 N [50 001; 150 000] 2/3/2 X; X X X

Hepta 3 150 000 N 100 001 7/6 X; X X X

Table 5.2: Experimental evaluation overview for the UbiSOM algorithm. The symbol
Xidentifies results presented in this chapter; experiments marked with ;are either de-
tailed or presented in Appendix C. Parameter sensitivity analysis (PSA); evolution of
learning parameters and convergence (LPC); exploratory cluster analysis (ECA), and;
comparison with other algorithms (COA).

The artificial data streams used in the present evaluation were briefly described in
Section 3.6 and are illustrated in Appendix B. Also, detailed results for the PSA were
moved to Appendix C, as well as other results involving particular data streams. Table
5.2 summarizes the conducted experiments, the respective artificial data streams used
and where the results can be found.

5.5.2 Data Normalization and Algorithm Parameters

All artificial data streams were normalized in the unit hypercube, i.e., X(t) 2 [0; 1]d. Based
on the discussion of Section 5.4, the UbiSOM was parameterized with �i = 0:1, �f =

0:08, �i = 0:6 and �f = 0:2, while the remaining parameters T and � were subjected to
a parameter sensitivity analysis in the next section. The chosen size of the lattice was
20� 40; as in the previous chapter.

Maps across all experiments and variants use the same random initialization of pro-
totypes at the center of the input space, so no results are affected by different initial states.

5.5.3 Parameter sensitivity analysis

This section presents a PSA for parameters T and � introduced in the UbiSOM. The first
establishes the length of the sliding window used to compute the assessment metrics, and
consequently whether it uses a short, medium or long-term trend to estimate learning pa-
rameters and react to change. While a shorter window is more sensitive to the variance
of E

0

q(t) and to noise, a longer window increases the reaction time of the algorithm to true
change in the underlying distribution. It also implicitly dictates the duration of the order-
ing state, where Kohonen recommends, as a rule-of-thumb, that it should not cover less
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that 1000 examples (Kohonen 2001). The second parameter � weighs the importance of
both assessment metrics in the drift function d(t) and, as discussed earlier, we should use
higher values so as to favor the qe(t)metric while estimating learning parameters. Hence,
the parameter sensitivity analysis was performed in two dimensions for T = {500, 1000,
1500, 2000, 2500, 3000} and � = {0.5, 0.6, 0.7, 0.8, 0.9, 1}, as the sets of tested values.

To assess the impact of these parameters, the following values were computed:

Mean error and neuron activity. The mean quantization error (Mean E
0

q(t) or QE) charac-
terizes the quality of the quantization procedure along the entire stream, i.e., we
should look for lower values (see Section 2.4.6). Similarly, the mean neuron activ-
ity (Mean �(t)) characterizes the neuron usage during learning from stationary and
non-stationary data streams, measured between 0 and 1. While it is normal to have
some unused neurons separating clusters when projecting the input space, a large
portion of unused neurons is undesirable. Consequently, we should look for higher
values of this measure. Both measurements must not be confused with the assess-
ment metrics qe(t) and �(t), since they average values within a sliding window.

Topographic Error. The mean topographic error (Mean TE(t) or TE) measures undesir-
able distortions of the map, i.e., topological defects (see Sections 2.4.4 and 2.4.6).
Values greater than zero may not indicate topological defects, but should remain
fairly close to zero.

Convergence time. The assessment metric qe(t), for the different values of T , was used
to obtain a grasp on the delay in convergence imposed by this parameter. From the
minimum qe(t) obtained throughout the stream, the iteration where the qe(t) value
falls within 5% of the overall minimum was computed (Convergence t), as a tem-
poral indicator of convergence. In other words, this value indicates at which point
in time the map attained a convergence of 95% against the minimum qe(t) obtained
throughout the data stream. This value is merely indicative and should be regarded
with care, as it is a hard comparison, i.e., a value very close can be obtained much
earlier, so it is not one of the main quantitative results we are interested in. Also,
with non-stationary data streams, it may not be very meaningful.

Number of resets. The number of transitions back to the ordering state (resets) was also
obtained. A transition to this state indicates that the UbiSOM algorithm was unable
to adapt to the underlying distribution with the established learning parameters
thresholds inherited from the ordering state, i.e., �f and �f . Ideally, during the
presentation of the artificial data streams, we want the least number of resets; this
indicates that the established parameters allowed the UbiSOM to properly adjust
itself to any changes in the underlying data stream. This metric is relevant for non-
stationary data streams.
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Regarding the PSA only MeanE
0

q(t), Mean�(t) and MeanTE(t) are used, while the re-
maining are merely indicative. Thus, the goal was to find the best parameters for each
problem (data stream) that could simultaneously minimize the mean quantization error
and mean topographic error, while maximizing the mean neuron utility. This can be re-
garded as a multi-objective optimization problem (Marler and Arora 2004). Let fE(T; �),
f�(T; �) and fTE(T; �) be the objective functions, i.e., values obtained for MeanE

0

q(t),
Mean�(t) and MeanTE(t), respectively, for a particular parameterization. The best
parameters for a particular data stream are obtained by maximization of the function
g(T; �) = f�(T; �)�fQE(T; �)�fTE(T; �). For this to hold, all objective functions should
be dimensionless, which is achieved through normalization. The following Eq. (5.12)
establishes the optimization function (criteria) used to derive the best parameters for each
data stream:

maximize
T;�

g(T; �) =
f�(T; �)

fmax
�

� fE(T; �)

fmax
QE

� fTE(T; �)

fmax
TE

: (5.12)

This results in a non-dimensional optimization function with an upper limit of one and
an unbounded lower limit (please note that fmax

i 6= 0 is assumed).

Table 5.3 summarizes the PSA for all data streams and reveals the best three param-
eterizations found by the multi-objective optimization procedure. For each data stream,
the top three parameterizations are shown, by decreasing order of the obtained values
for Eq. (5.12). Full individual results can be found in Appendix C, where the individual
10 best values for each objective function (metric) are highlighted. This highlighting was
also transposed to Table 5.3.

Findings

Any algorithm has a set of optimal parameters for a particular problem. This, obviously,
also applies to the UbiSOM algorithm and it can be seen throughout the different best
parameterizations found across all data streams. Notwithstanding this fact, there are
some conclusions we can derive from the PSA results that will further allow us to devise
some good intervals of values for the parameters T and �. From the obtained procedure
and results, we can conclude the following:

• Objective functions translate competing goals. From the results it is clear that no
obtained parameterization yields the best values across the three optimization cri-
teria. Hence, the optimization procedure finds the best compromise solution in the
parameter-space. The competing goals subject has already been addressed in Sec-
tion 2.4.6, when discussing quality assessment metrics of the SOM. For example,
given the UbiSOM performs density matching, when converging a region of proto-
types to a Gaussian shaped cluster, there will forcefully be some kind of warping of
the lattice to concentrate more neurons in the denser region; therefore, we cannot
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Data stream T � Mean E
0

q(t) Mean �(t) Mean TE(t) Convergence t Resets

Gauss 1500 0.5-1.0 7.50597e-03 1 7.960e-03 14 314 0

Complex
1500 0.8 9.404490e-03 9.919812e-01 6.890e-03 9 209 0

1500 0.9 9.436820e-03 9.842766e-01 6.950e-03 9 197 0

2500 0.8 1.016753e-02 9.934998e-01 5.750e-03 9 855 0

Chain
1000 0.6 1.578697e-02 9.953658e-01 3.365e-02 7 509 0

1000 0.5 1.575886e-02 9.966253e-01 3.425e-02 7 029 0

1000 0.7 1.577986e-02 9.935471e-01 3.438e-02 7 480 0

d5k20
2000 0.7 2.025618e-02 9.416751e-01 8.580000e-03 5 842 0

1500 0.7 2.179408e-02 9.379426e-01 4.513330e-03 4 530 0

1000 0.7 2.258051e-02 9.359845e-01 6.583330e-03 3 559 0

AbruptOneTwo 3000 0.5-1.0 5.36115e-03 1 5.35e-03 13 091 0

DriftTwoOne
1000 0.8 4.85912e-03 9.927826e-01 4.0850e-03 27 884 0

1000 0.7 4.89365e-03 9.958548e-01 4.0800e-03 25 809 0

1500 0.8 4.82665e-03 9.929180e-01 4.3900e-03 26 214 0

Clouds
2500 0.6 5.26397e-03 9.981086e-01 1.243031e-02 10 176 1

2000 0.5 5.23318e-03 9.988502e-01 1.400535e-02 9 794 1

1000 0.6 5.00901e-03 9.976649e-01 1.548039e-02 7 161 1

Hepta
500 0.6 1.391013e-02 9.917042e-01 3.583333e-02 8 852 0

500 0.5 1.398475e-02 9.945278e-01 3.646000e-02 8 843 0

500 0.7 1.372421e-02 9.861660e-01 3.832000e-02 8 866 0

Table 5.3: Summary of the UbiSOM parameter sensitivity analysis. For each data stream
the three best (descending order) parameterizations found are shown.
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attain a perfect score in the TE metric and allow at the same time a near optimal
VQ procedure. Also and frequently, there are situations where the “tension” of the
neighboring relations will necessarily lead to some unrepresentative prototypes af-
ter convergence, which affect the Mean �(t) metric. Moreover, each objective func-
tion has the same overall weight in the optimization procedure. Those weights can
be changed, but there is no clear way of choosing the particular weights. Hence, we
assume they all have equal importance in determining the quality of the obtained
maps;

• The results clearly validate the use of the average neuron utility �(t) metric, since
all best parameterizations found dictate that � < 1 — please recall that if � = 1,
then only the average quantization error qe(t) metric is used;

• Therefore, regarding parameter �:

– All best solutions involve � � 0:5, also validating the previous empirical as-
sumptions that the average quantization error should be favored when weigh-
ing the drift function;

– In general, no best compromise solution is obtained with � = 1. Although
this could be expected for non-stationary data streams, as a means to detect
obsolete regions of neurons, the same also applies to stationary data streams.
Results show that solely using the average quantization error does not achieve
the best mean quantization error along the data stream, even with stationary
distributions. This clearly validates the use of the average neuron activity as-
sessment metric and is a very interesting result, in the sense that it can help
produce better maps in terms of VQ. This is later confirmed in the results of
Section 5.5.4, where evolutions of learning parameters are depicted;

– Moreover, results for both stationary and non-stationary data streams suggest
the interval � 2 [0:6; 0:9].

• Regarding parameter T :

– In general, the best solutions are obtained effectively by using T � 1000. This
is also an interesting result that is in line with Kohonen’s suggestion of an or-
dering phase not shorter than 1000 observations;

– There is no clear differentiation in T values across stationary and non-stationary
data streams, an indication that indeed there is an optimal value for each prob-
lem. However, results suggest that T 2 [1000; 2500] is a good interval.

– As a secondary observation, it comes at no surprise that for increasing T , the
convergence (Convergenc t) happens latter in the stream. This is because the
ordering state is extended in time and the assessment metrics are computing a
longer term trend.
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• Finally, in terms of necessary resets, only the Clouds data stream required a reset in
the UbiSOM algorithm. This is later depicted and discussed in Section 5.5.4.

Regarding particular results, the Gauss data stream always indicates a �(t) � 1, because
the whole map is used to abstract a single Gaussian cloud. This also happens with the
AbruptOneTwo data stream, composed by one/two Gaussian clouds.

The most important thing that must be taken into consideration is that the UbiSOM
performs well against the above data streams with a variety of parameterizations, not
only the best found through the PSA. Also, in some particular cases that will be ad-
dressed, other parameterization may be better than the one found in the PSA. This is due
to the equal importance given to each objective function. Depending on the distributions,
it may be better to allow a worst neuron utility, favoring a better quantization value. One
final result obtained during other experimental tests, regarding the above discussion, is
that the parameterization T = 2000 and � = 0:8 performed well across all tested data
streams. These parameters are, coincidentally, in the middle of the suggested intervals.

5.5.4 Convergence with stationary and non-stationary data

This section focuses on four artificial data streams, namely the Complex, Chain, Clouds and
Hepta data streams to illustrate the behavior of the UbiSOM algorithm and the evolution
of the learning parameters. Results for some other artificial data streams are presented in
Appendix C, as depicted in Table 5.2. The aforementioned data streams were chosen to
illustrate some key points of the UbiSOM algorithm with stationary and non-stationary
data. The parameters T and � used for each data stream were the best obtained from the
PSA, presented in Table 5.3 (namely, in the top respective rows).

For each data stream, the UbiSOM lattice is shown at specific instants of the data
stream, depicting how the map evolves over time. Also, obtained values for the local
quantization error E

0

q(t), assessment metrics qe(t) and �(t), and learning parameters �(t)
and �(t) are shown, depicting the evolution of the learning procedure. The drift function
d(t) is not explicitly shown, since the learning parameters are estimated proportionally
to it. Hence, the behavior of drift function d(t) is the same as of �(t) and �(t) during the
learning state, i.e., a weighted average between qe(t) and �(t).

Stationary Data Streams

The following artificial data streams illustrate the behavior of the UbiSOM over station-
ary data, namely the Complex and Chain data streams. Given the similarity of the results,
both are interpreted together.

Complex Figure 5.8 depicts the evolution of the UbiSOM with T = 1500 and � = 0:8 over
the Complex data stream, illustrating the map at t = f1500; 9209; 50 000; 100 000g.
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UbiSOM (20 x 40) | t = 1500

A

UbiSOM (20 x 40) | t = 9209

B

UbiSOM (20 x 40) | t = 50000

C

UbiSOM (20 x 40) | t = 100000

D

(a) Convergence of the map along time: (A) t = 1500; (B) t = 9209; (C) t =
50 000, and; (D) t = 100 000.
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(b) Assessment metrics and learning parameters evolution.

Figure 5.8: The UbiSOM evolution over the stationary Complex data stream, with T =
1500 and � = 0:8.
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(a) Convergence of the map along time: (A) t = 1000; (B) t = 7509; (C)
t = 50 000, and; (D) t = 100 000.
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(b) Assessment metrics and learning parameters evolution.

Figure 5.9: The UbiSOM evolution over the stationary Chain data stream, with T = 1000
and � = 0:6.
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UbiSOM (20 x 40) | t = 50000

A

UbiSOM (20 x 40) | t = 75000

B

UbiSOM (20 x 40) | t = 100000

C

UbiSOM (20 x 40) | t = 125000

D

UbiSOM (20 x 40) | t = 150000

E

UbiSOM (20 x 40) | t = 200000

F

(a) Convergence of the map along time, where a reset occurred at t = 136 295: (A) t = 50 00; (B) t = 75 000;
(C) t = 100 000; (D) t = 125 000; (E) t = 150 000, and; (F) t = 200 000.
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(b) Assessment metrics and learning parameters evolution.

Figure 5.10: The UbiSOM evolution over the stationary Clouds data stream, with T = 2500
and � = 0:6.
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(a) Convergence of the map along time: (A) t = 500; (B) t = 8852; (C) t = 100 000; (D) t = 102 500 (E)
t = 105 000, and; (F) t = 150 000.
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(b) Assessment metrics and learning parameters evolution.

Figure 5.11: The UbiSOM evolution over the stationary Hepta data stream, with T = 500
and � = 0:6.
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Chain Similarly, Figure 5.9 depicts the UbiSOM over the Chain data stream with T =

1000 and � = 0:6, illustrating the map at t = f1000; 7509; 50 000; 100 000g.

Obtained maps are illustrated in Figures 5.8a and 5.9a, at specific points in time: (A)
when the algorithm transitions to the learning state; (B) at Convergence t from the PSA;
(C) at the middle of the data stream, and; (D) at the end of the data stream. In (A) it is
visible that both maps have unfolded correctly over the distribution with no topological
defects. However, the maps have not yet converged sufficiently over the distribution, de-
terring any meaningful use of exploratory visualizations at this time. However, after (B)
the maps achieved approximately 95% of convergence, where in (C) appear to already
achieved a stable and full convergence state, since there are no significant visible changes
regarding (D). By inspecting the qe(t) evolution, indeed after t � 20 000 this assessment
metric does not improve greatly in both data streams.

Figures 5.8b and 5.9b depict the evolution of the assessment metrics and learning
parameters. Firstly, one should recall that qe(t) and �(t) values are only available when
the algorithm transitions to the learning state. Consequently, it can be seen that qe(t)
decreases rapidly after the ordering state. This favors the assumption that the average
quantization error decreases when the distribution is stationary. Also, the fast decreasing
rate is interesting, which seems to evidentiate that the UbiSOM algorithm achieves a sort
of, absent of a better term, “natural” convergence over the distribution. This behavior is
consistent throughout all tested stationary data streams and during stationary phases of
non-stationary data streams, given appropriate parameterization.

Another interesting result is the behavior of �(t), given these somewhat complex clus-
ter structures are prone to the existence of “dead-units” between clusters. When maps
start to properly “cover” the distributions, there are neurons that begin to not be selected
as BMUs, translating to values �(t) < 1. As the �(t) metric reacts with a decreasing trend,
both learning parameters are increased proportionally (note that qe(t) is approaching sta-
ble values). This in turn, by increasing the learning parameters, namely the neighborhood
radius, increases �(t). Hence, this mutual dependence generates a “wave” pattern in the
learning parameters. However, please note that qe(t) continues to decrease slowly over
time. In consideration of the fact that, even with stationary distributions, the PSA anal-
ysis did not select any parameterization with � = 1, this indicates that �(t) is valuable
even in stationary phases of the data stream, acting as a conscience mechanism to utilize
as much neurons as possible.

Non-stationary Data Streams

The following artificial data streams illustrate the behavior of the UbiSOM over non-
stationary data. The Clouds data stream was chosen to validate and illustrate how the
UbiSOM behaves over an evolving distribution, highlighting some dynamics between
the assessment metrics and learning parameters. The Hepta data stream was chosen to
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illustrate how the UbiSOM reacts to the disappearance of a cluster by analyzing the re-
sponse of the assessment metrics and learning parameters.

Clouds Figure 5.10 depicts the evolution of the UbiSOM with T = 2500 and � = 0:6 over
the Clouds data stream, illustrating the map at t ={50 000, 75 000, 100 000, 125 000,
150 000, 200 000}. These times were chosen to illustrate the evolution of the Ubi-
SOM lattice during the non-stationary phase of the data stream, namely during
t =[50 000, 150 000], and the final map obtained.
Regarding Figure 5.10, in (A) we can observe that the UbiSOM lattice is covering
both clusters, assigning more neurons to the denser areas, as expected. In (B), (C)
and (D), as the bottom cluster splits and the top cluster moves, the lattice is able
to follow them correctly and maintain the density matching. In (E), at the end of
the non-stationary phase of the data stream, we can observe a “twisted” lattice that
further converges until (F).
This behavior can be explained by interpreting the assessment metrics and learn-
ing parameters evolution in Figure 5.10b. After initial convergence, until the map
depicted in (A), changes start occurring at t = 50 000. Soon after, qe(t) increases
while �(t) � 1, explained by the fact that a “new” cluster will forcibly lead to an
increase of the average quantization error, since those new observations are not repre-
sented adequately by the current codebook; by itself, this leads to increasing learn-
ing parameters which allow the map to adjust to these new observations, while
maintaining a high neuron utility. However, as the distribution changes continue,
the learning parameters do not have sufficient high values to compensate those
changes. Consequently, some neurons become stagnant, since they represent old
observations. This is reflected in the average neuron utility �(t) falling off period-
ically after t � 75 000, causing spike increases in the learning parameters; these, in
turn, allow the map to gradually recover.
Regarding the “twisted” lattice, we can observe that the UbiSOM transitioned back
to the ordering state (at t = 136 295), forcing a reordering of the prototypes in the
middle of the distribution change. This highlights two things:

i. With the current parameterization the learning parameters cannot attain suffi-
cient high values to cope with changes. This is expressed by the spike increase
of �(t) and qe(t) afterwards, leading to maximal learning parameters for the
learning state. The UbiSOM, in this case, is unable to resume convergence and
the learning parameters stay maximal. This situation is detected by Eq. (5.11),
forcing the UbiSOM to transition back to the ordering state;

ii. The UbiSOM is able to quickly reorder the prototypes, despite changes occur-
ring in the distribution after t = 136 295, and converge to the final distribution.

Concerning this reset of the UbiSOM, the PSA analysis shows that other parame-
terizations do not result in a reset during changes in the underlying distribution.
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However, some may not allow the map to properly follow changes, while others
may, at the cost of a worst QE — this was observed experimentally. Considering
this parameterization was the best found in the PSA, one should be able to justify
the reset: e.g., if we look at the final distribution, the obtained final configuration
induces less “stress” on the edges of the lattice and maximizes the neuron utility.
Whether the result is considered a topological defect is debatable in this situation.
The derived U-Matrices presented in the next section indicate that in this case there
are no consequences in terms of exploratory cluster analysis.

Hepta Figure 5.11 depicts the UbiSOM over the Hepta data stream with T = 500 and
� = 0:6, illustrating the map at t ={500, 8852, 100 000, 102 500, 105 000, 150 000}.
These times show the UbiSOM lattice right after the transition to the learning state;
the lattice at Convergence t from Table 5.3, and; how the UbiSOM reacts to the dis-
appearance of a cluster at t = 100 000. Until this point in time the data stream is
stationary and the UbiSOM behaves similarly as with the Complex and Chain data
streams; but, given that T is smaller, the “wave” pattern of �(t) has a higher fre-
quency.
Regarding Figure 5.11b, when the inner cluster disappears (at t = 100 000), the �(t)
metric abruptly decreases and increases the learning parameters to values that al-
low the UbiSOM to adjust itself to the new distribution. By close inspection, the
change was not detected by qe(t) at that time, because the remaining clusters are
still being quantized the same way as before. In this case the increase of qe(t) is only
justified by the increase of the learning parameters, which leads to prototype up-
dates of higher magnitude. This, consequently, temporarily degrades the previous
quantization during the adaptation phase. Thus, by observing lattices (D) through
(F) in Figure 5.11a, we can see that the UbiSOM was able to adjust itself to the dis-
appearance of the cluster, by comparison with lattices (A) through (C). This was
the initial example that led to the proposal of the average neuron utility assessment
metric.

One important exception to note, regarding the PSA results, involves the non-stationary
DriftTwoOne data stream, where PSA results suggest parameterizations that were exper-
imentally found not to be the best. This data stream is a very hard problem for the Ubi-
SOM, because there is a gradual drift in the distribution where two Gaussian clusters are
merged into one. The best parameters found experimentally are T = 1000 (the same as in
the PSA), but � = 0:5, lower than the suggested f0:7; 0:8g values. Only using the lower
value, increasing the importance of the average neuron utility metric, can the UbiSOM
produce the expected result at the end of the data stream. The comparison between the
two results can be found in Appendix C, namely in Section C.2.3 and precisely in Figures
C.6 and C.7, respectively. However, the results obtained in the PSA are easily justifiable:
by using a relatively low � value, although increasing the responsiveness to the moving
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clusters, this causes the lattice to perform “jumps” over this evolving distribution, harm-
ing the quantization procedure, and therefore, the quantization errors. Hence, the PSA
still upholds its merits regarding the error metrics used in its application.

5.5.5 Exploratory Cluster Analysis

In this section we will focus on exploratory cluster analysis, using the U-Matrix visualiza-
tion (see Section 2.4.5), from the previous four data streams. Note that some artificial data
streams contain cluster structures that evolve over time. An additional result pertaining
the d5k20 data stream can be found in Appendix C, namely in Figure C.8.

0.19

0.15

0.12

0.08

0.04

0.01

79

0 39

H

W

Unified Matrix

(a) Complex at t = 100 000.
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(b) Chain at t = 100 000

Figure 5.12: U-Matrices obtained for stationary data streams.

Complex and Chain Regarding the stationary Complex and Chain data streams, the cor-
responding U-Matrices of maps obtained at the end of the streams are depicted in
Figures 5.12a and 5.12b, respectively. In the Complex U-Matrix 6 clear clusters are
visible, while a more careful analysis allows us to derive that the one at the center-
left represents, in fact, two clusters, summing up to the expected 7 clusters present
in this stationary distribution. With respect to the Chain data stream the U-Matrix
clearly indicates 2 clusters, corresponding to the two interlocked rings.
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Concerning the non-stationary Clouds and Hepta data streams, the U-matrix visualiza-
tion was applied to maps at different instants of the streams (corresponding to previous
instants in Figures 5.10 and 5.11):

Clouds Changes in an evolving distribution may be inferred by sequential analysis of
the U-Matrices. Figure 5.13a depicts the U-Matrices obtained at t ={50 000, 75 000,
100 000, 125 000, 150 000, 200 000}: (A) depicts 2 clusters of different densities, since
more neurons are assigned to the top depicted cluster, corresponding to the bottom-
left cluster in the input space (please note that the orientation of the U-Matrix may
not match that of the distribution; this can only be inferred together with the com-
ponent planes. In (B) and (C) we can observe splitting of clusters with a new cluster
emerging from the denser one (3 clusters). In (D) it is harder to visually infer the
three clusters. Here a 3D visualization or log-normalization of the U-Matrix values
could enhance that tenuous cluster border at the center-left. Finally (E) and (F) de-
pict the final cluster structure consisting of 2 clusters of similar density. Here, after a
reset of the UbiSOM one loses the relative position of the clusters, since the rotation
of the lattice is different from the previous. Please note that the two moving clus-
ters were merged forming a smaller, but denser, cluster in respect to the stationary
cluster, hence the similarity in size depicted in the U-matrix.

Hepta Figure 5.13b depicts a sequence of U-matrices obtained at t ={8852, 100 000, 105 000,
150 000}: In (A), after 95% of convergence, the 7 clusters are visible. This also holds
in (B), but with increased convergence of the map. In (C) only 6 clear clusters are
visible, conforming to the disappearance of a cluster; similarly, with increased con-
vergence of the map, the cluster structure is more refined in (D).

5.5.6 Comparison against other variants

The UbiSOM algorithm was compared to the Online SOM algorithm (since in these ex-
periments the size of the data stream is known), Parameter-Less SOM (PLSOM) and Dy-
namic SOM (DSOM) in terms of density matching, convergence with stationary and non-
stationary data streams and exploratory cluster analysis from resulting maps (PLSOM
and DSOM were described in Section 2.5.2). For these comparisons the Gauss, Chain,
Clouds and Hepta artificial data streams were chosen to highlight some key results be-
tween these variants.

Algorithms Parameterization

The UbiSOM parameters remain as �i = 0:1, �f = 0:08, �i = 0:6 and �f = 0:2 and the
other parameters were set based on the results of the PSA analysis, as before. In summary,
Gauss: fT = 1500; � = 0:7g; Chain: fT = 1000; � = 0:6g; Clouds: fT = 1500; � = 0:7g,
and; Hepta: fT = 1500; � = 0:7g.
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Regarding the other algorithms, after several experiments the best parameters for the
chosen map size and for each compared algorithm were selected. The Online SOM uses
�i = 0:1 and �i = 1=2

p
(width� 1)2 + (height� 1)2, decreasing monotonically to �f =

0:01 and �f = 1 respectively; PLSOM uses a single parameter  called neighborhood range
and the values yielding the best results for the used lattice size were  = f65,37,130,35g
for the Gauss, Chain, Clouds and Hepta data streams, respectively. DSOM has two constant
parameters: the learning rate � and plasticity �. Authors in (Rougier and Boniface 2011)
use � = 3 and � = 0:1 for a 2D Gaussian distribution, but with the map already spread
across the input space. With randomly initialized prototypes, such small values deter the
lattice from ever unfolding. This caused some concerns with this variant. Larger values
were tried with more success, but its the variant that takes longer to properly unfold the
map, usually in the order of 10 000 observations, from a completely random initialization
of prototypes and exhibits some topological defects. The best experimentally derived
parameters for DSOM were � = f80,50,150,50g and � = f0.55,0.95,0.95,0.65g for the Gauss,
Chain, Clouds and Hepta data streams, respectively.

Density Matching

UbiSOM (20 x 40) | t = 100000

A

Classical SOM (20 x 40) | t = 100000

B

PLSOM (20 x 40) | t = 100000

C

DSOM (20 x 40) | t = 100000

D

Figure 5.14: Final maps of different SOM variants obtained for the stationary Gaussian
data stream: (A) UbiSOM; (B) Online SOM; (C) PLSOM; (D) DSOM.

The obtained models are illustrated for all tested algorithms in Figure 5.14, using the
stationary Gauss data stream. It can be seen that only the Online SOM and the UbiSOM
are able to model the input space density correctly, assigning more neurons to the denser
area of the input space. The inability of both PLSOM and DSOM to properly map the
density through a good VQ may hinder the visualization aspects of the map and ex-
ploratory visual discovery in more complex distributions. This is due to only consider
the local quantization error E

0

q(t) while estimating learning parameters, which does not
allow to monotonically decrease the parameters during stationary states. What is actu-
ally mapped by these proposals is the structure or support of the distribution rather than
the density, as discussed in Section 2.5.2. Therefore, the UbiSOM is the only variant that
can replicate the original SOM results.
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Data stream Algorithm Mean E0(t) Mean �(t) Mean TE(t) Opt. Func. — Eq. (5.12)

Gauss
UbiSOM 7:5060e�3 1 7:9600e�3 �4:3284e�1
Online 1:4045e�2 9:9988e�1 5:2300e�3 �5:9041e�1
PLSOM 7:9702e�3 9:6830e�1 8:8600e�3 5:9917e�1

Chain
UbiSOM 1:5787e�2 9:9537e�1 3:3650e�2 9:6655e�2
Online 3:3551e�2 9:9681e�1 3:2330e�2 �4:1457e�1
PLSOM 1:4290e�2 1 7:8590e�2 �4:2592e�1

Clouds
UbiSOM 5:2640e�3 9:8109e�1 1:2430e�2 1:4177e�1
Online 7:3265e�3 8:9579e�1 1:7870e�2 �2:8783e�1
PLSOM 4:1127e�3 9:4402e�1 8:8955e�2 �5:9913e�1

Hepta
UbiSOM 1:3910e�2 9:9170e�1 3:5833e�2 �2:3273e�1
Online 2:3251e�2 9:5612e�1 3:2393e�2 �6:0994e�1
PLSOM 1:2725e�2 9:9979e�1 5:7206e�2 �5:4729e�1

Table 5.4: Comparison of the UbiSOM, Online SOM and PLSOM algorithms across all
data streams.

Convergence and Exploratory Cluster Analysis

The first presented results target a numerical comparison between the UbiSOM algorithm
against the Online SOM and the PLSOM algorithms in terms of quality metrics across
selected artificial data streams. Due to the similar mapping performed by PLSOM and
DSOM, the later was left out of this numerical comparison. Table 5.4 summarizes the
obtained values for the previously used measures in the UbiSOM PSA (Section 5.5.3),
namely the Mean E

0

q(t), Mean�(t) and Mean topographic error (TE), for all algorithms.
Also, the optimization function of Eq. (5.12) was applied to the individual results.

Results indicate that the UbiSOM algorithm obtains the best compromise results be-
tween all measures, for these data streams. The PLSOM exhibits a lower mean E

0

q(t) on
all data streams, except Gauss, because it does not map the input space density, as pre-
viously illustrated, being able to quantize the outer region of the Gaussian cloud. While
this may turn out to be useful in some specific application, it does not bring any posi-
tive impact in terms of exploratory cluster analysis. In terms of mean topographic error,
the PLSOM is consistently worst across all data streams, whereas the classical Online
SOM usually attains the best results. Not surprisingly, the Online SOM exhibits higher
mean E

0

q(t) (worst) values because its convergence is slower, due to the annealing pro-
cess throughout the entire data stream. In the “harder” data stream, i.e., the Clouds data
stream, the UbiSOM algorithm obtained best values for the mean �(t) and mean TE, with
a very close value in respect to the (best) PLSOM mean E

0

q(t) result. However, this metric
implies nothing regarding actual convergence of topological ordered maps to distribu-
tions, i.e., it must be taken into account with the other two measures.
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Figure 5.15: Average quantization error qe(t) of tested SOM variants across all data
streams. Results for the UbiSOM, Online SOM and PLSOM in left, center and right
columns, respectively. The rows regard the Gauss, Chain, Hepta and Clouds data streams,
respectively.

Figure 5.15 compares the convergence trend of the three algorithms in terms of the
average quantization error qe(t). As with the UbiSOM, this should highlight how each
algorithm performs over the data streams regarding the quantization procedure. The qe
values for the classical Online SOM and PLSOM are obtained as in UbiSOM (described
in Section 5.3.3), using the T parameter of the UbiSOM for the respective data stream.
This is considered fair for all algorithms, since it is simply evaluating the trend of the
quantization error for each algorithm.

In general, it can be seen that the UbiSOM and PLSOM algorithms converge rapidly to
the initial distributions. PLSOM achieves slightly lower values, consistent with Table 5.4.
As expected, the convergence of the Online SOM is dictated by the monotonic decrease
of the learning parameters. In respect to the Clouds data stream, the qe(t) trend at the end
of the data stream seen to indicate that all algorithms, in some way, were able to quan-
tize the final observations. Otherwise, the metric would not show a decreasing trend.
However, this gives no indication of proper convergence, i.e., “forgetting” old observa-
tions. By Table 5.4 it can be seen that the Online SOM and PLSOM exhibit a mean neuron
activity of 89% and 94%, respectively, compared to 98% of the UbiSOM. This gives an
indication that the UbiSOM performed better along this data stream. Finally, concerning
the Hepta data stream, no indication that the Online SOM was able to react to the cluster
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Figure 5.16: Comparison of final maps and U-Matrices of UbiSOM, OnlineSOM and PL-
SOM at the end of the stationary Chain data stream.
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Figure 5.17: Comparison of final maps and U-Matrices of UbiSOM, OnlineSOM and PL-
SOM at the end of the non-stationary Clouds data stream.
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Figure 5.18: Comparison of final maps and U-Matrices of UbiSOM, OnlineSOM and PL-
SOM at the end of the non-stationary Hepta data stream.
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disappearance is present. The qe(t) trend of the PLSOM algorithm convergence suggests
that it does not achieve a stable convergence to this distribution.

In order to support the above inferences, to visualize the actual convergence of the
maps and compare results for exploratory cluster analysis, Figures 5.16, 5.17 and 5.18
compare final maps and U-matrices obtained for the Chain, Clouds and Hepta data streams,
respectively:

Chain Regarding this data stream, both the UbiSOM and Online SOM give identical re-
sults, the difference is only in the orientation of the map; both U-Matrices identify
the two clusters clearly. The PLSOM final lattice contains topological defects that
affect the exploratory cluster analysis. This is consistent with the higher mean to-
pographic error of PLSOM in Table 5.4. DSOM is able to learn the distribution, but
the U-Matrix is not as “sharp” as the UbiSOM or Online SOM, due to the density
matching issues.

Clouds Compared to the UbiSOM results, obtained lattices for the Online SOM, PLSOM
and DSOM show that these algorithms were not able to correctly adjust to the non-
stationary distributions. This data stream clearly shows the deficiencies of these
algorithms when dealing with non-stationary data, i.e., the Online SOM does not
posses sufficiently high learning parameter values at the second half of the data
stream to cope with the changes; the PLSOM algorithm uses an estimation of the
input space diameter to compute the learning parameters, and; the DSOM only uses
“local” error information to adjust learning parameters. While, e.g., this allows the
PLSOM to achieve lower quantization errors (note that it covers the cluster clouds
almost totally), it does not allow it to properly map the input space density and
forget old observations. DSOM gives a similar result to PLSOM, but with a clearer
U-Matrix.

Hepta This data stream also highlights the fact that the Online SOM, by decreasing the
learning parameters with an annealing scheme, cannot react to the disappearance
of a cluster latter in the data stream, when learning parameters attained very small
values. Both PLSOM and DSOM, however, copped rather satisfactorily with this
change. Nonetheless, the density matching issues of these proposals can be seen in
the final lattice.

Hence, we can conclude that the UbiSOM algorithm is able to keep the original properties
of the original SOM intact, while being able to cope with non-stationary data.
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5.6 Feature Clustering Methodology and Evaluation

This section presents a feature clustering methodology for general SOM models, i.e., it is
applicable either to Batch SOM models obtained in the StreamART2A/SOM methodol-
ogy (see Chapter 4) as well as UbiSOM models. However, the evaluation in this section
regards only the feature clustering capabilities of the UbiSOM along a data stream. Later
in Chapter 7 the same procedure is applied to StreamART2A/SOM models in a real-
world application. Feature clustering in a stream setting can be associated with time
series clustering, given the goal is to produce a partition of the time series into groups, as
discussed in Section 2.6.2.

5.6.1 Methodology

As presented in Section 2.4.5, the component planes visualizations allow the detection of
correlated features, a process that in sometimes referred to as correlation hunting in SOM
literature (Vesanto and Ahola 1999). The proposed methodology consists in extracting
UbiSOM models along the data stream and generate the clustering of the component
planes, and consequently the features, using an agglomerative hierarchical procedure.
In (Silva and Marques 2010a) the methodology was proposed using a distance matrix
between the component planes constructed by the inner product between matrices. Let
X and Y be two normalized component planes, i.e., X and Y are [width�height]matrices
with x2X ; y2Y 2 [0; 1]. Equation 5.13 formalizes a correlation function rin : X � Y !
[0; 1], which is based on the inner product between matrices, satisfying the following
conditions, for all non-zero scalars a and b and for X and Y not both zero:

C1 : rin(aX; Y ) = rin(X; bY ) = rin(X;Y )

C2 : rin(X;Y ) = rin(Y;X)

C3 : rin(X;Y ) = 1 ifX = bY

C4 : rin(X;Y ) = 0 iffXTY = 0

rin =
tr(XTY )p

tr(XTX) tr(Y TY )
(5.13)

where tr(�) is the trace operation, i.e., the sum of the diagonal elements.

For the hierarchical procedure a distance matrix containing the distances between
all component planes is generated. The distance between component planes X and Y is
given by:

D(X;Y ) = 1� rin(X;Y ): (5.14)

The distance matrix is then clustered by an agglomerative hierarchical procedure with
complete-linkage (see Section 2.4.7.2). At each step the procedure recursively merges the
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two most closest clusters (of component planes), i.e., the two clusters separated by the
shortest distance are combined. The definition of “shortest distance” is what differenti-
ates between the different agglomerative clustering methods. In complete-linkage clus-
tering the link between two clusters contains all element pairs and the distance between
clusters equals the distance between those two elements (one in each cluster) that are far-
thest away from each other. The algorithm stops when all features have been grouped
into a single cluster and provides a dendrogram representing the obtained clustering.

In other works, to organize the presentation of component planes in a batch setting,
e.g., (Pérez-Uribe 2007), the distance between component planes is given by the Person’s
correlation coefficient, which is defined between [�1; 1]. Effectively, the Pearson’s corre-
lation coefficient rpearson(X;Y ) can be computed as in Eq. (5.13), but with the matrices
(component planes) normalized around their respective means. From here, two things
are relevant: i.) it assumes the data is normally distributed, and; ii.) inversely correlated
component planes are also clustered together. With the Pearson’s correlation, the distance
between component planes should be obtained by D(X;Y ) = 1� abs

�
rpearson(X;Y )

�
to

obtain positive distances.

5.6.2 Evaluation

The goal is to evaluate the proposed methodology against an artificial data stream con-
taining known correlations between features, i.e., the time series. Differences between
the usage of the inner product versus the Pearson’s correlation as distance metrics are
also of interest.

5.6.3 Data and Parameterization

The methodology evaluation was performed using the Correlated data stream. This data
stream consists of 100 000 observations and 5 pairs of correlated time-series (hence, d =

10) with different degrees of correlation. Table 5.5 summarizes the correlations between
the individual features in both halves of the data stream. As before, the data streams
was normalized in the unit hypercube, i.e., X(t) 2 [0; 1]d. The parameterization of the
UbiSOM algorithm remained as in the previous sections, but with T = 2000 and � = 0:8,
as suggested at the end of Section 5.5.3.

5.6.4 Results

UbiSOM models were extracted at t = 30 000 and t = 80 000, i.e., approximately at the
middle of each stationary phase of the data stream. The learning procedure throughout
the data stream is illustrated in Figure 5.19. If we look at the evolution of the learning pa-
rameters (determined by d(t)), we can see that the algorithm reacts to an abrupt change
at t = 50 000, without the need to perform a reset, i.e., change back to the ordering state.
After the algorithm converges to the new distribution it does not attain the same average
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Degree of Correlation First half, t 2 [0; 50 000] Second half, t = [50 001; 100 000]

0 {a,b} {g,h}

0.4 {c,d} {c,d}

0.8 {e,f} {e,f}

1 {g,h} {i,j}

-0.6 {i,j} {a,b}

Table 5.5: Underlying correlations in the artificial Correlated data stream.
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Figure 5.19: Learning evolution of UbiSOM over the Correlated data stream.

quantization error as during the first half. This can be explained by the new underlying
distribution, where the time series are generated from Gaussian distributions with higher
variances. The �(t) is always one because this data stream effectively describes a multi-
dimensional Gaussian cloud, i.e., similar to Figure 5.14, but in a higher dimensional space.
Overall, the learning parameters do not attain stable values because this data stream is
inherently non-stationary, besides the change point. This is because the pairs of time
series that are least or not correlated indeed contribute to this mild non-stationary char-
acteristic.

Figure 5.20 depicts the obtained component planes and resulting hierarchical clus-
tering results for the UbiSOM model at t = 30 000. It can be seen that both distances
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functions, i.e., that use the inner product rin(X;Y ) and Pearson’s correlation coefficient
rpearson(X;Y ), are able to sequentially cluster the more correlated time series according
to their pair-wise similarity, e.g., fg; hg, fe; fg and fc; dg, which have correlations of 1, 0.8,
and 0.4, respectively. As expected, the Pearson’s coefficient clustered the pair fi; jgwhich
has a correlation of �0:6, whereas the inner product found this pair to be very dissim-
ilar. Both distances found the pair fa; bg to be very dissimilar, which is sound because
they were generated with no correlation. However, both clustered together ffc; dg; ag
and ffg; hg; bg, hence indicating that there is some degree of “coincidental” correlation
between these time series. One difference that clearly emerges regards the final steps
of the agglomerative process: while the Pearson’s correlation finds the top clusters very
dissimilar, i.e., D(X;Y ) � 1, the inner product clusters them at different levels. This is a
consequence of the Pearson’s correlation assuming normally distributed data.

Similarly, Figure 5.21 contains results for the model at t = 80 000, after the change in
the pair-wise correlations. Again, the methodology is able to indicate the most similar
time series, e.g., fi; jg, fe; fg and fc; dg, with underlying correlations of 1, 0.8 and 0.4,
respectively; the pair fa; bg is also found to be similar by the Pearson’s correlation with
an underlying correlation of �0:6. Both also indicate a coincidental correlation between
ffi; jg; gg.

The above results seem to confirm the ability of the UbiSOM algorithm in also per-
forming feature clustering along a data stream, enabling it as a versatile cluster analysis
method for data streams. This characteristic is not found in other available clustering
methods and emerges from the topological ordered abstraction of the UbiSOM codebook
along non-stationary data. Whether some application should use the inner product or
Pearson’s correlation is highly dependent on the goal. For example, when dealing with
financial data for the purpose of portfolio selection, the goal is to find clusters of similar
stocks and then diversify the choice of stocks among these groups. In this particular case
the Pearson’s correlation is not good because it will cluster together inversely correlated
stocks, which is ultimately against the proposed goal. Also, the inner product seems to
better differentiate the different levels of similarity between the component planes.

As a final note, features can be grouped in k < d clusters by a cutree algorithm applied
over the dendrogram. This is exemplified later in a real-world application in Chapter 7.

5.7 Assessment Regarding Established Requirements

In respect to the requirements put forward in Section 2.5.1 for SOM variants dealing to
data streams, they are addressed by UbiSOM as follows:

Fixed topology. UbiSOM uses a regular lattice as the original SOM. No units are added
or removed throughout the learning process. This allows the applicability of standard
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Figure 5.20: Feature clustering from UbiSOM model at t = 30 000 when learning the
Correlated data stream.
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Figure 5.21: Feature clustering from UbiSOM model at t = 80 000 when learning the
Correlated data stream.
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visualization techniques, e.g., U-Matrix and component planes;

Time-independent learning parameters. Although during the ordering state an an-
nealing scheme continues to be used, it is only during a comparatively short period of
time to allow the unfolding of the map and to obtain the first values of the global assess-
ment metrics. From this point forward, learning parameters are estimated independently
of the iteration number;

Proper convergence. UbiSOM replicates the results of the original SOM algorithm dur-
ing stationary states of the data stream, hence achieving an approximated VQ of the input
space. This ability is not found in PLSOM and DSOM, for example. This is a consequence
of the estimation of learning parameters from the proposed assessment metrics and is one
of the major contributions of this research;

Incremental processing of observations. Assuming a sufficiently high number of rep-
resentative observations characterizing a stable state of the distribution, the UbiSOM pro-
cesses one observation at a time and does not store any past observations;

Compactness of the model. This property is assured by the fixed topology and bounded
by the selected lattice size;

Dealing with evolutionary data. Plasticity in the UbiSOM is guaranteed by the behav-
ior of the assessment metrics, increasing learning parameters when change is signaled;

Robustness to noise. This is the aspect that needs further study. Although the triple-
cascade moving average, and moving averages in general, introduce some robustness
to noise, the presented evaluation cannot establish with certain this property. This is an
aspect that should be addressed in future work;

Handling high-dimensional data. As the original properties of the SOM are main-
tained, we can assume that the UbiSOM continues to be regarded as a projection algo-
rithm of high-dimensional data to a lower dimensional space.

Based in this analysis, we can conclude the UbiSOM fulfills all the established require-
ments, although with some reservations regarding robustness to noise.

5.8 Remarks and Future Work

In this chapter the Ubiquitous Self-Organizing Map (UbiSOM) was presented as a novel
SOM variant tailored for non-stationary data streams. The UbiSOM is able to properly
converge in the sense of a VQ procedure during stationary phases of the data stream,
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while being able to react to changes in the underlying data stream. This is achieved by
estimating learning parameters through proposed global assessment metrics, namely the
average quantization error

�
qe(t)

�
and average neuron utility

�
�(t)

�
, which are moving av-

erages over computed values at each iteration. The former metric indicates the trend of
convergence to the underlying distribution, i.e., as the lattice converges the qe(t) attains
increasingly lower values; on the other hand, if the underlying distribution drifts from
the quantization of the current UbiSOM codebook, it increases. While the qe(t) can be
considered a baseline assessment, it may not react to some exemplified changes, e.g., dis-
appearance of clusters. Hence, the later metric assesses the percentage of neurons actively
being updated. If it decreases, then some regions of lattice have become obsolete, i.e., are
not quantizing current observations, hence signaling change. Weighted by � 2 [0; 1] in
the proposed drift function, they are used to estimate the learning parameters through-
out the data stream. Regarding the assessment metrics, a triple-cascade moving average
was proposed to allow the qe(t) and �(t) functions to be differentiable along time and
ultimately provide a smooth increase and/or decrease of learning parameters. Another
important aspect is the UbiSOM two-state algorithm, providing an ordering state where
the initial unfolding of the map takes place, and; the learning state, as the main state of the
algorithm. In case of such a change in the underlying distribution to which the UbiSOM
cannot cope with, the algorithm transitions back to the ordering state.

This proposal contrasts with the two-stage approach presented in Chapter 4, because
the goal is to continuously achieve a SOM abstraction of the data stream’s underlying
distribution, instead of generating a SOM model offline. While each approach have their
strengths and weaknesses (which are compared in Chapter 8), the main strength of the
UbiSOM is that it enables real-time knowledge discovery along a data stream through its
visualization procedures. On the other hand, the correct parameterization of the UbiSOM
for a particular problem is harder than in the StreamART2A/SOM methodology.

Although the evaluation of the algorithm was performed solely over artificial data
streams, in Chapter 7 real-world applications of the UbiSOM are presented, leveraging
its abilities in different scenarios of exploratory cluster analysis, both involving tradi-
tional observation clustering and feature clustering. Those applications should further
motivate the use of the UbiSOM in real-world scenarios.

Several issues remain and should be addressed in future work, namely:

Noisy data and additional evaluations. The impact of noise in the models should be
further studied, as it is one of the established requirements partially fulfilled (see Section
5.7. Also, while in theory and through several experimental results not included in this
manuscript, the choice of the UbiSOM parameters is independent of the lattice size, this
should be formally evaluated;
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Algorithm improvements. Study the possible decoupling of the ordering state duration
and global assessment metrics window size; at the moment both are determined by the
parameter T . While this may be of interest, e.g., imposing a short, medium or long-term
trend in the assessment metrics independently of the ordering state duration, the window
size cannot be greater than the ordering duration, since we still have to wait for the first
values of qe(t) and �(t) to be available. Also, the possibility of dynamic adjustment of the
parameter � is interesting, i.e., increasing during stable states of the distribution, whereas
decreasing during non-stationary phases. While this could potentially eliminate the need
to parameterize �, it remains to be studied how to achieve this.

Automatic change detection. Inclusion of a change detection mechanism, either over
values of the drift function d(t) or with an independent procedure. Such methods were al-
ready discussed in Section 4.6, regarding automatic change detection in the StreamART2A
algorithm. In the UbiSOM, model assessment is an intrinsic mechanism of the algorithm,
rather than a separate procedure as in the StreamART2A, making it more attractive to
develop change detection procedures over d(t) values. This is supported by the fact that
the drift function d(t) is consistent regarding the increase of its values in the presence of
change, as opposed to only the qe(t) values, which may not (please recall Section 5.3.3).
Opting for independent procedures such as in (Kifer, Ben-David, and Gehrke 2004) and
(Ho and Wechsler 2007) would still impose additional computational complexity.

The added benefit would still be the same as discussed previously, i.e., to allow stor-
age of UbiSOM codebook snapshots for later analysis when change is detected. Conse-
quently, insight on what changes have occurred can be obtained by comparing consecu-
tive snapshots.

Confidence in the model. Finally, to address the confidence level in the UbiSOM model
at any time. While during the ordering state no cluster analysis should be performed,
there is currently no established way, e.g., a single value, to indicate the level of approxi-
mation of the model; only the drift function d(t) trend.

To this extent, but not sufficient, in Chapter 7 two new visualizations for the UbiSOM
are presented, leveraging the extended information within the UbiSOM neurons, e.g.,
tbmu
k and tupdatek . From these, the user can get a grasp on whether the entire map is being

used to quantize the current underlying distribution – this can be regarded as a visual
alternative to a simple numerical value.
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6
Distributed and Collaborative

Learning of Ubiquitous Data Streams

Research is what I’m doing when I don’t know what I’m
doing.

WERNHER VON BRAUN, GERMAN SCIENTIST (1912-1977)

The previous chapter introduced the Ubiquitous Self-Organizing Map algorithm, capa-
ble of learning multi-dimensional non-stationary data streams. This enables continuous
summarization of an incoming data stream and real-time exploratory cluster analysis.
This chapter extends the use of the UbiSOM to ubiquitous environments, where data
is inherently distributed, proposing methodologies to leverage local and global mod-
els. The name “ubiquitous” was deliberately chosen with these additional applications to
ubiquitous environments in mind.

6.1 Chapter Overview

This chapter presents a set of methodologies to exploit the UbiSOM in distributed and
collaborative learning settings, inspired by existing proposals that focus in the trade-off
between local and global models. The chapter is organized as follows: in the next section,
motivation and aim are presented, illustrating a general motivating scenario. In Section
6.3 the proposed methodologies for distributed and collaborative learning strategies are
described. Validation and evaluation of the proposed methodologies are made in Section
6.4, using artificial data streams. Finally, Section 6.5 concludes the chapter, including
foreseen future work.

151



6. DISTRIBUTED AND COLLABORATIVE LEARNING OF UBIQUITOUS DATA STREAMS 6.2. Motivation and Aim

Figure 6.1: Motivating example for distributed and/or collaborative learning strategies,
focusing on the generation of local and global models.

6.2 Motivation and Aim

In a truly ubiquitous environment data mining is inherently distributed. Consider the
illustrative scenario portrayed in Figure 6.1. It depicts a network of sensors in a city,
where each sensor collects some measurements, e.g., temperature, humidity, luminance,
which are the features of the gathered observations; the set of these observations is a mul-
tidimensional data stream. A traditional approach would consist in a centralized process
that would gather data from all sensors and then apply a data mining algorithm, e.g.,
obtain a SOM model. However, this raises two problems: first, the amount of data that
each node needs to communicate is restrained by the available bandwidth; second, and
consequently, as the number of sensors grow, the scalability of the approach degrades.

As these sensors advance technologically with increasing computing, storage and
communication capabilities, the entire process can be distributed and parallelized through-
out the entire network of processing nodes, leveraging a two-level approach where each
sensor can separately process its own data and then a centralized process combines all the
individual results (models), transmitted by each sensor, to define a global model. In this
scenario, it is assumed that the sensors are more than mere data-collectors. Rather, these
sensors are full-fledged information processors capable of running a (computationally

152



6. DISTRIBUTED AND COLLABORATIVE LEARNING OF UBIQUITOUS DATA STREAMS 6.3. Distributed and

Collaborative Learning

efficient) data mining algorithm, as the UbiSOM.

Given that an UbiSOM model can be seen as a compact representation of the current
underlying distribution of a local data stream (topological ordering aside), its prototypes
are coarser representations of the learned observations which can be used as inputs to a
global SOM model. Regarding a purely centralized process, this can greatly reduce the
amount of information each sensor has to communicate, by transmitting at most only the
representative prototypes of data.

Consequently, the aim of this chapter is to propose and validate methodologies that
allow UbiSOM codebooks, representing local models of a processing node, e.g., smart
sensor, smartphone, to be transmitted to other nodes so as to generate global models. In
the example portrayed in Figure 6.1 a centralized global model would allow knowledge
discovery from the entire city’s environment. This type of learning strategy will be called
distributed learning. If the processing nodes are able to move, e.g., smartphones, then
the interest is to allow those devices to share their models with other devices in their
vicinity, as they come into proximity. This will be called collaborative learning and the
motivating application regarding the portrayed example relates to participatory sensing
(Burke et al. 2006; Dutta et al. 2009), characterized by the “deployment of mobile devices
to form interactive, participatory sensor networks that enable public and professional users to
gather, analyze and share local knowledge”. In this case a single mobile device can have
its local model, depicting its subjective view of the environment, while maintaining a
global model from “knowledge” obtained from other devices. These approaches are in
line with current proposals leveraging local and global models presented in Section 2.6.3
as a means to address ubiquitous data streams.

6.3 Distributed and Collaborative Learning

6.3.1 Methodology Overview

The proposed methodology targets generation of global SOM models from distributed
UbiSOM local models within an ubiquitous network of nodes, each processing a data
stream pertaining the same problem/task. This relies on the premise that, at any given
time, each UbiSOM codebook in a distributed location is a compact representation of the
current underlying distribution of the processed data stream. As such, each codebook is
a data stream summary that can be sent to a centralized location — distributed learning,
or shared with other nodes — collaborative learning. The union of such codebooks can
effectively be used to train another SOM model (Vesanto and Alhoniemi 2000).

Consequence of the topological ordering of the UbiSOM prototypes, not all are true
representatives of data — please recall the “unrepresentative” prototypes (or dead-units)
issue addressed in Section ??. To overcome this, which would affect the generation of
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correct global models, the codebooks are “filtered” before being transmitted. This filter-
ing is based on an aging mechanism where only prototypes that have been recently been
chosen as BMUs are considered true representatives.

Distributed learning is based on the centralization of several distributed UbiSOM fil-
tered codebooks that are then taken as a static dataset to train a global SOM model. In
this proposal the Batch SOM algorithm is applied because there are known parallel im-
plementations that can scale better with increasing distributed codebooks, e.g., (Silva
and Marques 2007). Therefore, this procedure allows the generation of a global model
describing the current collected data in a group of nodes.

Collaborative learning, on the other hand, targets nodes that move throughout the
physical space and can share their models through opportunistic networks, e.g., proxim-
ity based peer-to-peer networks. This learning strategy implies that each node contains
two UbiSOM models: the local model, responsible for maintaining a subjective view of
data acquired by the node, and; the global model that learns from prototypes acquired from
the local model codebook together with prototypes obtained from other nodes. These
prototypes are stored in a global buffer, whose contents vary as the nodes interact. In order
to distinguish the importance of prototypes originating from local and global models (the
later are considered more important, since they represent partial distributions learned by
other nodes), a prototype weighting mechanism is employed: firstly, by attaching to each
global model a map weight that aims at translating the importance of the model codebook,
as the model learns from increasing sources of prototypes. Secondly, the global UbiSOM
update rule is modified to cope with prototypes with different weights (similarly to the
Batch SOM update rule proposed in Chapter 4 to learn from micro-categories). Ulti-
mately, a node’s global model describes what it has learned autonomously and through
knowledge obtained from other nodes (Silva and Marques 2010b).

In both learning strategies codebooks are effectively merged, either when centralizing
them or when a pair is shared between nodes. The merge procedure involves removing
“duplicate” prototypes from the merged set, which would influence the global quantiza-
tion procedure of the global SOM model.

6.3.2 Notation

The methodology presented in this chapter extends the usage of the UbiSOM algorithm
to a distributed/collaborative learning setting. As such, the notation for the UbiSOM al-
gorithm was already formalized in Table 5.1. Here, only the notation relevant to the
description of the current methodologies is presented in Table 6.1.

Let N be the number of processing nodes in the network. Each node i has at least a
local UbiSOM model whose codebook is formalized as Li; for collaborative learning each
node i additionally has a global UbiSOM model, whose codebook is referred to as Gi,
were i = 1; : : : ; N . Local models learn directly from a data stream, while the global Ubi-
SOM models learn from weighted prototypes stored locally in a global buffer. Different
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Notation Description

k neuron index

c index of BMU

Wk UbiSOM “extended” neuron: a tuple hWk; t
update
k ; tbmu

k i
tbmu
k timestamp of last selection of Wk as the BMU

X(t) observation presented at time t, where X(t) 2 Rd
N number of nodes in a network

� weight of an UbiSOM model

Li local UbiSOM codebook (set of prototypes) of node i, where � = 1

Gi global UbiSOM codebook of node i, where � � 1

L0iand G0i filtered codebooks

Ni prototypes shared by a node in collaborative learning

D a static dataset formed by UbiSOM prototypes

T size of sliding window / length of ordering state (parameter)

rW perceptive field radius threshold used to detect overlap (parameter)

Table 6.1: Notation used in distributed and collaborative learning methodologies.

weights are attributed to prototypes according to their provenance, i.e., local models al-
ways have a weight � = 1, while the weight of global models increase as the respective
global buffer is filled with prototypes from different nodes.

In either learning strategy (distributed or collaborative) a key aspect to consider is the se-
lection of the prototypes to be transmitted to a central location or to other peers. Given an
UbiSOM codebook abstracts the current underlying distribution of the data stream, the
“unrepresentative” prototypes are not relevant to describe the underlying distribution.
As such, prototypes to be transmitted are filtered according to their ability to actually
represent data, i.e., only best matching units (BMU) are sent. As previously described in
Chapter 5, each UbiSOM neuron Wk is a tuple hWk; t

update
k ; tbmu

k i, where tbmu
k stores the

last time neuron k was selected as the BMU for an observation X(t). By monitoring these
timestamps, particularly in the learning state, one can get a grasp on the importance of in-
dividual prototypes in describing the current underlying distribution, effectively acting
as an “aging” mechanism. Hence, only prototypes whose age does not exceed the pa-
rameter T are considered important in representing actual observations. Consequently,
codebooks that go through the filtering process are formalized as L0i and G0i . Finally,
when merging two codebooks, e.g., merge(A;B), prototypes in B that fall within the es-
tablished perceptive field of radius rW of any of the prototypes in A are removed.
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6.3.3 General Techniques

Both distributed and collaborative learning strategies involve common techniques, namely
for filtering codebooks for transmission and merging codebooks from difference sources.

6.3.3.1 Codebook Filtering for Transmission

UbiSOM codebooks are compact representations of learned data in the form of a set of
prototypes. By transmitting only the codebooks, the amount of data that must be trans-
fered is greatly reduced, as opposed to the entire learned data stream. However, in SOM
models including UbiSOM, not all prototypes are truly representatives of learned data,
i.e., the topological maps normally contain “unrepresentative” prototypes (see Section
??), which may act as boundary prototypes between true representatives, consequence of
the neighborhood kernel. To avoid transmitting these prototypes, each UbiSOM neuron
Wk is expanded to include the time stamp tbmu

k of the latest time the respective prototype
was elected as the BMU (similarly to the utility time stamp), i.e., becoming Wk = hWk;

tutilk ; tbmu
k i. The idea is to filter the prototypes that are truly representing streaming ob-

servations.

A filtered UbiSOM codebookW 0 is in fact the set of prototypes that were active in the
last T iterations, as formalized in Eq. (6.1).

W 0 =

�
Wk : ft� tbmu

k � Tg
�
: (6.1)

This bears a similarity with the computation of the neuron utility measure (see Section
??), but instead allows to filter only the prototypes that were selected as BMU within the
last T iterations of the algorithm.

6.3.3.2 Merging Codebooks

In the proposed distributed/collaborative learning methodologies, sets of UbiSOM pro-
totypes will serve as static datasets to generate global models. Moreover, these datasets
will be composed by the union of several codebooks, where some may contain prototypes
that overlap in the input space. Since keeping overlapping prototypes would create “ar-
tificially denser” regions, the merge procedure aims at removing prototypes that may
occupy roughly the same input region as others.

Hence, the merge procedure consists in joining two codebooks of prototypes (from
different models) in such a way that possible “duplicates” are removed. To formalize this
procedure, letA and B be codebooks. In set-theory the relative complement ofA in B is the
set of elements in B, but not in A, and can be formalized as B n A = fW 2 B : W =2 Ag.
Consequently, the merge procedure is formalized in Eq. (6.2).

merge(A;B) = A [ (B n A) (6.2)
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A B

A ∪ B

A B

merge(A,B) = A ∪ (B \ A)

Figure 6.2: The merge procedure aims at removing duplicate prototypes from a pair of
codebooks A and B that roughly overlap in the input space.

The rationale is that codebookA is joined with prototypes of B that are not inA, hence
resulting in a merge procedure without duplicates (Figure 6.2). Duplicate detection is
inspired by the concept of the perceptive field of ART networks (see Chapter 4), i.e., by
temporarily establishing very small perceptive fields around prototypes, two prototypes
are considered duplicates if their perceptive fields overlap. The radius of the perceptive
field is given by the parameter rW and Eq. (6.3) establishes when two prototypes are
considered duplicates.

8Wi 2 A;8Wj 2 B isDuplicate(Wi;Wj) =

8<
:true if

kWi�Wjk
j
j < rW

false otherwise
(6.3)

Since the duplicate verification uses a normalized distance according to the dimen-
sionality of the input space, rW is dimensionless and should be chosen to a very small
value, e.g., 0:01. This should effectively detect overlapping prototypes.

6.3.4 Distributed Learning

Figure 6.3 depicts a schematic of the distributed learning methodology. Assuming the
existence of N distributed nodes, each running the UbiSOM algorithm over a separate
data stream (pertaining the same problem, i.e., same features), the distributed learning
procedure consists in centralizing all individual filtered codebooks of those models into
a set of prototypes, to serve as a static dataset for another SOM model.

Let L1through LN be local UbiSOM models. The centralized dataset D, formalized
in Eq. (6.4), is obtained by the consecutive merge of the filtered models (as they arrive)
and then used as input, i.e., X(t) 2 D; to a SOM algorithm to produce a centralized
model. It should be noted that this dataset should be considered “stationary” and the
order by which the input prototypes are fed into the algorithm should be random. This
is a crucial aspect, otherwise the input prototypes would be presented by order of their
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Local UbiSOM Local UbiSOM Local UbiSOM Local UbiSOM

...

Centralized
Batch SOM

Static Dataset

Filtered
Codebooks

1 2 3 N

1 2 3 N

Figure 6.3: Distributed learning from distributed local UbiSOM models.

origin, explicitly describing N consecutive distributions.

D = merge(L01; : : : ;L
0

N ) (6.4)

Therefore, one can, in theory, use any SOM algorithm over this dataset D to produce the
final model, ensuring that input prototypes are drawn randomly during presentation to
the algorithm. In this proposed methodology, the Batch SOM algorithm is used for the
centralized learning procedure, as in Chapter 4. Moreover, in extreme cases of a large
number of distributed models and, consequently, a larger number of prototypes, prior
to this research a parallel implementation of this variant (Silva and Marques 2007) was
made available. This implementation scales in sub-linear time for increasing number of
cores, due to the hybridization of data and lattice segmentation. Therefore, a parallel im-
plementation of the Batch SOM addresses scalability issues that may arise with increasing
distributed local models.

6.3.5 Collaborative Learning

The collaborative learning setting foresees each processing node possessing a local and
global view of the problem/task. Collaborative learning is achieved among nodes by
sharing their models with others. Hence, within each node, two models exist, as depicted
in Figure 6.4 :

Local model. The local UbiSOM model processes the streaming data acquired by the
processing node alone, generating a local model. It contains the local codebook Li.

Global model. The global UbiSOM model only learns from prototypes of data which
can have different sources, i.e., from local and global codebooks. These prototypes
are stored in the global buffer and recycled during presentation to the global Ubi-
SOM; the contents of this buffer change throughout time. The global model can
act simultaneously as a “long-term” memory for the local model, e.g., in case of
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Local UbiSOMacquired 
examples 
over time

{x}

Global UbiSOM

learn

+

P2P

shared prototypes

Data Stream Source, e.g., Sensors

{w}. . . . . . . . . . . . . . . . .
global buffer

local codebook

global codebook

model weight

+

Figure 6.4: Collaborative learning framework.

changes in the underlying stream, and as a “collective” memory for models the de-
vice has interacted with, in a collaborative learning setting. The set of prototypes
contained in this model is called the global codebook Gi.

A weighting mechanism is introduced at the model level to establish a measure of the
relative importance of prototypes from local and global models. Since the later may con-
tain knowledge from other nodes, the prototypes are considered more important. Con-
sequently, each UbiSOM model is extended with a weight �; local models always have
� = 1 and the weight of a global model is incremented as the node interacts with other
nodes, although being initialized with � = 1.

Figure 6.4 additionally illustrates the proposed methodology when two nodes interact
in the ubiquitous environment, with the intent to collaborate. The methodology involves
the following steps:

• Each node i:

i. Generates its local filtered codebook L0i;
ii. Generates its global filtered codebook G0i , if the model already exists; otherwise
G0i = ;;

iii. Merges the two codebooks into Ni = merge(G0i ;L
0

i). Note that Ni contains the
prototypes from G0i plus the non-overlapping prototypes from L0i;

iv. Sends Ni to node j, receiving Nj in return;

v. Merges D = merge(Ni;Nj);
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vi. Replaces the contents of the global buffer with D;

vii. Increments the global model weight, i.e., �i += 1.

Given the contents of the static dataset D may contain prototypes from local and
global codebooks, each prototype Wl 2 D is effectively a tuple hWl; �li, where �l is the
weight from the prototype’s originating model. During the merge procedure, when two
overlapping prototypes are detected, the one with the highest weight is kept.

Consequently, and to account for different weights of prototypes, the global UbiSOM
learning rule is modified to scale the prototype adjustments by the weighting factor of the
current prototype — Eq. (6.5), where the function �(Wl) returns the associated weight of
the prototype from the previous tuple.

Let X(t) � Wl 2 D

�max = max
�
�(X(t) : 8X 2 D	

Wk(t+ 1) = Wk(t) +
�(X(t))

�max
�(t)h0ck(t) [X(t)� Wk(t)] (6.5)

The magnitude of the updates is therefore additionally weighted (besides the weight-
ing imposed by learning parameters) by the normalized weight of the prototype in the
]0; 1] interval. Also, as in the distributed methodology, attending to the fact that the global
model is learned from prototypes of data, the distribution is assumed stationary, i.e., pro-
totypes are drawn randomly from the global buffer.

It should be noted that the local codebooks can be simultaneous and seamlessly used
in the distributed collaborative learning setting.

6.4 Experimental Evaluation

In this section the above methodologies are applied to an illustrative problem using ar-
tificial data. Given the general methodology relies mainly on the UbiSOM algorithm
already evaluated in the previous chapter, focus is given on the quality of global models
obtained through either distributed or collaborative learning settings. Also, the differences
between filtered and unfiltered codebooks is illustrated, as well as the effect of the rW

parameter.

6.4.1 Artificial Data

The same cluster structure described by the Complex artificial data stream was used to
evaluate the methodologies. However, the two-dimensional input space was split into
four quadrants from where separate data streams were generated, each containing 100 000
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3

12

4

(a) Input space quadrants used to split the origi-
nal data stream.

(b) Resulting data streams to be learned by each
local node.

Figure 6.5: Generation of distributed data from the Complex artificial data stream.

observations. This generation process is depicted in Figure 6.5 and we effectively obtain
four data streams pertaining the same shared problem. The goal is for each of these in-
dividual data streams to be learned by the local UbiSOM model of a processing node,
while performing collaboration among nodes and/or centralizing the codebooks for a
global model creation. Is this particular scenario, each node is learning a stationary dis-
tribution.

6.4.1.1 Simulated Environment and Parameterization

Four distinct and collaborating nodes are simulated in this environment, labeled Node1

to Node4, each learning the respective data stream from its Complex quadrant. A refer-
ence node learns the original Complex data stream for comparison purposes. The same
environment is utilized to evaluate both learning strategies.

The sequence of events in the simulation is schematized in Figure 6.6. Each depicted
“time lapse” is a random value generated between [70; 90] seconds. These values do not
have any specific meaning besides triggering occasional collaborations between nodes,
simulating encounters in a physical space. After the environment is created, each node
i = f1; 2; 3; 4g starts streaming observations from its data stream, learned by the respec-
tive local UbiSOM model. During the simulation, collaborations between nodes are trig-
gered after random time lapses, simulating the establishment of opportunistic (peer-to-
peer) connections between the nodes, e.g., proximity-based, where the codebooks Ni are
exchanged and merged to populate the individual global buffers, from where the global
UbiSOM models draws the weighted learning observations. At the end of the simulation
the local filtered codebooks L0i are centralized to produce a global Batch SOM model.

The sequence of collaborations between the nodes is the set
�f1; 2g; f1; 4g; f1; 3g	.
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Node 1 Node 2 Node 3 Node 4 Central Node

N1

time lapse

N2

N1

time lapse

N4

N1

time lapse

N3

L′

1

time lapse

L′

2

L′

3

L′

4

Distributed LearningDistributed Learning Centralization of local codebooks

Figure 6.6: Sequence of events in the simulated ubiquitous environment.
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Simulation Environment

Number of nodes 4

Duration 400 sec

Random time lapse f70; 90g sec
Data stream speed 200 obs=sec

Local/Global UbiSOM

Lattice size 20� 40

�i 0:1

�f 0:08

�i 0:6

�f 0:2

� 0:8

T 1500

Other

rW 0:01

Centralized Batch SOM

Lattice size 20� 40

�i 0:1

�f 0:01

�i 1=2
p
202 + 402

�f 1

Order epochs 10

Tune epochs 40

Table 6.2: Parameters used in the simulated ubiquitous environment.

Note that only Node1 collaborates with the other 3 nodes in the attempt to learn the en-
tire Complex distribution. After each collaboration, the codebook G1 should cumulatively
describe the learned distribution, while each Gi; i 6= 1 should learn its portion of the
distribution plus what G1 can already describe at that time. Ultimately, G3, after the last
collaboration between Node3 and Node1, should approximately also describe the entire
distribution, given Node1 has previously collaborated with Node2 and Node4.

The parameterization of the experiment is summarized in Table 6.2. The environment
simulates 4 collaborating nodes, each possessing a local and global UbiSOM model with
the same parameters; a “reference” local model learns the whole Complex data stream,
for comparison purposes. For this experimental evaluation the UbiSOM parameters ob-
tained in the PSA for the Complex data stream (see Section 5.5) were used. Each node
processes a learning example at a rate of 0:05 seconds per sample. This yields a presenta-
tion rate of the observations to the UbiSOM algorithms in the order of 500 observations
per second, where the UbiSOM algorithm is able to converge to a stable state of the dis-
tribution in� 5 seconds (this also derives from the UbiSOM PSA). The threshold value of
rW was set to 0:01. Given the normalization applied to distances in the merge procedure,
this eliminates a duplicate prototype if another lies within 1% of the input space largest
diagonal. The centralized Batch SOM parameters were set as in Chapter 4, namely for
the offline SOM models of Section 4.5.5.

It should be noted that “time” is relative in this experiment. Simulation times and/or
data stream rates can be increased/decreased, but it would not alter the objective of the
experiment.

6.4.1.2 Collaborative Learning

The simulated environment was run ten times, from which an illustrative run is pre-
sented, and the mean quantization error of the resulting models averaged for compar-
ison purposes. Table 6.3 shows the simulated sequence of collaborations together with
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the new contents of the global buffer, i.e., the resulting dataset D from the collaboration
procedure; these highlight the codebook merge procedure and prototype weighting. Fig-
ures 6.7 and 6.8 depict the obtained models and corresponding U-Matrices for all nodes,
respectively.

The above results must be analyzed together, given their complementarity. Note that,
following the simulated sequence of collaborations, more precisely

�f1; 2g; f1; 4g	, G2
and G4 also depict approximately G1 short after each of those collaborations. Given each
local UbiSOM is learning a stationary data stream, these models do not change during
the simulation, after convergence. In Figure 6.7 we can observe that they are successful
in modeling and exhibiting the underlying cluster structure. In particular, the U-Matrices
in Figures 6.7a, 6.7b and 6.7c indicate 2 clusters in each model, while in Figure 6.7d no
cluster structure is visible indicating a single cluster. On the other hand, the global Ubi-
SOM models are obtained collaboratively and may change over time.

Pertaining the following analysis of the depicted simulation, recall that each UbiSOM
model is 20 � 40 in size, effectively containing 800 prototypes. In the first simulated
collaboration between Node1 and Node2, at time 95 sec, the respective global models
do not contribute with any prototypes at this time because the global buffers are empty.
Consequently, N1 = L01 and N2 = L02, i.e., they only contain the filtered codebooks from
the local models. No overlapping occurs between N1 and N2, resulting in a dataset D
with 1194 (from possible maximum of 2 � 800 = 1600, consequence of the codebook
filtering) weighted prototypes with � = 1; this forms the content of the global buffer of
these nodes — these prototypes then start being fed cyclically to the respective global
UbiSOM models. After convergence, the obtained global model can be visualized in
Figure 6.8b. The U-Matrix clearly indicates 4 clusters, i.e., the cumulative distribution
of quadrants 1 and 2, also allowing to infer the relative distances between individual
clusters. This simultaneously shows the global model G1 before the next collaboration
and G2 until the end of the simulation.

After 177 sec, the second collaboration between Node1 and Node4 is triggered. This
time, the resulting dataset D now contains prototypes from L01, G01 and L04. It should be
pointed out that D only contains 1220 prototypes (from the possible 3� 800 = 2400), be-
cause merge(L01;G

0

1) removes most of the overlapping prototypes, considering the global
model G01 already describes well the local distribution. However, some are not removed,
allowing Node1 to “reinforce” its locally learned observations in the transfered set N1

(this is also visible in the next collaboration). Prototypes originating from G01 are weighted
with � = 1, while the ones originating from L01 and L04 are weighted with � = 0:5 — due
to the fact that �(G1) = 2 at this point in the simulation, being incremented afterwards.
Following the same reasoning as before, Figure 6.8d depicts the resulting final global
model of Node4, simultaneously with the one from Node1 after this collaboration, where
effectively the expected 5 clusters are visible.

Finally, the last collaboration between Node1 and Node3 occurs at 262 sec, with the
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Time
Lapse
(sec)

Collaborating
Nodes

Content of Global Buffer D size(D)

95 1&2

Prototype count: 1194
0.25
0.33
0.50
0.66
0.75
1.00

1194

177 1&4

Prototype count: 1228
0.25
0.33
0.50
0.66
0.75
1.00

1220

262 1&3

Prototype count: 1228
0.25
0.33
0.50
0.66
0.75
1.00

1220

Table 6.3: Sequence of collaborating events in the simulated ubiquitous environment,
showing the contents of the obtained global buffer after each interaction.
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i QE(Gi)
1 1:5340e�2 �0:00124
2 1:8478e�1 �0:012
3 1:5159e�2 �0:00164
4 7:9064e�2 �0:0096

Reference 8:0608e�3 �0:00027

Table 6.4: Normalized mean quantization error of each global codebook Gi against the
entire Complex data stream.

resulting dataset D composed by L01, G01 and L03. Again, from a maximum total of 3 �
800 = 2400, only 1220 weighted prototypes are obtained during the merge procedure,
where prototypes originating from G01 are weighted with � = 1, while the ones originating
from L01 and L03 are weighted with � = 0:33 — �(G1) = 3, at this point. A “reset”,
i.e., a transition back to the ordering state, occurred in the global UbiSOM of Node1 after
this collaboration (at � 274 sec). This means that this global model, which had a lattice
configuration similar to the one illustrated in Figure 6.8d, after the collaboration with
Node4, was unable to adjust to the new distribution described by D without a reorder or
the prototypes. Figures 6.8a and 6.8c depict the final global models obtained for Node1

and Node3, respectively. From both, the expected 7 clusters can be inferred in the U-
Matrices. Note that the resulting lattices seem similar, but they differ in the rotation,
which can be observed also in the U-Matrices. These models, compared to the reference
model, are very similar, giving evidence of the feasibility of the proposed methodology.

After each of the ten runs of the simulated environment, the complete Complex data
stream was projected against each global UbiSOM model of the collaborating and ref-
erence nodes; the mean normalized quantization errors were computed and averaged
across runs. Results are presented in Table 6.4. The quantization capabilities of G1 and
G3 are practically identical, indicating that the single collaboration between Node1 and
Node3 allowed the later to learn the complete distribution with a single collaboration,
while the first was able to learn it cumulatively. Compared with the value obtained for
the reference node, they are very close. This is in line with the expectation that only an
approximate model could be achieved through the collaborative methodology. However,
from the previous illustrated results, the results from the visual exploratory analysis are
identical, i.e., the detection of the 7 clusters.

6.4.1.3 Distributed Learning

Using the same previous illustrative simulation, the complete centralized set composed
by the individual filtered codebooks L0i in illustrated in Figure 6.9a. From the total
4 � 800 = 3200 prototypes, only 2481 are centralized by the filtering mechanism per-
formed at each node; the merge procedure did not find any duplicates. These prototypes
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Prototype count: 2461

(a) Filtered.

Prototype count: 3200

(b) Unfiltered.

Figure 6.9: Filtered vs unfiltered centralized codebooks from individual nodes.

effectively describe the entire Complex distribution. By contrast, Figure 6.9b depicts the
unfiltered version of this set, where several “unrepresentative” prototypes are observed.
If these later prototypes were to be used as learning observations for the centralized
model, this would degrade the obtained model; these prototypes would be given the
same importance as the truly representative ones.

The resulting model and U-Matrix after running the Batch SOM algorithm is pre-
sented in Figure 6.10. The expected cluster structure of 7 clusters is visible.

6.5 Remarks and Future Work

In this chapter methodologies addressing the use of the UbiSOM algorithm in ubiquitous
environments were presented. Proposed methods aimed at the current trade-off between
local and global models. Local models can be seen as subjective views of the data, while
global models more general and inclusive views of the problem.

Assuming each node on the network processes its own acquired data stream (per-
taining the same problem/task), continuously maintaining a local UbiSOM model, two
learning strategies were tackled — distributed and collaborative. The former consists in
generating a one-shot global centralized SOM model from the current codebooks of a
set of distributed nodes; in this setting the Batch SOM algorithm was used, for which,
if scalability is a concern, parallel implementations are known, e.g., in (Silva and Mar-
ques 2007). The later assumes nodes can move in the physical space and consists in
collaboration between nodes through, e.g., proximity-based opportunistic networks. The
proposed collaborative methodology allows each node to maintain a subjective view of
the problem through its local model, while the global UbiSOM model evolves continu-
ously with prototypes from different sources, namely the prototypes from its models and
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Batch SOM (20 x 40) | t = 147660

(a) Unfiltered codebooks. 3200.
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(b) Filtered codebooks. 2481.

Figure 6.10: Centralized model and U-Mat.

from other nodes it encounters. This strategy resembles a cumulative learning mecha-
nism, where “knowledge” from other sources is incorporated in the global model while
retaining past learning. Both previous learning strategies rely on general techniques as
codebook filtering of “unrepresentative” prototypes and codebook merging to eliminate
“duplicate” prototypes.

The proposed methodologies were presented as initial attempts to the problematic
of ubiquitous data streams. The distributed learning strategy is sound and simple in its
conception — a real-world application can be found in Chapter 7. However, the collabo-
rative learning strategy is more complex and less reliable. For example, it should be noted
that with increasing collaborations performed by a node, its capability on modeling the
cumulative distribution degrades sightly, consequence of the fixed amount of prototypes
in the global model.

Regarding future work, some aspects are put forward in the following paragraphs.

Change detection at local nodes. An automatic change detection mechanism for the
UbiSOM is still of interest in the proposed methodologies. For example, regarding the
distributed learning strategy, if change is detected at a local node it may signal the central
location that the current model has become obsolete and trigger the generation of a new
global model. This is a typical strategy, e.g., in (Gama, Rodrigues, and Lopes 2011). How-
ever, this requires that prototypes from local nodes be kept separately, allowing them to
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be replaced selectively.
In the collaborative learning strategy, at the moment, for a specific node, the local model

is only incorporated in the global model when a collaboration procedure (with other
node) is triggered. Automatic change detection over the local model would allow this
incorporation to be made whenever change occurs, more precisely after the local UbiSOM
has converged to the new distribution;

Improvements for collaborative learning. The presented methodology does not ad-
dress any forgetting mechanism. Notwithstanding the usefulness of the methodology for
collaborative learning in a cumulative sense, when taking into account the non-stationarity
of local data streams things become more haze, specially if one assumes nodes only com-
municate sporadically and when in proximity; then there is no way to know if prototypes
obtained from a particular node have become obsolete, if it is never “seen” again. On the
contrary, even if nodes are able to maintain continuous awareness of each other, than it re-
quires that prototypes from other nodes be kept separately, allowing them to be replaced
when change is signaled. However, this poses a problem in respect to the scalability of
the approach, e.g., memory and communication overhead.

Additional future work considerations are made in the next chapter, dealing with
real-world data, namely in Section 7.6.
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7
Real-World Applications

No amount of experimentation can ever prove me right; a
single experiment can prove me wrong.

ALBERT EINSTEIN, GERMAN THEORETICAL PHYSICIST

(1879-1955)

In the previous chapters, the StreamART2A/SOM methodology and the UbiSOM al-
gorithm were presented and evaluated. Chapter 4 presented the StreamART2A algo-
rithm as an online data stream abstraction procedure from where offline Batch SOM mod-
els are generated at user request. Chapter 5 presented the UbiSOM, capable of directly
and continuously abstract non-stationary data streams. Chapter 6 transposed this capa-
bility to a possibly ubiquitous environment, where distributed and collaborative learning
methodologies were proposed. Artificial data was used to perform the evaluations, given
results then could be compared to expected outcomes. This chapter focuses on real-world
application scenarios for the proposed algorithms and methodologies.

7.1 Chapter Overview

In this chapter, the proposed algorithms and methodologies are applied to three real-
world problems — two involving sensor data (local and distributed) and one encom-
passing financial data. The versatility of SOM models obtained in a stream setting, re-
garding different data mining tasks, is also illustrated, namely, traditional clustering of
observations, detecting correlated features and, by extension, the possibility to cluster
the features themselves. The later, as discussed before, is intimately related to time series
clustering, in a stream setting.
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The chapter is organizing as follows. Section 7.2 provides motivation for the selected
data, as well as the distinct aims that each application targets. In Section 7.3, an appli-
cation over household electric consumption data stream is illustrated, while additionally
presenting two new UbiSOM specific visualizations. In Section 7.4, an application using
distributed air quality streams is presented, involving the generation of local and global
models of pollutant patterns. In Section 7.5, the StreamART2A/SOM methodology is
applied to the financial domain, with the overall purpose of grouping stocks that behave
similarly along time. Finally, in Section 7.6, future work directions, specifically regarding
real-world data, are put forward and discussed.

7.2 Motivation and Aim

Data streams are generated naturally within several applications as opposed to simple
datasets. Such applications include network monitoring, web mining, sensor networks,
telecommunications, and financial applications. All have vast amounts of data arriving
continuously that can be mined for interesting and relevant information. Hence, being
able to produce real-time models from where to perform data mining tasks assumes great
importance within these applications. Another important characteristic of data streams
is that they are often mined in a distributed fashion.

Publicly available real-world data streams may be difficult to obtain, depending on
their nature, either because they may contain sensitive data that proprietors are not will-
ing to and/or cannot share or because the data itself can be monetized. Limited by these
constraints, of the three real-world scenarios addressed in the chapter, two involve pub-
licly available data, while the third uses data provided by GoBusiness Finance (GoBusiness
Finance 2016).

The aim of this chapter is the application of the proposed algorithms and method-
ologies utilizing real-world data, with the intent to demonstrate their relevance, useful-
ness and applicability. Sensor data and financial markets are both typical domains that
generate data streams and illustrate possible applications of the proposed methods. A
secondary aim is to validate the previously suggested UbiSOM parameter intervals in
Section 5.5.3, with real-world data, i.e., to verify if the PSA results using real-world data
coincide with the previous intervals obtained with artificial data.

7.3 Household Electric Power Consumption

In most cases, there is an inherent temporal component to the stream mining process.
This is because data may evolve over time. This behavior of data streams is referred to
as temporal locality (Aggarwal 2007), and we are interested in verifying the ability of the
UbiSOM algorithm to model these continuous changes over time.

The first real-world application presented in this chapter involves a multidimensional
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stream of sensor data related to household electric consumption. Due to the inherent
nature of residential electricity consumption, this is an example of a challenging appli-
cation where the UbiSOM may operate. Consequently, through such an application we
are interested in extracting knowledge from the UbiSOM model that is maintained over
time along the underlying data stream, e.g., clusters of patterns of usage, features val-
ues that contribute the most for the formation of those clusters (cluster descriptions) and
correlated measurements. Additionally, two new UbiSOM specific visualizations are in-
troduced, in order to provide the user with an additional visual confidence mechanism
for the obtained UbiSOM models.

7.3.1 Data Description

Data is publicly available through the UCI repository (Lichman 2013), under the name
“Individual household electric power consumption Data Set”, containing measurements of
electric power consumption in one household with a one-minute sampling rate, over a
period of almost 4 years, between 2007 and 2010. Although not clearly stated in the data
source, it can be safe to assume that this house is located at Clamart (France), because this
is the data’s author provided location. At Clamart, annual average temperatures ranged
between minimums of 2�C and 15�C and maximums of 8�C and 26�C (between 2000
and 2012). This is important to provide a context to the electric consumption data. Dis-
regarding date and time-related attributes, data is composed by the following attributes
(features):

Global active power: household global minute-averaged active power (in kilowatt);

Global reactive power: household global minute-averaged reactive power (in kilowatt);

Voltage: minute-averaged voltage (in volt);

Global intensity: household global minute-averaged current intensity (in ampere);

Sub-metering 1: energy sub-metering No. 1 (in watt-hour of active energy); corresponds
to the kitchen, containing mainly a dishwasher, an oven and a microwave (hot
plates are not electric but gas powered);

Sub-metering 2: energy sub-metering No. 2 (in watt-hour of active energy); corresponds
to the laundry room, containing a washing-machine, a tumble-drier, a refrigerator
and a light;

Sub-metering 3: energy sub-metering No. 3 (in watt-hour of active energy); corresponds
to an electric water-heater and an air-conditioner.

Note that (global active power�1000=60�submetering 1�submetering 2�submetering 3)

represents the active energy consumed every minute (in watt-hour) in the household by
electrical equipment not measured in sub-meterings 1, 2 and 3.
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Table 7.1 provides a 5-number data summary that enables us to grasp the characteris-
tics of the data. Here we can observe the individual ranges, means, 1st and 3rd quartiles
and missing value count per feature. For example, if we look at the sub-metering values
all have a 1st quartile of 0 and median values of 0 or 1, meaning that practically 50% of
the time no consumption is measured there. This immediately shows that electricity is
not consumed continuously, but sporadically.

Missing values occur simultaneously for all features, where some type of failure may
have occurred, e.g., power outages or sensor maintenance. For example, over one-day
spans of missing data occur at:

• 2007-04-28 00:21:00 — 2007-04-30 14:23:00

• 2009-06-13 00:30:00 — 2009-06-15 07:34:00

• 2010-01-12 14:53:00 — 2010-01-14 19:01:00

• 2010-03-20 03:52:00 — 2010-03-21 13:38:00

• 2010-08-17 21:02:00 — 2010-08-22 21:27:00

• 2010-09-25 03:56:00 — 2010-09-28 19:12:00

For the generation of the Household data stream, date and time related features were dis-
carded and only complete observations were kept, resulting in a total of 2 049 000 obser-
vations, with d = 7. All observations were normalized in the unit hypercube [0; 1]d.

7.3.2 Parameterization

The PSA was performed using only data from 2007 (Figure 7.1) and is summarized in Ta-
ble 7.2; the plot allows us to confirm the various trends in the electric consumption. We
can see that the best parameterization, i.e., T = 2000 and � = 0:9 is within the intervals
provided in Section 5.5.3 using artificial data, namely � 2 [0:6; 0:9] and T 2 [1000; 2500].
The value of T = 2000 suggests that, given the numerous changes along consumption
patterns, a relatively larger window provides better stability/convergence throughout
the learning process. Also, � < 1 is in line with previous findings that confirm the added
value of this metric, as opposed to using only the average quantization error, i.e., with
� = 1.

For this illustrative application, the general parameters of the UbiSOM remained the
same as in the previous chapters, i.e., map size of 20 � 40, �i = 0:1, �f = 0:08, �i = 0:6,
�f = 0:2 and

�
T = 2000, � = 0:9

�
from this PSA.

7.3.3 The BMU Map and Activity Map Visualizations

Before we proceed, it should be reinforced that an UbiSOM model does not reflect only
a particular instant in time in the stream, but a summarization of recently learned data.
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Figure 7.1: Household data stream in the year 2007.

Data stream T � Mean E
0

q(t) Mean �(t) Mean TE(t) Resets

Household
2000 0.9 1:7875e�2 9:9619e�1 1:3155e�2 0

2500 0.7 1:8308e�2 9:9868e�1 1:3782e�2 3

2500 0.8 1:8190e�2 9:9841e�1 1:3749e�2 0

Table 7.2: Optimization results for a PSA over the Household data stream (only with data
from 2007).
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Figure 7.2: Assessment metrics and learning parameters evolution in the Household data
stream.

Also, the term "recent" must be interpreted with care, taking into account the non-stationarity
of the underlying distribution. If the distribution is in a stable state, then the model may
represent a longer period of data. By contrast, with evolving data the period is shorter
because the learning parameters will force the model to give more importance to recent
observations. Even so, there are areas in the map that may still represent older informa-
tion if newer data does not require a large adjustment of the lattice.

As opposed to the StreamART2A/SOM ensemble, where the SOM model is generated
for a particular time horizon, the current UbiSOM abstraction is dependent on the order
of the observations and underlying changes over time. Therefore, besides the trend of the
drift function d(t) to suggest the degree of confidence in the current UbiSOM model, two
new visualizations are introduced in this section as a means to provide a temporal visual
reference of the current UbiSOM abstraction, namely using the extended information
contained in each UbiSOM neuron pertaining the BMU and update timestamps, i.e., tbmu

k

— BMU Map, and tupdatek — Activity Map. In these visualizations, the timestamps are color-
coded, similarly to the component planes, i.e., “warmer” colors indicate more recent
timestamps, while “cooler” colors indicate older ones.

7.3.4 Application Results

The entire learning process, i.e., the evolution of the averaged metrics and learning pa-
rameters, is depicted in Figure 7.2, from where we can see that indeed the underlying
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distribution changes frequently along time. Please be aware that the plots depict more
than two million iterations; at much smaller intervals, the behavior of the assessment
metrics and learning parameter estimation is smoother.

During learning over the Household data stream two snapshots of the UbiSOM model
were extracted at:

i. t = 586 861, analog to the date-time 2008-01-31 00:00. In meteorological seasons,
this date equates a mid-winter day and this model is referred hereafter as the House-
hold Winter model;

ii. t = 2049 280, analog to the date-time 2010-11-26 21:02 (and to the last presented
observation). This date corresponds to a mid-autumn day and the model would be
referred to as the Household Autumn model.

The snapshots could be obtained at any time, taking care not to extract results while the
algorithm is in the ordering state, but snapshots were taken shortly after the year used
for the PSA (2007) and at the end of the data stream, coinciding with different meteoro-
logical seasons.

For the above two UbiSOM snapshots, the U-Matrix and component planes are pre-
sented; based on these two different visualizations, an annotated U-Matrix visualization
is also presented. From these visualizations, an interpretation of typical knowledge that
can be extracted from the obtained models is presented, concerning consumption pat-
terns and correlations between measurements. Additionally, the BMU and Activity Map
visualizations (see Section 7.3.3) are also presented and discussed. Finally, a depiction of
the immediate observations preceding the snapshots is given, i.e., the prior 48h of data
(2880 observations) regarding the selected dates, with the intent to help validate the in-
ferred knowledge from the visualizations.

Household Winter model (at 2008-01-31 00:00) — Figure 7.3

• The standard visualizations, i.e., U-Matrix and denormalized component planes,
for the snapshot are depicted in Figure 7.3a.

• Although, at least, two clusters are obvious in the U-Matrix, by analyzing it together
with the component planes a more intricate cluster structure can be derived. Fig-
ure 7.3b depicts this U-Matrix with an annotated cluster structure. Together with
the component planes they allow us to infer what conjunction of feature values
contributes to the formation of those clusters, e.g.:

– Clusters [1] and [2], the dominant ones, are composed by consumption pat-
terns where sub-metering 3 attains high or low values, respectively;
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Figure 7.3: Household Winter model and additional proposed visualizations.
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Figure 7.4: Preceding 48h of observations for the Household Winter model.

– By looking at the sub-meterings and Global Active Power component planes, we
can infer that Cluster [3] contains consumption patterns where only other ap-
pliances (not measured by the sub-meterings) are in use;

– Cluster [4] is characterized by consumption patterns with higher values in sub-
meterings 1, 2 and 3. Given its relatively small size, this consumption profile is
the least common in this model;

– Finally, Cluster [5] identifies moderate consumption patterns for other appli-
ances;

– The above consumption clusters can be confirmed in the data stream plot of
Figure 7.4.

• Regarding the BMU Map visualization (Figure 7.3c), it can be seen that the obtained
model is expressing observations that span approximately 5 days of consumption
patterns — the reasoning behind this statement comes from the fact that most de-
picted neurons have timestamps in the upper interval, i.e., between t 2 [579 300;

586 861], which divided by the daily observations (1440) results in � 5 days. The
rest of the prototypes that seem to be representing older information are actually
“border” prototypes, i.e., they coincide with the cluster boundaries of the U-Matrix.
In respect to the Activity Map (Figure 7.3d), we can see that the whole lattice has
been recently updated; this visualization also allows us to observe the neighbor-
hood kernel that is being used at this moment, although not the decreasing magni-
tude of the updates.
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Figure 7.5: Household Autumn model and additional proposed visualizations.
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Figure 7.6: Preceding 48h of observations for the Household Autumn model.

Household Autumn model (at 2010-11-26 21:02) — Figure 7.5

• The standard visualizations, i.e., U-Matrix and denormalized component planes,
for the snapshot are depicted in Figure 7.5a.

• Following a similar reasoning, Figure 7.5b depicts the U-Matrix with an annotated
cluster structured, derived from the U-Matrix in conjunction with the component
planes. From here, we can infer that, e.g.:

– Again, Clusters [1] and [2] are formed by consumption patterns dominated by
low or high sub-metering 3 values, respectively. Note that between this snap-
shot and the previous the the UbiSOM lattice rotated in the hyperspace, while
adapting to the underlying data stream;

– Cluster [3] contains high consumption patterns in sub-metering 3 when a higher
amount of global reactive power is available;

– Cluster [4] is characterized by consumption patterns with medium values where
only sub-metering 1 is active (the kitchen);

– Cluster [5] identifies consumption patterns where sub-meterings 1 and 3 are
active;

– Finally, Cluster [6] where sub-meterings 2 and 3 are active;

– The above consumption clusters can also be confirmed in the data stream plot
of Figure 7.6.
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• Similarly to the reasoning for the previous Winter model, the BMU Map visualiza-
tion (Figure 7.5c) indicates the model is expressing approximately 7 days of con-
sumption patterns, while older prototypes coincide again with cluster borders of
the U-Matrix. The Activity Map visualization (Figure 7.5d) also indicates the whole
lattice has been updated recently.

Comparing both models, the consumption profiles are not too different, and by inspect-
ing the denormalized scale of the Global Active Power component plane, nor is the overall
energy consumed. Other snapshots that were taken for summer days indicate different
consumption patterns with substantially lower consumptions in sub-metering 3 (water-
heater and air conditioning) and higher prevalence of active energy in sub-metering 2 (the
laundry room). Active energy measured by sub-metering 1 (the kitchen) is always the least
expressive for this household.

Regarding correlated measurements, the more obvious is the almost perfect positive
correlation between the Global Active Power and Global Intensity features; this is expected
and in agreement with the provided plots of the data streams (Figures 7.4 and 7.6). By
comparison, voltage measurements seen to be negatively correlated to some degree. Re-
active power can be seen as “excess power” and represents energy alternately stored and
released by inductors and/or capacitors. It is not clear the relationship between this mea-
surement and the others by looking at the models, nor in the data plots, for that matter.

This application illustrates the type of knowledge inference that the UbiSOM allows
over a non-stationary multidimensional data stream, e.g., in monitoring applications.
Similar applications can include multi-dimensional sensor data from any domain; in the
next section, data streams of pollutant concentrations are addressed.

7.4 Distributed Air Quality Monitoring

This section illustrates another application of the UbiSOM and distributed learning method-
ologies to distributed air quality monitoring data in Portugal. The interest of this appli-
cation is the generation of local models at single locations, from where knowledge about
the prevalence of air pollutants can be obtained, which can then be centralized to pro-
duce a global model characterizing the area containing those locations.

"Air quality monitoring is important for assessing the nature of the population exposure to air
pollution. Assessment of population exposure is necessary for health impact assessment, which in
turn is crucial for developing plans for air quality management and protecting the public health.
(...) In general, exposure assessment requires both monitoring and modeling to identify the more
problematic pollutants and identify target sources for reducing emissions and to implement an
effective programme of air quality management for protecting human health." — (Organization
1999).
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Air quality monitoring is often used to determine the air pollution levels in urban or
rural environments. A monitoring network produces concentration measurements that
can then be compared with national and international guideline values. Portugal has a
network of air quality monitoring stations deployed over the mainland and archipelagos
(Azores and Madeira). This network is divided by established territorial zones and indi-
vidual stations can be classified by a combination of their type of environment and type of
influence:

Type of environment: Urban located in urban environments (cities);

Suburban located at the periphery of cities;

Rural located in rural environments.

Type of influence: Traffic monitors direct emissions from car traffic;

Industrial monitors direct emissions from industrial sources;

Background does not monitor direct emissions from any source; acts as a baseline,
representing the pollution that any citizen, even living away from emission
sources, is exposed to.

Portugal’s mainland air quality monitoring network is illustrated in Figure 7.7, depict-
ing the distribution of the stations, more concentrated in the coastal area, and their type
based on the previous classification. In March of 2016 the network consisted of a total of
65 active monitoring stations, where 3 were located in the archipelagos. We should be
aware that the monitoring stations are located at ground-level (the majority in altitudes
lower than 300 m), consequently measuring ground-level pollution, with the intent of
measuring pollution levels that directly affect the population.

Data from monitored pollutants is gathered at a hourly rate at each station, validated
and sent to QualAr, the national air quality database of the Agência Portuguesa do Ambi-
ente (APA). This agency then publicly discloses a daily Air Quality Index (AQI) for each
region, forecasts and other statistical information. Reports on air quality are released
annually.

The AQIs are of interest to us in this section, given we will reference them later when
interpreting the obtained local and global models. Each station monitors a set of an-
thropogenic pollutants, generally related to their type of influence. The total number
of pollutants measured along time, between all stations, since the network’s inception,
ascends to the dozens. Stations are added, upgraded or downgraded is respect to sen-
sors, or deactivated throughout time. As a side note, removing sensors from a station
may seem strange, but if over a relatively long period of time a specific pollutant never
reaches significant concentrations, then no more efforts are employed at measuring that
specific pollutant in that site. Notwithstanding a possible larger amount of monitored
pollutants, only five are used to calculate the AQI in Portugal:

Carbon monoxide (CO) It is a product by incomplete combustion of fuel, natural gas,
coal or wood. Vehicular exhaust is a major source of carbon monoxide;
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Figure 7.7: Location and characterization of air quality monitoring stations, regarding
type of environment and influence, in Portugal.

Nitrogen oxides (NOx) Nitrogen oxides, particularly nitrogen dioxide (NO2), are ex-
pelled from high temperature combustion and one of the most prominent air pol-
lutants;

Ozone (O3) Although essential in protecting us from UV radiation, ground level ozone
is a pollutant and a constituent of smog. It can be formed from photochemical
reactions with NOx and CO, called ozone precursors;

Particulate matter (PM ) Regard fine particles suspended in the air. Human activities,
such as the burning of fossil fuels in vehicles, power plants and various industrial
processes generate significant amounts of particulate matter. Of interest are par-
ticles less than 10 microns in diameter — about 1=7th the thickness of the a human
hair, and are known as PM10. PM10 is among the most harmful of all air pollutants.
When inhaled these particles evade the respiratory system’s natural defenses and
lodge deep in the lungs;

Sulfur oxides (SOx) Particularly sulfur dioxide (SO2), is produced in various industrial
processes. Coal and petroleum often contain sulfur compounds, and their com-
bustion generates SO2. Derived compounds from reactions between SO2 and NO2

can lead to acid rain. This is one of the causes for concern over the environmental
impact of fossil fuels.

Therefore, the AQI can be calculated for a particular area (agglomeration, zone or city)
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CO NO2 O3 PM10 SO2

AQI Min Max Min Max Min Max Min Max Min Max

Bad 10000 — 400 — 240 — 120 — 500 —

Weak 8500 9999 200 399 180 239 50 119 350 499

Medium 7000 8499 140 199 120 179 35 49 210 349

Good 5000 6999 100 139 60 119 20 34 140 209

Very good 0 4999 0 99 0 59 0 19 0 139

Table 7.3: Guideline values for the Air Quality Index (AQI) in Portugal. All values are in
�g=m3.

and uses averages between all measured values for the previous given pollutants in that
area, i.e., for a single pollutant the values measured at all stations in the area of interest
are obtained and averaged. The AQI always uses a minimum of 11 or 18 hourly averages
to produce provisory (0h00 ~ 14h59) or definite (0h00 ~ 23h59) indices, respectively.

A qualitative AQI is obtained for each pollutant, according to Table 7.3. The AQI for a
particular agglomeration, zone or city is determined by the worst index obtained among
all pollutants. E.g., consider the following average values measured in an area:

• SO2 — 35 �g=m3 (Very good);

• NO2 — 180 �g=m3 (Medium);

• CO — 6000 �g=m3 (Good);

• PM10 — 15 �g=m3 (Very Good);

• O3 — 365 �g=m3 (Bad)

For this hypothetical area the AQI result is Bad, due to the observed concentrations for
ozone (O3).

The dynamics between air pollution and atmospheric conditions are quite complex.
Without delving into this subject, there are certain air pollutants levels that are worse in
the summer and others that are worse in the winter. In the summer, ground level O3

levels are higher because more is produced due to photochemical reactions by UV radi-
ation with NOx. On the other hand, temperature inversions can transport the pollutants
higher in the atmosphere. Also, generally, wind favors the dissipation of pollutants and
rain can also help wash some particulates out of the air. Also, a rural area can experience
higher levels of pollution than expected, depending of wind currents originating from
more polluted areas.
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Ílhavo

Aveiro

Estarreja

Figure 7.8: Air quality monitoring stations in the district of Aveiro.

7.4.1 Data Description

Data from Portugal’s air quality monitor network is publicly available through QualAr’s
website (QualAr website). Data can be obtained by monitoring station, year and/or pol-
lutant. Data is available from 1992 until the present day, but data for a particular year
undergoes a validation procedure until October of the following year.

Some literature exists based on research using this monitoring data in the environ-
mental domain. For example, in (Carvalho et al. 2010) the authors study a high ozone
level anomaly at a location in northeast Portugal, by performing cluster analysis of pat-
terns from the episodic days, which somewhat relates to our goals, but in a static data
setting

To avoid extending the application into a larger number of stations, that would not
contribute further regarding the intended demonstration, only data from the three sta-
tions in the district of Aveiro were used (Figure 7.8). The three stations, characterized by
their types of environment and influence, are: Aveiro (urban/traffic), Estarreja/Teixugueira
(suburban/industrial) and Ílhavo (suburban/background).

Given the need for homogeneous data streams to generate global models, unfortu-
nately only the measurements for PM10, NO, NO2 and NOx were found in common at
these stations. Hence, hourly data for these pollutants (the features) were gathered from
the beginning of 2011 until the end of 2014. Table 7.4 provides a 5-number summary
for each separate station’s data. By this initial analysis we can initially observe that the
station of Aveiro measures the higher levels of pollution, followed by Estarreja/Teixugueira
and Ílhavo. We can also observe that missing values occur separately for individual pol-
lutants.

A pairwise deletion of observations with missing values was performed to obtain
complete and "synchronized" data streams presented to each local UbiSOM model. Fig-
ure 7.9 illustrates this distribution of missing values and the final proportion of obtained
observations across all data streams. As a result, all observations in the final individual
data streams correspond to the same sequence of dates, which are depicted in Figure 7.10
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Figure 7.9: Obtained complete cases for the QualAr data streams.

— the QualAr data streams are named based on the originating station.
In order to retain the same feature ranges, data was normalized in the unit hypercube

[0; 1]d, but using the minimum and maximum values across all three data streams.

7.4.2 Parameterization

Following the same aim relatively to the PSA with real-world data, Table 7.5 contains the
summary of results obtained from the observations from the year 2014. Compared to the
Household application, we observe that the best T values found are lower, e.g., T = [500;

1000]. This may be explained by the fact that the variability of the data is lower than in
the Household data stream, hence the balance between stability and convergence can be
obtained with a lower T value. The common best parameterization found was used for
all local UbiSOM models, i.e., T = 1000, � = 0:9 and the general parameters kept, i.e.,
lattice sizes of 20 � 40, �i = 0:1, �f = 0:08, �i = 0:6 and �f = 0:2. The Batch algorithm
applied to the centralized codebooks had the same parameterization that in Section 6.4,
namely map size of 20 � 40, �i = 0:1, �f = 0:01, �i = 1=2

p
202 + 402 and �f = 1 with

training enduring 10 and 40 ordering and tune epochs, respectively.

7.4.3 Application Results

Three UbiSOM instances learned the separate data streams, i.e., Aveiro, Estarreja/Teix-
ugueira and Ílhavo. Individual snapshots of the local models were taken at specific points
in time and centralized to produce a global model; these instants are identified in the
previous Figure 7.10:

i. t = 4611, analog to the date-time 2011-08-31 23:00. In meteorological seasons, the
date corresponds to a day at the end of summer. The resulting models taken at this
time are referred to as the QualAr Summer models;

ii. t = 7948, analog to the date-time 2012-01-31 23:00. This corresponds to a day in
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Figure 7.10: QualAr data streams after pairwise deletion of missing values.
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Data stream T � Mean E0(t) Mean �(t) Mean TE(t) Resets

Aveiro
500 0.9 1:0377e�2 9:6393e�1 5:1022e�3 0

1000 0.9 1:0991e�2 9:8363e�1 5:1689e�3 0

1000 1.0 1:0177e�2 9:4539e�1 4:6020e�3 0

Estarreja
500 0.9 1:5410e�2 9:5849e�1 5:2023e�3 0

1000 0.9 1:5646e�2 9:7632e�1 5:5357e�3 0

2000 0.8 1:6736e�2 9:9519e�1 5:4357e�3 0

Ílhavo
500 0.6 1:2992e�2 9:8436e�1 2:5978e�2 9

500 1.0 1:0889e�2 7:2351e�1 1:8008e�2 1

1000 0.9 1:2091e�2 9:7573e�1 2:9680e�2 2

Table 7.5: Optimization results for PSA analysis over QualAr data streams (only obser-
vations from 2014).

mid-winter and the models obtained are referred to as the QualAr Winter models.

These instants were chosen due to the larger continuous availability of prior data and
with the intent to compare models from summer and winter seasons.

Figures 7.11 and 7.12 depict the visualizations, i.e., U-Matrix and denormalized com-
ponent planes, derived from the local UbiSOM models and centralized Batch model ob-
tained at the previous dates, respectively. The centralized QualAr Summer model was
generated from 1190 filtered prototypes; the centralized Qualar Winter model from 1224
filtered prototypes (see Section ??).

In all local models, for example, it is obvious that there is a clear and expected positive
correlation between the concentration patterns of the nitrogen oxides fNO;NO2; NOxg
— with the component plane scales this may not be evident to the eye, but a closer inspec-
tion of the values show that NOx concentration patterns vary directly with the combined
concentrations of NO and NO2. Given the limited number of pollutants modeled in this
application, we cannot determine extensive and more interesting relationships between
concentration patterns, e.g., no clear relationships can be inferred between PM10 and
NOx levels, using only these pollutants; their concentrations do not correlate positive or
negatively, but exhibit some overlap intervals of simultaneous higher concentrations.

Nonetheless, and in comparison, pollutant concentrations are consistently higher in
the QualAr Winter local models, which in turn is also translated to the respective central-
ized global model. Also, the local models indicate that the location that exhibits a higher
average of pollution is Aveiro, followed by Estarreja and Ílhavo — this is consistent with
the initial data summaries of Table 7.4. For the monitored pollutants, this is not surpris-
ing, consequence of vehicular exhaust. We should stress “for these pollutants” because
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QualAr Summer Models
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Figure 7.11: QualAr Summer models — derived U-Matrices and component planes.
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QualAr Winter Models
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Figure 7.12: QualAr Winter models — derived U-Matrices and component planes.
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AQI PM10

(a) Summer.

AQI PM10

(b) Winter.

Figure 7.13: Mapping of AQI values against PM10 denormalized component planes of
both centralized QualAr Summer and Winter models.

Estarreja is known for being the most polluted location in Portugal, mainly due to an
industrial chemical complex that polluted the soil and river since the 50’s. However, in
our initial data there are no measurements related to air pollution specific to this indus-
try, e.g., chlorine, heavy metals and organic volatile compounds, that would allow us to
confirm this fact.

Contrary to the Household application, we will not delve into interpretation of the U-
Matrices, since the type of possible knowledge inference has been demonstrated. The
more interesting cluster structure concerns the centralized QualAr Winter model, where
a complex cluster structure emerges related to the nitrogen dioxides pollution patterns,
relating mainly to different concentrations between NO and NO2.

This application to air quality monitoring data can become more interesting if we
combine the information contained in the denormalized component planes with the AQI
guideline values for both the obtained centralized global models. This can allow us to
draw a global picture of the air quality in the district of Aveiro, in those two meteorologi-
cal seasons for comparison. For example, by recovering Table 7.3, we will concentrate on
the PM10 levels, given that the NO2 levels expressed in the respective component planes
of the global models never exceed the guideline values of Very Good.

Figures 7.13a and 7.13b depict the centralized PM10 component planes for the QualAr
Summer and Winter models, respectively, but mapping all feature values to the intervals
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of Table 7.3, regarding concentration guidelines. By using these representative instants
in the data streams we can obtain an overall indication of the average air quality in the
district of Aveiro in the summer and winter. Previous pollution patterns presented until
the day of the Summer model indicate that the average air quality is � 2=3 in {Very Good,
Good} indices, but otherwise in {Medium, Weak}. The scenario becomes worst in the win-
ter model, where the average air quality is dominated by the {Medium,Weak} indices and
a small expression of Bad. Given these results, two conclusions can be made: first, the
AQI is worst in the winter than in the summer; second, and more importantly, there is a
severe air quality problem in the district of Aveiro regarding PM10 levels during winter1.

Such AQI mappings seem interesting in a real-world application, allowing experts or
the population to get a visual grasp on the average air quality pollution over time. Simi-
lar conclusions could be obtained from, e.g., histograms. However, generating histograms
from data streams is a problematic of its own (Gama 2010) and the exemplified mappings
over UbiSOM component planes can be seen as an alternative.

Applications of SOMs over air quality data can be found in literature. From this type
of data, and applying the data visualization capabilities, authors in (Neme and Hernán-
dez 2011) analyzed the air quality in Mexico City and were able to detect some hidden
patterns regarding the pollutant concentration, as well as to study the evolution of air
quality from 2003 to 2010. Similarly, in another study, authors used the SOM to sum-
marize ambient air quality as a collection of day types (clusters). Such clusters allowed
them to identify the types of multi-pollutant combinations that occur, their temporality,
and for summarizing external variables of interest, e.g., humidity, barometric pressure,
wind speed. They conclude the SOM “to be an attractive framework for developing ambient
air quality classification because the approach eases interpretation of results by allowing users to
visualize classifications on an organized map.” — in (Pearce et al. 2014). Both these works
use the SOM in a traditional static data setting, while this research transposes these capa-
bilities to a possible streaming setting, where models can be inspected in real-time.

7.5 Feature Clustering in Financial Data

In the previous illustrated applications, the general feature clustering procedure for SOM
models described in Section 5.6 can be used to additionally group correlated features, e.g.,
individual measurements. In this sort of applications, if the number of features is low, as
was the case, we can visually detect these relationships without much difficulty. How-
ever, as the data dimensionality increases, the task becomes harder. Therefore, the feature

1Coincidentally, a news article was found after this application where the European Union warned Portu-
gal that “The citizens of some districts of Lisbon, Porto, Aveiro, Ilhavo and Estarreja have been continuously or almost
continuously exposed to harmful levels of PM10 since 2005 , based on the most recent reports for 2012” — translated
from http://www.jb.pt/2014/09/poluicao-do-ar-em-aveiro-ilhavo-e-estarreja-leva-
comissao-europeia-a-advertir-portugal/.
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clustering procedure can also be used for the purpose of grouping features or ordering
their presentation to the user, as in (Vesanto and Ahola 1999).

Yet, the exemplified application in this section goes towards the fact that feature clus-
tering in data streams is closely related to time series clustering (see Section 2.6.2). Here
the set of values of a particular feature along time is regarded as an individual time series.
In these sort of applications we are not interested in performing traditional clustering of
observations along time, but to find (and make available at any time t) a partition of
those time series, where time series in the same cluster tend to be more alike than others
in different clusters.

To this extent such an application is presented over financial data and uses the Strea-
mART2A/SOM methodology described in Chapter 4. While the main intent was to also
demonstrate the practical use of StreamART2A/SOM, this methodology has the added
benefit of allowing selection of particular time intervals of the data stream (if the code-
book allows) to generate the offline Batch SOM models; this contrasts with the UbiSOM
in the sense that the model adapts itself continuously based on changes in the underlying
data stream.

Given the feature clustering methodology uses hierarchical clustering over compo-
nent planes (with results in a dendrogram format), it allows to observe which time series
correlate more within the obtained SOM model, besides obtaining groupings by a cutree
algorithm, as will be demonstrated. The type of results obtained can latter be used in,
e.g., in portfolio selection applications, as was proposed in (Silva and Marques 2010a).

Disclaimer The results contained in this section should not be used as investment ad-
vise nor there is the intent to provide any meaningful financial analysis of the data used,
as it would required expert domain knowledge that is out of scope in this thesis. There-
fore, the experimental results are interpreted exclusively between the original data and
the various data visualizations and results obtained.

7.5.1 Data Description

Data was made available to this research by GoBusiness Finance (GoBusiness Finance
2016), an “international project focused on the research of non-normal behaviors in financial mar-
kets and the development of tools to handle with unexpected events” — is not publicly available,
but was also used in (Tiple, Cavique, and Marques 2016). The original data describes
stock prices collected every 2 minutes from 24 European financial institutions (see Table
7.6). Stock prices were obtained from 2015-08-07 until 2016-07-26 during open market
hours, i.e., from 8:00 to 16:30 (European central time).

For generation of the Financial data stream date-time related features were discarded
and missing values replaced by the last previous available value (feature-wise), i.e., by
last observation carried forward method. The data stream consists in a total of 62 417 obser-
vations, with d = 24. Each observation of the data stream describes individual trading
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Financial Institutions

BNP PARIBAS BARCLAYS PLC
SOCIETE GENERALE SA BANCO POPULAR ESPANOL
BANCO SANTANDER SA KBC GROEP NV
ING GROEP NV-CVA BANCO DE SABADELL SA
BANCO BILBAO VIZCAYA ARGENTA NATIXIS
CREDIT AGRICOLE SA ROYAL BANK OF SCOTLAND GROUP
INTESA SANPAOLO UBS GROUP AG-REG
CAIXABANK S.A CREDIT SUISSE GROUP AG-REG
UNICREDIT SPA NORDEA BANK AB
HSBC HOLDINGS PLC UBI BANCA SCPA
LLOYDS BANKING GROUP PLC SKANDINAVISKA ENSKILDA BAN-A
STANDARD CHARTERED PLC INVESTOR AB-B SHS

Table 7.6: List of financial institutions (stock prices) contained in the Financial data stream.

minutes; each feature describes the stock price for a particular financial product. Hence
the consecutive values of each feature can be regarded as a time series.

Figure 7.14 depicts the Financial data stream where each each plot corresponds to the
consecutive stock prices for the respective financial institution (feature). Some aspects
should be highlighted here: i.) feature names are presented without any spaces or other
characters between words2, and; ii.) only 5000 values were used to plot each feature,
hence some details may not be visible. Regarding the individual time series, although
global trends are similar across most features along time, there are groups of features that
behave more similarly than others in shorter time frames. This is the type of groupings
we intend to extract along time from this application.

All observations were normalized in the unit hypercube prior to their presentation to
the StreamART2A/SOM methodology, i.e., X(t) 2 [0; 1]d.

7.5.2 Parameterization

The StreamART2A algorithm was parameterized with the recommended values obtained
from the PSA of Section 4.5.3, i.e., L = 1000, q = 50 and � = 0:05. The size of the code-
book was bounded to K = 1000; hence, from the previous parameterization this allows
the codebook to store approximately micro-categories from the last 20 000 presented ob-
servations, i.e., the maximum time horizon. The offline Batch SOM models are obtained
using a 20� 40 lattice and parameters �i = 0:1, �f = 0:01, �i = 1=2

p
202 + 402 and �f = 1,

with training enduring 10 and 40 ordering and convergence epochs, respectively — these
values are consistent with the ones used in the experimental results of Section 4.5.5. Fi-
nally, the average quantization error qe(t) assessment metric was obtained using T = 500.

2This relates to software limitations.
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7.5.3 Application Results

Micro-categories from the StreamART2A codebook were extracted at specific time inter-
vals and corresponding offline Batch SOM models generated. Given the used parameter-
ization, namely K = 1000, the codebook can store micro-categories for a time horizon
of 20 000 observations (as discussed in Section 4.3.3). All available micro-categories at
a specific time t were used to generate the models. Hence, a model requested at time t
describes the data stream in the interval � [t� 20 000; t]. The following models, referred
hereafter as financial snapshots, were generated along time:

Financial Snapshot 1 requested at t = 20 000 (corresponds to the date 2015-11-25 13:32:00).
As an example this snapshot regards the time interval t = [0; 20 000], i.e., since
2015-08-07 08:00:00;

Financial Snapshot 2 requested at t = 40 000 (corresponds to the date 2016-03-24 12:08:00)
and regards a time interval immediately after the previous snapshot;

Financial Snapshot 3 requested at t = 62 417 (corresponds to the date 2016-07-26 16:30:00)
and coincides with the end of the data stream.

These points in time were selected so as to obtain three snapshots corresponding to ap-
proximately three periods of equal length during the data stream.

The component planes of each snapshot are depicted in Figures 7.15, 7.16 and 7.17,
respectively. Within each figure the ordering of the component planes is the same as
in Figure 7.14, line-wise. The component planes are provided for reference and also to
highlight the difficulty of obtaining an overall understanding of all detected correlations
between a high number of features.

Pertaining feature clustering results, i.e., time series clustering, for each of the above
financial snapshots, the procedure described in Section 5.6 was applied using the inner
product distance function between component planes. Also, the cutree algorithm was
applied to the obtained dendrograms using k = 5 — this algorithm partitions the fea-
tures in such a way that exactly k edges of the dendrogram are intersected. This value
was chosen arbitrarily just to illustrate the type of groupings provided. In a particular
application, e.g., portfolio selection (Silva and Marques 2010a), this value can be cho-
sen as to partition the financial products in the desired number of groups. Results for
all snapshots can be found in Figure 7.18. Across all the dendrograms, features (time se-
ries) merged/grouped first are considered the most similar regarding their behavior in
the given snapshot; then existing groupings are consecutively merged, all based on the
computed distances. Hence the clusters obtained may not contain only very similar time
series, but the final clusters obtained contain the most dissimilar groupings. These group-
ings follow the similarities between the previous component planes of Figures 7.15, 7.16
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and 7.17. Although, with such a high number of features, the comparison or validation
is not visually easy, in Section 5.6 an example was presented with artificial data with a
smaller number, i.e., data dimensionality.

By comparing the clustering results with the original time series (Figure 7.14) we can
observe that, e.g.:

• In Financial Snapshot 1 (Figure 7.18a), i.e., regarding t = [0; 20 000], UBS GROUP
AG-REG and INVESTOR AB-B SHS form the pair that is merged later in the proce-
dure; in this particular case they are clustered together. This is an example of the
previous discussion where both are not comparatively very similar, but in conjunc-
tion are more dissimilar compared to all the others;

• In Financial Snapshot 2 (Figure 7.18b), i.e., regarding t = [20 000; 40 000], CREDIT
SUISSE GROUP AG-REG is found to be more dissimilar in respect to all the others.
By inspecting the data stream during this period we can observe that, e.g., approx-
imately at the middle of this period there is an increase in the stock price not found
in the other stock prices;

• In Financial Snapshot 3 (Figure 7.18c), i.e., regarding t = [42 617; 62 417] we can see
that, e.g., NATIXIS and INVESTOR AB-B SHS are clustered together and grouped
relatively early; by comparison with the plotted time series we can indeed confirm
that these two institutions have a distinct upwards trend towards the end of the
data stream, which is not replicated across other institutions;

• Regarding common features clustered together between snapshots, we can find,
e.g.:

– CAIXA BANK SA, UBI BANCA SCPA and NATIXIS in Snapshot 1 and Snapshot
2;

– The later NATAXIS is clustered together with INVESTOR AB-B SHS in Snap-
shot 2 and Snapshot 3. Both these findings may hint on some relation between
these financial institutions.

• Overall, if we look closely, INTESA SANPAOLO and SOCIETE GENERALE SA are
consistently grouped together in all snapshots, although later in the last snapshot,
indicating that their correlation weakened in the last part of the data stream. This
can be more easily observed when comparing the dendrograms side by side, as will
be illustrated next.

This type of results can be used to generate and maintain investment portfolios along
time, by picking assets from individual clusters as a means to diversify the investment; al-
though, always with expert domain knowledge or through the development of informed
automatic procedures.
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Comparing Clustering Results Along Time

Within this sort of application it may also be interesting to understand the evolution of
the similarities between the time series. Figures 7.19a and 7.19b illustrate the entangle-
ment between two consecutive clustering results: connecting lines are drawn between
the same features, whereas if colored means that two groupings are present in both den-
drograms; dashed lines represent a combination of groupings which is not present in the
other dendrogram. These results indicate that, e.g.,:

• Indeed, INTESA SANPAOLO and SOCIETE GENERALE SA (colored pink) maintain
their close similarity along time, although less in the later snapshot (merge distance
is comparatively higher);

• Between the first two snapshots, besides the pair above, we can also find that:

– The similarities between STANDARD CHARTERED PLC and BANCO BILBAO
VIZCAYA ARGENTA (colored blue) were strengthened to the end of the sec-
ond time interval described by Snapshot 2;

– With a similar reasoning, the same seems to have happened between NORDEA
BANK AB and BANCO DE SABADELL SA (colored green);

• Finally, the overall groupings change over time (dashed lines), indicating that most
similarities between time series vary throughout time;

These different type of results seem to be interesting in allowing an expert to contin-
uously monitor the correlations between stock prices and the development of automatic
recommendation systems supported by this information.

Overall, in practical applications snapshots can be generated at regular intervals to
perform the kind of knowledge discovery exemplified in this section.

Model Assessment and Change Detection

Finally, the average quantization errors along the Financial data stream, regarding the evolv-
ing StreamART2A codebook, are depicted in Figure 7.20. We can observe constant vari-
ations of the metric along the data stream, but with a pronounced change just before
t = 60 000. This event is within the time frame of the Brexit poll occurred at 2016-06-23
and may explain such change.

As mentioned in Section 4.6, an automatic change detection mechanism, involving the
comparison of two average quantization errors of different lengths, was proposed in (Silva,
Marques, and Panosso 2012) and illustrated with other financial data, i.e., stock market
indexes and computed statistics. However, the determination of the window lengths was
achieved through external expert knowledge for that particular data.
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Figure 7.19: Entanglement between consecutive financial clustering results, obtained
from the Financial Snapshots.
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Figure 7.20: Average quantization errors for the Financial data stream.

7.6 Remarks and Future Work

In this chapter applications of the StreamART2A/SOM methodology and the UbiSOM
algorithm and related methodologies were applied to real-world data, as a means to ex-
emplify its usefulness in the respective real-world scenarios. Monitoring applications for
sensor data (electrical consumption and air pollutant patterns) and clustering financial
time-series were presented, while exemplifying the versatility of the obtained SOM mod-
els in performing clustering of observations and clustering of features, i.e., time-series.

All the exemplified applications, and similar ones, can be deployed in the real-world
with the developed software presented in Appendix A, namely the contributed frame-
work. For example, the Household application can be deployed easily if one is able to
obtain individual measurements of appliances and/or divisions in the household. An
interesting recent development in Portugal, regarding the feasibility of such approach, is
the Energias de Portugal (EDP) RE:DY3 system (Eletricidade de Portugal 2016), where house-
hold appliances can be connected to a smart box for remote querying and control. One can
envision the consumption streams being fed into the contributed framework for contin-
uous real-time monitoring and clustering of consumption patterns, as exemplified. The
framework also allows to perform feature clustering either through the remote web in-
terface or via R integration. The later also permits more advanced manipulations of the
obtained SOM models, as exemplified in the AQI overlap of Figure 7.13 and the compar-
ison of consecutive clustering results of Figure 7.19. Moreover, the standalone UbiSOM
library allows developing, e.g., interactive data visualization techniques for financial data
(Marques, Silva, and Santos 2016).

3Stands for “Remote Energy DYnamics”.
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Future work regarding the illustrated applications is discussed in the following para-
graphs.

Data normalization. This aspect was discussed in Section 3.5, putting forward the as-
sumption that data is normalized when using the proposed methods and algorithms.
Quickly recapping, normalization of data streams requires that lower and upper bounds
of individual features values are known. In sensor data, for example, data is bounded to
the range of the sensor outputs themselves. In financial data, one can establish bounds
from historical information or within a window model (Ogasawara et al. 2010). Nonethe-
less, application of strategies to normalize data streams was considered beyond the scope
of this thesis.

However, data stream normalization is critical aspect that should be addressed in
future work so as to improve the practical deployment of the proposed methods.

Missing data. We should be aware that real-world data, specially obtained in real-time
is prone to missing values. These may arise in sensor data either due to sensor failure or
maintenance; also in financial data collecting errors may occur; an extreme case is if the
data stream is composed by financial products from different stock markets located in
different countries, where different opening-closing hours and local holidays may deter-
mine the absence of values for particular stocks. However, applying clustering methods
to financial data obtained from different stock markets across the globe should be ap-
proached differently, e.g., by generating models for individual stock markets and then
combining the results; however this needs a completely novel approach regarding the
proposed distributed learning methodology, because the individual problems are differ-
ent, i.e., address different features.

In some applications presented in this chapter all observations with missing data were
filtered out. This may be unrealistic in practice, but several options exist, e.g., i.) in the
simplest cases a pre-processing engine can fill the missing values with the last previously
known, or; ii.) contemplating missing values within the algorithms. Relatively to the later
approach, e.g., several works have addressed the SOM and missing data problematic. In
most of the SOM literature the missing values are treated as in (Samad and Harp 1992),
e.g., the best-matching units for the observations with missing values are computed by
omitting the individual missing values in the distance metric; the missing values are ig-
nored also while updating the prototype vectors. This approach is implemented in the
widely used Matlab’s SOM Toolbox (Vesanto et al. 1999) and has been applied to many
kinds of data, such has socioeconomic data (Cottrell and Letrémy 2005), industrial data
(Rustum and Adeloye 2007) and financial data (Sorjamaa et al. 2009). Given this, some-
what, established manner of dealing with missing data, its extension to the StreamART2A
and UbiSOM algorithms seems trivial in the future.
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Noisy data and outliers. Noisy observations also occur in real-world data, and sen-
sor data is a typical example. Sensors can be subject to electromagnetic interference or
hostile measurement environment, for example. Regarding noise, the SOM is known
for its robustness in dealing with noisy data, but can be affected by extreme outliers in
data (Allende et al. 2004). By extension, UbiSOM inherits the robustness to noise from
the underlying dynamics of the prototype update model of the basic SOM (an outlier
only affects the best-matching unit and its neighbors), but implicitly minimizes the out-
liers effects, e.g., by estimating the learning parameters by averaged metrics, namely the
average quantization error, the impact of outliers is expected to be diluted in the other
observations while computing the average error. Nonetheless, effective research regard-
ing the impact of outliers in the UbiSOM algorithm should be addressed in future work.
Regarding the StreamART2A/SOM methodology, this particular aspect was discussed in
Section 4.6.

Heterogeneous data. Real-world data may also include heterogeneous data, in the sense
of observations containing mixed data types. Although the StreamART2A and UbiSOM
algorithms were proposed for real-valued features, there are proposals in literature to
additionally process categorical data, e.g., (Chen and Marques 2005). This, however, re-
quires that all possible categorical values are known before hand and a preprocessing
stage is included to translate the categorical values to numerical ones.

Spatial data. Unfortunately, no application for the collaborative learning methodology
was presented with real-world data. Its application seems more interesting when inte-
grating geographic locations, i.e., spatial features, within the UbiSOM update rule, as
presented and discussed in (Bação, Lobo, and Painho 2005b). This could then allow to
collaboratively obtain UbiSOM models that could be projected onto geographic maps
for participatory sensing applications, e.g., (Dutta et al. 2009). Therefore, integration of
spatial data seems an interesting research path for future work to leverage the proposed
collaborative learning methodology.
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Conclusions

Those who stand for nothing fall for anything.

ALEXANDER HAMILTON, POLITICIAN, ECONOMIST AND

AUTHOR, BORN IN CHARLESTOWN, SAINT KITTS AND

NEVIS (1755-1804)

This chapter tries to summarize the main findings, contributions, and recommenda-
tions that can be extracted from this thesis, by revisiting the research questions posed
throughout the manuscript. Finally, future practical application scenarios, intended col-
laborations and open research issues are addressed; hopefully, they can be reference for
future work.

8.1 Main Findings and Contributions

This thesis posed the following initial research questions:

RQ1 What are the limitations of Self-Organizing Maps regarding streaming data?

RQ2 Can Self-Organizing Maps provide a valuable tool for data stream cluster analysis regard-
ing current methods? If so, which research paths should be pursued in terms of relevant
contributions?

RQ3 How can the ubiquitous aspect of data streams be tackled with SOMs?

Regarding research question RQ1, despite being a well established algorithm with
hundreds of applications and dozens of variants in literature (Pöllä, Honkela, and Ko-
honen 2009), no prior work existed regarding the SOM and data streams — at least not
clearly addressing the data stream problematic. The limitations of the standard SOM
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algorithms in learning from non-stationary data streams were addressed in Section 2.4,
while presenting this ANN. The main deterring aspect is the use of time-dependent an-
nealing schemes to guide the evolution of the learning parameters and, consequently,
the convergence of the maps. These cannot be applied over unbounded data streams.
Based on this limitation, desire to maintain the visual data exploratory abilities of the
SOM and general requirements imposed by the data stream model (Barbará 2002), pro-
posed requirements for SOM variants addressing cluster analysis of data streams were
put forward in Section 2.5.1 (these are again summarized in Section 8.1.2). A literature
review was conducted for existing variants that could meet those requirements (in Sec-
tion 2.5.2) and no existing variant was deemed fit for the data stream problematic in the
light of the above requirements, mainly due to irregular network topologies, e.g., ESOM
(Deng and Kasabov 2003) and SOINN (Furao and Hasegawa 2006), deterring the use of
the visualization procedures, or poor quantization performance of the input space, e.g.,
PLSOM (Berglund 2010) and DSOM (Rougier and Boniface 2011), which may ultimately
also affect the visual knowledge discovery process. Consequently, room for improvement
regarding methods and algorithms that effectively allow the use of SOMs for exploratory
cluster analysis over data streams was identified at this point.

In answer to research question RQ2, a survey of current methods for cluster analysis
over data streams was presented in Section 2.6, which served two purposes: first, to con-
firm the research gap in the dedicated literature regarding the use of SOMs; second, to
review current established methodologies in dealing with data streams, namely for clus-
ter analysis. It was found that current methods involve adaptations of popular clustering
algorithms to stream settings, e.g., k-means in Single-pass k-means (Farnstrom, Lewis, and
Elkan 2000) or, more commonly, where a two-phase approach is followed. This strategy
focuses on online, efficient and evolving data stream abstraction (summaries) structures,
from where offline cluster results are obtained on demand by applying traditional cluster-
ing algorithms over the current summaries. Therefore, following the taxonomy in (Han,
Kamber, and Pei 2006) for clustering algorithms, several current proposals were identi-
fied, e.g.:

• partitioning: CluStream (Aggarwal et al. 2003);

• hierarchical: BIRCH (Zhang, Ramakrishnan, and Livny 1996);

• density-based and grid-based: D-Stream (Chen and Tu 2007);

• model-based: SWEM (Dang et al. 2009).

Also, the majority of existing proposals (including the above) address the problem of
clustering observations, whereas literature on feature clustering algorithms is seldom,
e.g., ODAC (Rodrigues, Gama, and Pedroso 2008). Also found, is that feature clustering
in a stream setting is intimately related to time series clustering (Gama 2010).
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Within the previous taxonomy, the SOM can be characterized as a model-based algo-
rithm and its clustering results were compared to those of other traditional algorithms,
that are used in current proposals, in Section 2.4.7. All combined, its visualizations (even
understandable by non-experts), no prior assumptions on data, description of clusters
and versatility in performing either clustering of observations and features were found
to be highly attractive regarding current methods. Hence, the extrapolation of these ca-
pabilities to a stream setting, favoring visual data exploration, was considered of great
interest and to indeed fill a gap in the current panorama of methods (see .

Attending to the fact that most established methodologies involve two-phase ap-
proaches to data streams, an initial established goal was to mimic such approach so as to
obtain offline SOM models. To this extent, ART networks were found to be an interesting
approach for the online abstraction procedure. Nonetheless, a SOM variant tailored for
data streams was considered a fundamental contribution. Hence, two additional research
questions were formalized and later answered, through contributions made in this thesis:

• Can ART networks produce an efficient data stream summary from where SOM models can
be generated?

• Can Self-Organizing Maps learn non-stationary data streams, while keeping the original
SOM properties intact?

This thesis also targeted the ubiquitous aspect of data streams, i.e., its distributed na-
ture in several real-world application scenarios, e.g., sensor networks (Gama, Rodrigues,
and Lopes 2011) and participatory sensing (Dutta et al. 2009). Hence, regarding research
question RQ3, from Section 2.6.3, the most promising strategy was found to focus on
the trade-off between local and global models, i.e., instead of centralizing all data streams
to produce clustering results (which is unfeasible in respect to scalability), this strategy
concerns having each location/device maintain a local compact model describing the
current underlying distribution of the local data stream; then, only these models (data
summaries) need to be centralized or shared between devices to obtain the global models
and, therefore, global clustering results. Consequently, the additional research question
raised here was:

• Can distributed and collaborative learning strategies over ubiquitous data streams be de-
vised using Self-Organizing Maps?

With a practical aspect in mind, the aggregating question for all the above research
question regarded concrete real-world applications that could benefit from the under-
gone research. Therefore, the last formalized additional research question was:

• What sort of real-world problems can benefit from this research?
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8.1.1 Summary of Contributions

Directed mainly towards the above additional research questions, this thesis contributed
several methods and algorithms (supported by other minor contributions and software)
and can be summarized as follows:

i. Establishment of requirements SOM variants should target when addressing data
streams;

ii. The StreamART2A algorithm for abstracting an incoming data stream, from where
offline SOM models are generated for a specific time-horizon. This methodology is
referred to as the StreamART2A/SOM approach.

(a) a constrained variant of the ART2-A algorithm and the micro-category con-
cept;

(b) a modified update rule for the Batch SOM algorithm to learn from micro-
categories;

(c) proposal of the average quantization error metric;

(d) parameter sensitivity analysis of the StreamART2A algorithm and general eval-
uation with artificial data.

iii. The Ubiquitous Self-Organizing Map (UbiSOM) algorithm, a SOM variant tailored for
non-stationary data streams;

(a) inclusion of temporal information within each UbiSOM neuron;

(b) proposal of the average neuron activity metric;

(c) proposal of a weighted drift function to estimate learning parameters in a
time-independent fashion;

(d) parameter sensitivity analysis of the algorithm and general evaluation with
artificial data;

(e) proposal of an automatic feature clustering method for SOM models; evalu-
ated with UbiSOM for artificial data.

iv. Methodologies that explore the UbiSOM algorithm in ubiquitous environments
leveraging its capabilities to produce local models that can be centralized and/or
shared into other global UbiSOM models.

(a) a codebook filtering mechanism to remove unrepresentative prototypes;

(b) a codebook merging mechanism to remove duplicate prototypes;

(c) proposal of distributed and collaborative learning methodologies targeting the
trade-off between local and global models;

(d) evaluation of the proposals with artificial data.
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v. A set of real-world applications for contributions in ii.), iii.) and iv.).

(a) application scenario of household electric data and clustering of consumption
patterns using the UbiSOM; proposal of two new component plane-like visu-
alizations for the UbiSOM temporal data extensions.

(b) application scenario for a distributed air quality monitoring network, using
the UbiSOM and distributed learning strategy ;

(c) application of the StreamART2A/SOM methodology to financial data, by clus-
tering financial time series along time and presenting the evolution of the cor-
relations.

vi. Contributed Software and general purpose library for the UbiSOM algorithm and
related methodologies.

(a) an UbiSOM framework that allows the deployment of the algorithm over an
input data stream as a service that can be remotely queried;

(b) a general purpose library to develop other applications.

While contributions ii.) and iii.) are different strategies to address single multi-dimensional
data streams, contributions iv.) were proposed only for the UbiSOM, i.e., ubiquitous en-
vironments. Also, the contributed software at this point only contemplated the UbiSOM.
Nonetheless, real-world application scenarios were exemplified for all proposed method-
ologies in contribution v.), except the collaborative learning strategy of iv.), as discussed in
Section 7.6.

The following sections detail the above contributions and provide answers to respec-
tive additional research questions that they may target.

8.1.2 Requirements for SOM Variants in Dealing with Data Streams

Derived from RQ1, requirements for SOM variants tailored for data streams were initially
addressed in (Silva and Marques 2013) and contributed, namely: fixed topology, i.e., a
regular lattice of neurons to allow visualization procedures; time-independent learning
parameter estimation; proper convergence to the underlying distribution in the sense of
a VQ procedure; incremental and efficient processing of individual observations; com-
pactness of the model; dealing with evolving data (non-stationarity); robustness to noise,
and; handling high-dimensional data.

While the first three requirements are SOM related, the others are general to any data
stream clustering algorithm. These requirements were all fulfilled by the UbiSOM algo-
rithm and, consequently, based on experimental evidence, are found to be supported in
theory and in practice.
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8.1.3 A Two-Phase ART/SOM Approach to Data Streams

Research question Can ART networks produce an efficient data stream summary from where
SOM models can be generated?

Methodology In Chapter 4, inspired by the popular two-phase approach to data streams,
a similar one was proposed towards using the SOM to perform offline exploratory cluster
analysis (Silva and Marques 2012). The data stream abstraction procedure is performed
by a constrained ART2-A algorithm that dynamically adjusts the vigilance � to produce
at most q prototypes fromL observations. This constrained algorithm and resulting code-
book is called StreamART2A and introduces the concept of micro-category, i.e., a proto-
type with extended information. This later concept was proposed following the currently
established cluster feature and micro-cluster structures. The StreamART2A algorithm is re-
sponsible for processing an incoming data stream through a landmark window of size L,
from where consecutive sets of q � L micro-categories are produced; the total number of
micro-categories kept, i.e., the codebook, is managed by a FIFO structure and bounded
by K, therefore only describing the most recent observations and dealing implicitly with
change. Within a maximum time horizon permitted by the current model, a set of micro-
categories can be recovered and used to generate an offline Batch SOM model to perform
exploratory clustering — the embedded information within the micro-categories is taken
into account by a modified update rule. The average quantization error

�
qe(t)

�
— a mov-

ing average of quantization errors computed over a sliding window of length T , was also
proposed as a means to monitor the evolution of the fit between the current codebook and
the evolving data stream (Silva and Marques 2012; Silva, Marques, and Panosso 2012).

Findings The granularity of the StreamART2A summarization should be adequate so
as to capture the underlying distribution and to produce meaningful SOM models, i.e., a
minimum number of available micro-categories is required for a particular SOM lattice
size. This granularity is dependent of the StreamART2A parameterization. Through
experimental PSA a good set of overall parameters for the StreamART2A algorithm was
found, namely L = 1000, q = 50 and � = 0:05. Exploratory cluster analysis over artificial
data streams matched the expected outcomes. Also, the application of the methodology
to real-world financial data, namely clustering of time series, provided evidence of its
practical applicability and, altogether, versatility in allowing clustering of observations
and features. The empirical validation of the qe(t) metric showed that it can indeed be
used to assess the convergence of a codebook to an evolving data stream, although not
being consistent in respect to error increase in the presence of all sorts of change, e.g.,
the error decreases with the disappearance of clusters. This is due to the fact that in
the subsequent landmark windows there is more micro-categories to describe a lower
number of clusters.
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Assessment Overall, the experimental results provide strong evidence towards the via-
bility of the approach and support the use of ART networks as a means to produce online
summarizations that can be later leveraged by the SOM. However, as with any two-phase
approach, clustering results are delayed by the choice of the time interval from which to
recover micro-categories and respective offline model generation. Hence, this approach
may not be the best solution for real-time monitoring applications, which motivated the
UbiSOM algorithm.

8.1.4 The Ubiquitous Self-Organizing Map

Research question Can Self-Organizing Maps learn non-stationary data streams, while keep-
ing the original SOM properties intact?

Methodology In Chapter 5, the UbiSOM algorithm was presented as a novel SOM vari-
ant tailored for non-stationary data streams (Silva and Marques 2015a; Silva and Marques
2015b). The UbiSOM is able to properly converge in the sense of a VQ procedure dur-
ing stationary phases of the data stream, mimicking the original SOM, while being able
to react to changes in the underlying data stream. As opposed to other fixed topology
proposals that use only the local error Eq(t) to estimate learning parameters, e.g., PL-
SOM and DSOM, the UbiSOM algorithm takes a different approach considering global
metrics to assess convergence of the codebook to the underlying distribution of the data
stream. This is achieved by estimating learning parameters through the previous average
quantization error

�
qe(t)

�
and proposed average neuron utility

�
�(t)

�
, weighted in a drift

function d(t) used to estimate learning parameters in a time-independent fashion. The
�(t) metric was introduced due to the fact that the qe(t) metric, when applied to the
UbiSOM, may not denounce the disappearance of clusters. The use of Gaussian moving
averages to effectively implement the previous assessment metrics was suggested. In the
UbiSOM algorithm, the same set of prototypes are updated during processing of the data
stream, as opposed to the StreamART2A algorithm where they are continuously gener-
ated. Therefore, e.g., if a cluster disappears the prototypes that were quantizing it do not
contribute to any change of this metric. The algorithm also uses a finite-state machine
approach, consisting in the ordering and learning states: in the former, the algorithm is
able to initially unfold from a totally random initialization in a relatively short amount
of time, while in the later, proceed with time-independent learning parameter estima-
tion that is able to explicitly react to change. In case of severe changes in the underlying
distribution the algorithm can transition back to the ordering state.

Findings From experimental PSA, using artificial data, it was found that the UbiSOM
is more sensitive to the parameterization, e.g., as opposed to the StreamART2A/SOM
approach. However, good overall intervals for the UbiSOM specific parameters � and
T were found, and later confirmed with real-world data, namely � 2 [0:6; 0:9] and T 2
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[1000; 2500]. The parameter values empirically established for the other parameters, namely�
�i; �f ; �i; �f

	
, performed well across all tested artificial and real-world data streams.

Evaluation of clustering results both for observations and features using artificial data
produced the expected results, using the obtained parameters from the PSA. Also, con-
cerning comparable algorithms, the UbiSOM algorithm outperformed the Online SOM,
PLSOM and DSOM algorithms on non-stationary data streams, regarding utilized error
metrics.

By observing the evolution of the learning process, i.e., assessment metrics and learn-
ing parameters, across several problems, the algorithm was found to exhibit complex
dynamics due to the inherent feedback mechanisms, i.e., between the output errors used
to compute the assessment metrics, which in turn are used to estimate learning parame-
ters.

Assessment The algorithm fulfills the requirements established previously, but robust-
ness to noise should be further investigated. As such, assuming a good parameteriza-
tion, the algorithm is indeed able to “learn” non-stationary data streams, while keeping
the original SOM properties intact, allowing real-time visual exploratory cluster analysis.
Experimental evidence from artificial and real-world data also attest the viability of the
algorithm and versatility in allowing clustering of observations and features. Given the
novelty of the approach and results obtained, the UbiSOM algorithm can be regarded as
the most interesting contribution of this thesis.

8.1.5 Distributed and Collaborative Learning of Ubiquitous Data Streams

Research question Can distributed and collaborative learning strategies over ubiquitous data
streams be devised using Self-Organizing Maps?

Methodology In Chapter 6, methodologies addressing the use of the UbiSOM algo-
rithm in ubiquitous environments were presented, as initial approaches to this problem-
atic. Proposed methods aimed at the current trade-off between local and global models,
where the bulk of the processing is put on the local nodes, e.g., sensors with computing
and communication capabilities. Here, local models can be seen as subjective views of
the data, while global models more general and inclusive views of the problem.

Assuming each node on the network processes its own acquired data stream (per-
taining the same problem/task), continuously maintaining a local UbiSOM model, two
learning strategies were tackled — distributed and collaborative. The former consists in
generating a one-shot global centralized SOM model from the current codebooks of a set
of distributed nodes; in this setting the Batch algorithm was used, for which, if scala-
bility is a concern, parallel implementations are known (Silva and Marques 2007). The
later assumes nodes can move in the physical space and consists in collaboration between
nodes through, e.g., proximity-based opportunistic networks. The proposed collabora-
tive methodology allows each node to maintain a subjective view of the problem through
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its local model, while the global UbiSOM model evolves continuously with prototypes
from different sources, namely the prototypes from its models and from other nodes it
interacts with (Silva and Marques 2010b).

Leveraging the extended temporal information in the UbiSOM neurons, a method
was proposed to filter unrepresentative prototypes from local UbiSOM codebooks prior
to their communication. Also, another proposed method is used to remove duplicate
prototypes, i.e., that occupy the same region the the data space, when merging local
codebooks. Both previous learning strategies rely on these proposed techniques.

Findings Experimental evaluation, through a simulated ubiquitous environment using
artificial data, indicated that the proposed methodologies were able to produce the ex-
pected results — models of the local nodes learning different parts of the input space
were shared (between nodes) and later centralized. In the collaborative learning strategy,
the nodes were indeed capable of collaboratively learn overall portions of the input space.
In the distributed learning strategy, the global model was found to be identical to the model
of a node learning the entire input space.

The distributed learning strategy is simple in its conception and rather straightfor-
ward. As such, an application with real-world data was achieved with success. On the
other hand, the collaborative learning strategy raises additional difficulties, such as re-
duction of the accuracy of the global models as more codebooks are incorporated.

Assessment Towards the above research question, the proposed methodologies exhib-
ited promising results, but should be further studied, namely the collaborative learning
strategy. Also, the lack of a current automatic change detection mechanism degrades
the scalability of the approach, e.g., in the distributed learning strategy only models that
have changed should be sent in a subsequent request from the central location.

8.1.6 Real-World Applications

Research question What sort of real-world problems can benefit from this research?

Methodology Towards the above research question, a set of real-world application sce-
narios were exemplified using real-world data, for the UbiSOM algorithm and related
additional methodologies, e.g., distributed learning of ubiquitous data streams, as well
as for the the StreamART2A/SOM methodology and feature clustering abilities. The
demonstrated application scenarios for the UbiSOM revolved around monitoring appli-
cations. From the extended temporal information contained within each UbiSOM neu-
ron two new visualizations were introduced, namely the BMU Map and Activity Map
visualizations, as a means to aid the user in understanding the recency of the modeled
information; it can also provide a visual confidence mechanism in the current UbiSOM
model, besides the trend of the d(t) function. These examples were presented to highlight
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the real-time exploratory cluster analysis from local data streams and the generation of
global SOM models from distributed local models.

Another application scenario was exemplified for the StreamART2A/SOM methodol-
ogy using financial data. Here, the proposed feature clustering methodology was applied
to consecutive SOM models obtained along the data stream so as to generate groupings
and clusters of financial time series.

Real-world data streams were obtained from a variety of sources. Data for the House-
hold application, regarding household electric consumption data, came from the UCI
repository (Lichman 2013); for the QualAr application, regarding distributed air qual-
ity monitoring, data was obtained from the QualAr (QualAr website) website, and; for
the Financial application, regarding clustering of financial time series, data was provided
by GoBusiness Finance (GoBusiness Finance 2016). The UbiSOM parameters for the re-
spective problems were derived from a PSA, using a subset of the data streams. The
StreamART2A/SOM parameters used were the ones previously suggested.

Findings In the Household application, the UbiSOM exhibited the capability to contin-
uously model the electric consumption patterns, as they changed over time. The ap-
plication of the visualizations allowed the detection of groups of consumption patterns
(clusters) and corresponding descriptions. It also suggested some correlated features.
The proposed new visualizations were found to indeed be helpful regarding confidence
on the models and, indeed indicated that the UbiSOM was converging properly during
the depicted snapshots.

The QualAr application provided evidence of the viability of the distributed learning
strategy over sensor network applications. Focusing on the district of Aveiro, for the
monitored pollutants, higher concentrations were to occur in the winter and in the city
of Aveiro. Superimposing AQI thresholds over the component planes of the centralized
(global) models allowed to gain insight of the overall air quality in the district.

In both above applications, the PSA using real-world data confirmed the previously
suggested parameter intervals from artificial data.

Concerning the Financial application, results seemed interesting in providing group-
ings (clusters) of financial time series that behave similarly along time. While this can
be used for, e.g., portfolio selection applications, comparison of consecutive clustering
results was also demonstrated, which allow to visualize the evolution of correlations be-
tween time series.

In all applications, the results were empirically compared to the data streams at the
instants where the models were obtained/analyzed, providing strong evidence of their
correctness.

Assessment While we cannot safely assume that the current proposals are applicable
to any real-world problem that produces local, or ubiquitous, data streams, three spe-
cific real-world application scenarios were addressed. The type of results obtained point
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towards the usefulness of the proposals, the versatility of the methods and interesting
post-processing of obtained SOM models, e.g., superimposing AQI thresholds onto com-
ponent planes and comparison of subsequent models.

8.1.7 UbiSOM Framework and Library

Directed towards application scenarios of the UbiSOM, a body of contributed software
also resulted from this thesis. With the developed framework any local monitoring ap-
plication, e.g., similar to the Household application, can be easily deployed and allows
remote querying of the UbiSOM models through presentation of the standard visualiza-
tions in a web browser. The feature clustering method is also included. Additionally,
an R library was developed to allow post-processing of UbiSOM models as illustrated
in the QualAr and Financial applications. Therefore, the contributed software allows the
deployment of the presented real-world applications and others related. Moreover, with
the contributed standalone library, different applications can be developed by others. The
contributed software is presented and detailed in Appendix A, together with other de-
veloped applications for demonstration purposes. Unfortunately, due to time constraints,
the StreamART2A/SOM was not included in the contributed software, but will be in the
near future.

8.1.8 Overall Assessment

A properly converged SOM model, either generated from the StreamART2A/SOM method-
ology or continuously made available by the UbiSOM algorithm, may be the most com-
pact and rich abstraction of a multi-dimensional data stream of all current data stream
clustering methods. From this model, visual inferences of the natural clusters and cluster
descriptions can be performed; the visualizations are understandable by laymen without
any prior expertise or knowledge in data mining. Additionally, as demonstrated is ver-
satile in allowing both clustering of observations and features — consequently, also for
time series.

Regarding the enumerated contributions in Section 8.1.1, contributions ii.) and iii.)
fill a gap in the current state-of-the-art of data streams clustering methods by targeting
self-organizing maps as an alternative solution, focused on visual exploratory cluster
analysis. Consequently, regarding the previous panorama reviewed in Section 2.7, and
later summarized in Figure 2.10, following this research study it can be completed as
illustrated in Figure 8.1. These two contributions can also be considered relevant to the
ANN field by introducing variants of well-known and established algorithms, namely
the ART2-A and SOM algorithms.

Regarding these particular two contributions, each has its own strengths and weak-
nesses that should be balanced in the intended application.

• The StreamART2A/SOM methodology exhibiting advantages in terms of ease of
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Figure 8.1: Panorama of available methods for clustering data streams after research.
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parameterization and confidence in the obtained results for the specified data stream
interval, since they are generated for a well-defined time interval of the data stream.
On the other hand, there is inevitably a delay in selecting this time interval (that is
also limited by the size of codebook) and generating the corresponding Batch SOM
model. The financial real-world application of the methodology hinted on applica-
tions that can, notwithstanding, benefit from this, e.g., where knowledge discovery
is intended along regular intervals of the data stream;

• The UbiSOM algorithm, in a sense, inverts the strengths and weaknesses of the later
approach. The main limitations identified are the parameterization of the algorithm
and confidence in the results. Regarding the former, although the parameter-space
was narrowed to good overall intervals, its optimal performance relies on a more
careful parameterization; to this extent, and if possible, a PSA should be performed
with available prior data. Concerning the later limitation, besides the trend of the
drift function, the proposal of additional visualizations, e.g., BMU and Activity Map
visualizations should give a good visual indication of the convergence of the map
regarding the recency of the information quantized. However, assuming a good
parameterization the UbiSOM excels in providing a continuous SOM abstraction of
the data stream from where the visualizations can be presented in real-time. The
UbiSOM relies on global assessment metrics to guide its learning parameters and
will describe only the current underlying distribution in the data stream. This con-
trasts with the StreamART2A/SOM approach, where a specific time interval may
contain a mixture of different underlying distributions contained in the data stream
during the specified interval.

Contribution iv.), involving methodologies to tackle ubiquitous data streams, still leave
several open issues, but can be regarded as a solid starting point for future developments.
The real-world application involving the distributed learning strategy seems very sound
in practice. However, the collaborative learning strategy still has to be demonstrated in the
real-world, targeting. e.g., participatory sensing data.

Finally, from the real-world applications of contribution v.), what stands out is the
clear applicability of the proposed methods to concrete real-world application scenarios
and their versatility in allowing clustering of observations and features.

8.2 Future Work and Open Issues

Research work is never concluded, it is always only a step forward towards more ad-
vanced research topics. Thus, this research study leaves some unsolved problems and
opens new questions to which additional research effort should be devoted in the future.
These are described in the following paragraphs, although at the end of each chapter
devoted to the main contributions, namely in Sections 4.6, 5.8, 6.5 and 7.6, these particu-
lar improvements or further developments have already been addressed in more detail.
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However, some stand out and are also recalled in this section.

Future practical applications and collaborations. The practical application of the con-
tributions made in this thesis is the main goal in respect to future work. To this extent,
the following are identified:

• Some existing collaborations should be reinforced in respect to the financial do-
main, e.g., with GoBusiness Finance, and others relating to sensor data should be
pursued, namely with EDP and APA, following the exemplified application sce-
narios in Chapter 7;

• Interactive visualization of high-dimensional streaming data is a path to be further
explored, as introduced in (Marques, Silva, and Santos 2016);

• In general, the IoT offers endless possibilities in which to apply the proposals and
related methodologies, particularly with the advent of 5G networks and increas-
ing connectivity between all sorts of, e.g., sensors, gadgets and smart appliances.
Health care and automotive applications with ever increasing monitoring data also
seem interesting;

• Finally, the UbiSOM algorithm should be studied as a viable solution for knowl-
edge discovery from Big Data, i.e., as a single-pass approximation algorithm for
large amounts of data. Note that in this particular application data should be con-
sidered static (therefore, stationary) by randomizing the order of the observations.
Such contrasts with a single-pass of the Online SOM algorithm, in the sense that
the UbiSOM algorithm provides a natural convergence to the data instead of the
convergence imposed by annealing schemes over the learning parameters. This is
relevant in such applications where knowledge discovery in a timely manner is of
concern.

To successfully pursue the above practical application scenarios, there are still some open
research issues that should be addressed, as discussed in the following paragraphs.

Automatic change detection methods. For example, the inclusion of an automatic change
detection mechanism, either in the StreamART2A or the UbiSOM algorithm, would allow
the following:

• A general alert mechanism to signal change in the data stream;

• By consequence, allow snapshots of current codebooks to be stored for later analy-
sis and comparison with subsequent ones.

Regarding the distributed and collaborative learning strategies, it would also allow:
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• In the distributed learning methodology, if the concept of the data being produced
a local node is stable, then the codebooks will converge and/or stabilize, and trans-
missions will become redundant. Hence, only when change is detected should the
node inform the central location and transmit the new filtered codebook, increas-
ing the scalability of the solution by reducing the communication needs (Gama,
Rodrigues, and Lopes 2011). This, however, requires the central location to main-
tain the current codebooks of each local node separately, so they can be replaced
when local change occurs;

• In the collaborative learning strategy, at the moment, for a specific node, the local
model is only incorporated in the global model when a collaboration procedure
(with other node) is triggered. Automatic change detection over the local model
would allow this incorporation to be made whenever change occurs, more precisely
after the local UbiSOM has converged to the new distribution.

At the end of Chapter 4 some hints for the development of non-parametric methods that
use the qe(t) or the d(t) functions were discussed and can be pursued, as well as other
independent methods that can be incorporated.

Data Normalization. Normalization of data streams requires that lower and upper
bounds of individual features values are known. In sensor data, for example, data is
bounded to the range of the sensor outputs themselves. In financial data, one can estab-
lish bounds from historical information or within a window model. Nonetheless, data
stream normalization is critical aspect that should be addressed in future work so as to
improve the practical deployment of the proposed methods.

Noisy, Missing and Spatial Data. Real-world data acquired on the fly, e.g., sensor
and financial data, and without any preprocessing, is inherently noisy and/or incom-
plete. Some recommendations were made regarding dealing with noise in the Strea-
mART2A algorithm and the UbiSOM algorithm implicitly includes some tolerance to
noise. Nonetheless, an effective study of the sensitivity to noise of both algorithms should
be made. Missing data is an old problem that has already been addressed for the SOM in
general. Fortunately, as discussed at the end of Chapter 7, existing strategies can be eas-
ily included in the UbiSOM algorithm and extrapolated to the StreamART2A algorithm
(both have similar match and update rules). For the simplest cases a preprocessing engine
can perform simple last observation carried forward substitutions on missing feature values.

Dealing with spatial data, e.g., geographic information, included in the streaming ob-
servations requires different match and update rules for competitive learning algorithms.
For example, in the SOM, the topology of the map should be maintained for the spatial
data while projecting the remaining dimensions. As discussed, the inclusion of spatial
data could enable the application of the proposed collaborative learning strategies to
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more meaningful scenarios related to participatory sensing. To this extent, the applica-
tion of current strategies discussed in Section 7.6 can be pursued.

Heterogeneous Data. Here, the term “heterogeneous data” refers to observations con-
taining features with mixed data types, e.g., numerical and categorical; by extension,
spatial data can also be included, but was discussed above separately. Although the
StreamART2A and UbiSOM algorithms were proposed for real-valued features, there
are proposals in literature, e.g., for the SOM, to additionally process categorical data. If
such data is of interest for the presented methods, this path can be explored.

Other Improvements and Evaluations. Finally, additional interesting improvements
and evaluations that can be pursued are enumerated next:

• Additional mechanisms to inform the user of the quality of the UbiSOM conver-
gence to the underlying data stream;

• Dynamic adjustment of � and T in the UbiSOM algorithm to achieve an UbiSOM
variant with reduced parameter-space;

• Overall improvement of the collaborative learning strategy and study of forgetting
mechanisms for the methodology.

8.3 Final Remark

Towards the general problematic of using Self-Organizing Maps for exploratory cluster
analysis over ubiquitous data streams, this thesis made original, interesting and experi-
mentally proven contributions, contextualized within the ANN field. These extend the
current state-of-the-art regarding data stream clustering methods. Also, the ubiquitous
aspect of data streams was addressed leveraging the trade-off between local and global
models. Regarding existing methods, the contributions favor visual data exploration and
versatility in targeting different clustering problems, i.e., observations and features, with
the same method. A large number of interesting research opportunities is still left open
by this work, which will, hopefully, stimulate further advancements.
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A
Contributed Framework and

Software

In the course of this research programming was a central task, either by implementing
the algorithms, coding the simulations, automating the parameter sensitivity analysis
and producing plots and visualizations to illustrate the data and obtained models in this
manuscript. The majority of these tasks were performed with the Java and R languages
and intermediate formats such as CSV.

However, this appendix presents developed software that can be readily used in the
context of the previous illustrative real-world applications through the presentation of a
developed framework (Section A.1) and a compact library (Section A.2) that can be used
to build additional applications of the UbiSOM algorithm.

A website was created to promote collaborations with the developed software:

http://ubisom.brunomnsilva.com/

A.1 Framework

The framework is depicted in Figure A.1 and was idealized with an ubiquity concept in
mind, i.e., distributed instances of the UbiSOM that can communicate with each other
and be queried by users. In a higher-level of abstraction it is composed by a data stream
source, an instance of the UbiSOM algorithm, an optional webserver acting as middleware
to the application layer. The framework was implemented in the Java language and de-
tails regarding each layer and implementation follows:
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Datastream

Model

Middleware

Applications

DataStreamSource

Abstract class implementing 
a thread that continuously 
prompts for observations. 
Implementing sub-classes 
provide different sources,
e.g., file, socket, pipe.

UbiSOM

A self-organizing map variant
that learns non-stationary
data streams.

Web Server

Wraps the layers below
through a web interface.

Standalone

Exploratory data analysis.
Possible real-time 
visualizations.
UbiSOM can be obtained
and manipulated.

Normalization

Browser
(PC, Tablet, Smartphone)

Other
(R, Matlab, ...)

Webpage + JSON JSON

Figure A.1: Framework as a layered architecture.

Datastream Layer. This layer is responsible for acquiring the data stream observations
and normalized them if necessary. Current implementation is based on a implemented
abstract class DataStreamSource providing base functionality for querying for new ob-
servations and on-the-fly normalization/denormalization of patterns (observations and
prototypes), given the established lower and upper limits for the features. This imple-
mentation runs in its own thread and notifies the model layer via an Observer software
pattern.
Implementing sub-classes dictate how observations are acquired, e.g., from file, socket,
JDBC (databases), invoking scripts that parse operating system commands, low-level
communication to obtain measurements of attached sensors, etc.;

Model Layer. This layer is responsible for receiving the streaming observations from
the layer below and producing an UbiSOM model, maintaining a topologically ordered
codebook over the (possibly) non-stationary underlying data stream;

Middleware Layer. This layer is responsible for any module that bridges the two pre-
vious layers with the application layer. Current implementation is in the form of an web-
server, allowing remote querying of the model. The webserver responds to requests either
by sending the model in JavaScript Object Notation (JSON) embedded in a webpage that
can be readily viewed in any recent browser or as raw JSON to be consumed by other ap-
plications. A specific desired time for the model can be sent, useful for synchronization
if centralizing distributed models;
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1 ##########################################
2 ## CONFIGURATION FILE
3 ##########################################
4 #Only way to include spaces in this properties file is to use \u0020 char
5 device.name = Household\u0020Electric\u0020Power\u0020Sensoring
6

7 ##########################################
8 # UbiSOM Parameterization
9

10 ubisom.width = 20
11 ubisom.height = 40
12 ubisom.eta_i=0.1
13 ubisom.eta_f=0.08
14 ubisom.sigma_i=0.6
15 ubisom.sigma_f=0.2
16 ubisom.beta = 0.8
17 ubisom.T = 2000
18

19 ##########################################
20 # datastream configuration
21

22 datastream.feed.class=somlp.model.io.DataStreamSourceCSV
23 datastream.feed.args=household_power_sensor.csv
24

25 #interval in milliseconds
26 datastream.interval=50
27

28 ###########################################
29 # webserver configuration
30 webserver.port=8000

Figure A.2: Configuration file for the developed framework.

Applications Layer. A wide variety of software applications can be created in this layer.
Applications can either be built on top of the datastream and model layers or by communi-
cating with the middleware layer. Current implementations targeted both cases.

The framework explicitly delegates different responsibilities to each layer as abstrac-
tions to the layer immediately above. The framework individual components are pa-
rameterized through a configuration file that follows the java properties file format. An
example is given in Figure A.2 for the application regarding the Household application
(Section 7.3) where data is obtained from a comma separated values (CSV) file.

The following sections briefly describe applications that were developed within this
framework.

A.1.1 Local applications

A local application is considered as software developed in a monolithic form (standalone),
together with code from the datastream and model layers. A simple application that allows
the real-time visualizations of the model was developed (see Figure A.3).
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Figure A.3: Local application that allows real-time visualization of the UbiSOM model.

A.1.2 Remote applications

These applications involve obtaining an UbiSOM model remotely and then perform ex-
ploratory data analysis or manipulate the model for further processing.

A.1.2.1 Remote Exploratory Analysis

This application regards browser client-side model visualization and feature clustering.
The client connects to the webserver at the specified port through the standard http proto-
col. The main webpage is returned with the current codebook embedded in JSON format;
the codebook is stored locally in the browser’s web storage (all recent browsers support
this). Generation of the visualization and additional procedures are performed locally in
the browser through JavaScript, freeing the server of any further computations.

In the main page the user is presented with the standard visualizations of the ac-
quired model, i.e., U-Matrix and component planes (see Figure A.4a). From here he can
opt to visualize the U-Matrix in 3D (see Figure A.4b), which allows him to detect less
prominent cluster structures and to perform feature clustering (see Figure A.4c). These
later functionalities are performed over the model sent with the initial webpage. It must
be refreshed to obtain a more recent model.

Within this architecture a simple Android application was developed, using the built-
in browser to display the visualizations (see Figure A.5).

A.1.2.2 R Studio Integration

By using the JSON format, the models can be integrated in other applications. For ex-
ample, a small library was developed in the R language that allows a remote model to
be downloaded, visualized and manipulated. In Figure A.6 a snapshot of a Household
model was obtained from the webserver and visualized in R Studio through this library.
Interesting in the future is the integration with the R Kohonen package that produces ad-
ditional visualizations and procedures over self-organizing map models, e.g., automatic
detection of clusters via Ward’s method.
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Figure A.5: Remote visualization through Android application.

Figure A.6: R Studio integration through developed R library.
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UbiSOM Library (Class Diagram)

UbiSOM

- map : Prototype[][]
- monitor : LearningMonitor
- currentState : UbiSOMState
- iteration : long
- ... (parameters of constructor)
 
+ UbiSOM(w, h, d, 
                sigma_i, sigma_f,
                eta_i, eta_f,
                T, beta)
+ learn( x[] ) : void
+ learn( x[],  weight) : void
+ getCodebook() : Prototype[][]
+ getFilteredCodebook(): Prototype[][]
+ changeState(UbiSOMState s) : void
+ getIteration() : long
 
- estimateEta() : double
- estimateSigma() : double
 
+ serialize(filename) : void
+ deserialize(filename) : void
+ exportCSV(filename) : void

Prototype

- w : double[]
- activityTimestamp : long
- bmuTimestamp : long
 
+ Prototype( d )
+ distanceEuclidean(otherPrototype) : double
+ getBMUTimestamp() : long
+ getActivityTimestamp() : long

LearningMonitor

- T : int
- beta : double
- averageQE : TripleMA
- averageNA : TripleMA
 
+ LearningMonitor(T)
+ processIteration(qerror, nutility) : void
+ getLastDriftValue() : double

UbiSOMState

- model : UbiSOM
 
+ estimateEta() : double
+ estimateSigma() : double

UbiSOMOrderingState

- sigma_i: double
- sigma_f: double
- eta_i: double
- eta_f: double
- T: int
 
+ UbiSOMOrderingState(sigma_i, sigma_f,
                eta_i, eta_f, T )
 
+ estimateEta() : double
+ estimateSigma() : double

UbiSOMLearningState

- monitor : LearningMonitor
- beta : double
 
+ UbiSOMLearningState(learningMonitor)
 
+ estimateEta() : double
+ estimateSigma() : double

TripleMA

- stage1 : Queue<double>
- stage2 : Queue<double>
- stage3 : Queue<double>
 
+ TripleMA(windowSize)
 
+ addValue(value) : void
+ getLastValue() : double

- min : double[]
- max: double[]
 
+ Normalization(min, max)
 
+ normalize( x[] ) : double[]
+ denormalize( w[] ) : double[]

Figure A.7: UbiSOM library class diagram.

The developed R library also allows importing UbiSOM models in CSV format. It was
by this method that results and graphics relating to feature clustering (Sections 5.6 and
7.5) and the component plane to air quality index mappings (Section 7.4) were obtained
in this thesis.

A.2 Library

The UbiSOM algorithm and related classes were wrapped into a standalone library that
can be used to build other applications. In this context, Figure A.7 depicts the overall
implementation that was effectively used throughout this research. This implementation
allows the realization of the algorithm detailed in Section 5.3.

While two simple demonstrations of the usage of this UbiSOM library are presented
next, it has been used to develop real-time visualization of multi-dimensional financial
data streams in (Marques, Silva, and Santos 2016).

A.2.1 Interactive Demonstration

The UbiSOM Interactive Demo application (see Figure A.8) allows the user to manipulate
a set of Gaussian clusters in 2D space in real-time. Clusters can be created, destroyed,
moved (change in mean) and their size altered (change in variance). Is is interesting
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Figure A.8: UbiSOM Interactive Demo application.

for the user to observe the dynamics of the algorithm over a changing cluster structure
using different parameterizations. On the right side of the application window the real-
time derived U-Matrix is available, which allows to compare the created cluster structure
with the one identified in the visualization.

A.2.2 Color Quantization in a Video Stream

Finally, a demonstration of the UbiSOM ability to quantize the colors during a video
stream was implemented. It illustrates the learning of a color codebook over a video
stream, while creating a version of the same video but with the colors quantized.

An example using a trailer for the movie SINTEL1, produced by the Blender Open
Movie Project, is illustrated. The video resolution is 640 � 360 pixels; consequently, each
frame contains 230 400 RGB color patterns (d = 3). In each frame 2000 randomly selected
pixels are normalized in the unit hypercube (RGB components vary between 0 and 255)
and are presented to a 10� 20 UbiSOM instance that continuously maintains a 200-color
codebook over the incoming color observations. After being presented with the color
observations of the current frame, the codebook is used to produce a quantized version
of the same video frame. This procedure endures until the end of the video stream. The
algorithm was parameterized with T = 2000 and � = 0:8; other parameters remained as
in Section 5.5.

Figure A.9 depicts the evolution of the UbiSOM learning, where the scene changes are
clearly detected by the assessment metrics. Those periods where the learning parameters

1https://durian.blender.org/
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Figure A.9: Evolution of UbiSOM learning parameters over the SINTEL video frames.

seem not to converge are seconds of mostly black video frames. Figure A.10a depicts
sample frames from the original video and Figure A.10b the current UbiSOM codebook
after each respective frame. Both are annotated with the total number of distinct colors in
the frame/codebook. The same frames from the resulting quantized video are presented
in Figure A.11, also showing the total number of colors used in each frame. Please note
that here the number of distinct colors exceeds in one, because of the pure white text
overlay placed over the frames.
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Figure A.11: Quantized SINTEL video frames by the UbiSOM algorithm.
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B
Artificial Data Streams

Illustrations of the artificial data streams used throughout this thesis are presented here.
Table B.1 summarizes the data streams, which are described in the following sections.
Besides specific aims for each data stream, all (except Correlated) were used in the param-
eter sensitivity analysis of algorithms in Chapters 4 and 5. Note that data streams (except
Correlated) are depicted after min-max normalization, hence X 2 [0; 1]d, i.e., all observa-
tions are within the unit hypercube.

If not explicitly stated otherwise, artificial data streams were generated by this re-
search and are publicly available at:

https://brunomnsilva.github.io/datastreams/

B.1 Gauss

Two-dimensional stationary data stream containing 100 000 points from a bi-variate nor-
mal (Gaussian) distribution, centered at the origin and identity co-variance matrix; used
to evaluate if proposed and compared methods can model the input space density prop-
erly — illustrated in Figure B.1a.

B.2 Complex

Two-dimensional stationary data stream containing 100 000 points describing a complex
cluster structure, with seven clear clusters; used to evaluate if the clusters are detectable
in the U-Matrix visualization of obtained SOM models. It is also split into four quadrants
when illustrating the distributed and collaborative learning methodologies — illustrated
in Figure B.1b.
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Name d N Stationary Change at #Clusters Chapters Figure

Gauss 2 100 000 Y - 1 4, 5, C B.1a

Complex 2 100 000 Y - 7 4, 5, 6 B.1b

Chain 3 100 000 Y - 2 4, 5, C B.1c

d2k20 2 300 000 Y - 20 4, 5, C

d3k20 3 300 000 Y 20 4, 5, C B.1d

d5k20 5 300 000 Y 20 4, 5, C

AbruptOneTwo 2 100 000 N 50 001 1/2 4, 5, C B.2a

DriftTwoOne 2 200 000 N [50 001; 150 000] 2/1 4, 5, C B.2b

Clouds 2 200 000 N [50 001; 150 000] 2/3/2 4, 5 B.3a

Hepta 3 150 000 N 100 001 7/6 4, 5 B.3b

Correlated 10 100 000 N 50 001 NA 5 B.4

Table B.1: Summary of artificial data streams, where d is the dimensionality of the data
stream and N is the number of observations.

B.3 Chain

Three-dimensional stationary data stream containing 100 000 points describing two in-
terlocked rings (clusters); used to evaluate if the clusters are detectable in the U-Matrix
visualization of obtained SOM models — illustrated in Figure B.1c.

B.4 d2k20, d3k20 and d5k20

Stationary data streams consisting of 300 000 points in d dimensions, describing 20 Gaus-
sian clusters in different dimensions. Obtained from publicly disclosed data in (Frahling
and Sohler 2008). Following the original description from the authors: Each individual
data stream “is generated by taking a random point from one of 20 Gaussian distributed clusters,
whose center are picked uniformly at random from the unit cube. The standard deviation of the
Gaussian distribution is 0:02

p
d, i.e., it is the product of the one-dimensional Gaussian distri-

bution with standard deviation 0:02” — quoted from (Frahling and Sohler 2008). The data
stream is used to evaluate if the clusters are detectable in the U-Matrix visualization of
obtained SOM models; it is also used to test scalability of algorithm in Chapter 4 — the
three-dimensional variant, i.e., d3k20, is illustrated in Figure B.1d.

B.5 AbruptOneTwo

Two-dimensional non-stationary data stream containing 200 000 points describing an
abrupt-changing (change point at t = 50 001) simple cluster structure with one Gaus-
sian cluster splitting in two; aims at evaluating how different algorithms react to sudden
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change in the distribution — illustrated in Figure B.2a.

B.6 DriftTwoOne

Two-dimensional non-stationary data stream containing 200 000 points describing a grad-
ual change in a simple cluster structure, i.e., two Gaussian clusters merging into one
(change occurs during t = [50 001; 150 000]); aims at evaluating how different algorithms
react to gradual change in the underlying distribution — illustrated in Figure B.2b.

B.7 Clouds

Two-dimensional non-stationary data stream containing 200 000 points describing a grad-
ual changing cluster structure of three Gaussian clusters (change occurs during t = [50 001;

150 000]). In the initial stationary phase of the stream there are only two separable Gaus-
sian clusters (two are overlapped); during the non-stationary phase of the stream, the
overlapped clusters split, i.e., one remains stationary, while the other drifts. In this phase,
the third cluster also drifts, hence there are three separable clusters. Clusters move at dif-
ferent “speeds”, until they merge; in the final stationary phase of the data stream there
are again only two separable clusters. Aims at evaluating how different algorithms react
to gradual change in the underlying distribution — illustrated in Figure B.3a.

B.8 Hepta

Three-dimensional non-stationary data stream containing 150 000 points describing an
abrupt-changing cluster structure (change point at t = 100 001). From the initial seven
Gaussian clusters (hence the name), one disappears; aims at evaluating how different
algorithms react to sudden change in the underlying distribution and to motivate the
proposal of the average neuron utility assessment metric in Chapter 5 — illustrated in
Figure B.3b.

B.9 Correlated

As opposed to the previous data streams, this is utilized to evaluate the feature cluster-
ing methodology, i.e., time-series clustering. The data stream contains 5 pairs of corre-
lated time-series (d = 10) with different degrees of correlation. The pairwise correlations
abruptly change at t = 50 001. Table B.2 depicts the correlations along time. Generated
in R using the rmvnorm function; script is available in the repository provided in the
beginning of the appendix. A small sample (100 observations) is depicted in Figure B.4.
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Degree of Correlation First half, t 2 [0; 50 000] Second half, t = [50 001; 100 000]

0 {a,b} {g,h}

0.4 {c,d} {c,d}

0.8 {e,f} {e,f}

1 {g,h} {i,j}

-0.6 {i,j} {a,b}

Table B.2: Pairwise correlations in the Correlated artificial data stream.
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Figure B.1: Illustration of several stationary artificial data streams (Gauss, Complex, Chain
and d3k20).
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Figure B.2: Illustration of non-stationary artificial data streams (AbruptOneTwo and
DriftTwoOne).
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Figure B.3: Illustration of additional non-stationary artificial data streams (Clouds and
Hepta).
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C
Additional Results from

Experimental Evaluations

This appendix presents additional results from the experiments endured in Chapters 4
and 5, concerning the StreamART2A and Ubiquitous Self-Organizing Map (UbiSOM)
algorithms.

C.1 StreamART2A Algorithm

Table C.1 summarizes results contained in this section, in addition to results already pre-
sented in Section 4.5.

C.1.1 Parameter Sensitivity Analysis

The parameter sensitivity analysis was performed in three dimensions with L = {500,
1000, 1500, 2000}, q = {20, 50, 100, 200} and � = {0.05, 0.1, 0.2, 0.5} as the parameter-space,
against the following two statistics:

Mean quantization error. After a landmark is processed and q micro-categories are gen-
erated, the presented L observations are reused to compute the mean quantization error

of the landmark window, i.e.,
�Pt+L�1

i=t E
0

q(t)

�
=L, being E

0

q(t) computed with Wc(t) in-

side the landmark window. The final obtained statistic (Mean E
0

q(t)) is the mean value
obtained between all landmark windows until the end of the data stream.
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Data Stream Type of Evaluation

Name d N Stationary Change at #Clusters PSA VIL ECA MA

Gauss 2 100 000 Y - 1 ;

Complex 2 100 000 Y - 7

Chain 3 100 000 Y - 2 ;

d2k20 2 300 000 Y - 20 ;

d3k20 3 300 000 Y - 20 ;

d5k20 5 300 000 Y - 20

AbruptOneTwo 2 100 000 N 50 001 1/2

Clouds 2 200 000 N [50 001; 150 000] 2/3/2

Hepta 3 150 000 N 100 001 7/6 ;

Table C.1: Additional results for the StreamART2A algorithm, marked with the sym-
bol ;, regarding: parameter sensitivity analysis (PSA); vigilance impact and landmark
examples (VIL); exploratory cluster analysis (ECA), and; model assessment and change
indication (MA).

Mean number of merges. Computes the mean number of merges across all landmark
windows, i.e., for each landmark window the number of micro-category merges is accu-
mulated and averaged between the total number of landmark windows used throughout
the data stream.

Figure C.1 presents the results of the PSA analysis for the Gauss and Chain stationary
data streams; Analogously, Figure C.2 presents the results for the d2k20 and d3k20 data
streams. Additionally, Figure C.3 presents the results for the non-stationary Hepta data
stream.

Discussion of these results and regarding other data streams is made in Section 4.5.3.

260



C. ADDITIONAL RESULTS FROM EXPERIMENTAL EVALUATIONS

0

100

200

300

400

0.00 0.01 0.02 0.03 0.04

Mean E'(t)

M
ea

n 
N

um
be

r 
of

 M
er

ge
s

L = 500

0

100

200

300

400

0.00 0.01 0.02 0.03 0.04

Mean E'(t)

M
ea

n 
N

um
be

r 
of

 M
er

ge
s

L = 1000

0

100

200

300

400

0.00 0.01 0.02 0.03 0.04

Mean E'(t)

M
ea

n 
N

um
be

r 
of

 M
er

ge
s

L = 1500

0

100

200

300

400

0.00 0.01 0.02 0.03 0.04

Mean E'(t)

M
ea

n 
N

um
be

r 
of

 M
er

ge
s

L = 2000

η

0.05

0.1

0.2

0.5

q

●
●

20

50

100

150

200

(a) Gauss data stream.

0

100

200

300

400

0.00 0.01 0.02 0.03 0.04

Mean E'(t)

M
ea

n 
N

um
be

r 
of

 M
er

ge
s

L = 500

0

100

200

300

400

0.00 0.01 0.02 0.03 0.04

Mean E'(t)

M
ea

n 
N

um
be

r 
of

 M
er

ge
s

L = 1000

0

100

200

300

400

0.00 0.01 0.02 0.03 0.04

Mean E'(t)

M
ea

n 
N

um
be

r 
of

 M
er

ge
s

L = 1500

0

100

200

300

400

0.00 0.01 0.02 0.03 0.04

Mean E'(t)

M
ea

n 
N

um
be

r 
of

 M
er

ge
s

L = 2000

η

0.05

0.1

0.2

0.5

q

●
●

20

50

100

150

200

(b) Chain data stream.

Figure C.1: Additional parameter sensitivity analysis results for the StreamART2A algo-
rithm over Gauss and Chain stationary data streams.
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(b) d3k20 data stream.

Figure C.2: Additional parameter sensitivity analysis results for the StreamART2A algo-
rithm over d2k20 and d3k20 stationary data streams.
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(a) Hepta data stream.

Figure C.3: Additional parameter sensitivity analysis results for the StreamART2A algo-
rithm over the non-stationary Hepta data stream.
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C.2 UbiSOM Algorithm

The following table summarizes the results contained in this section.

Data Streams Type of Evaluation

Name d N Stationary Change at #Clusters PSA LPC ECA

Gauss 2 100 000 Y - 1 ; ;

Complex 2 100 000 Y - 7 ;

Chain 3 100 000 Y - 2 ;

d5k20 5 300 000 Y - 20 ; ; ;

AbruptOneTwo 2 100 000 N 50 001 1/2 ; ;

DriftTwoOne 2 200 000 N [50 001; 150 000] 2/1 ; ;

Clouds 2 200 000 N [50 001; 150 000] 2/3/2 ;

Hepta 3 150 000 N 100 001 7/6 ;

Table C.2: Summary of additional experimental results for the UbiSOM algorithm,
marked with the symbol ;, regarding: parameter sensitivity analysis (PSA); evolution
of learning parameters and convergence (LPC), and; exploratory cluster analysis (ECA).

C.2.1 Description and Algorithm Parameters

A 20 � 40 lattice was used in all runs. In the ordering state of the UbiSOM algorithm we
have empirically set �i = 0:1, �f = 0:08, �i = 0:6 and �f = 0:2, while parameters T and �

vary in the parameter sensitivity analysis and in the other presented experiments.

C.2.2 Parameter Sensitivity Analysis

The analysis was performed in two dimensions: sliding window size of assessment
metrics T = {500, 1000, 1500, 2000, 2500, 3000} and drift function weighting factor � =

{0.5,0.6,0.7,0.8,0.9,1}. To assess the impact of these parameters, the following values were
computed:

Mean error and neuron activity. The mean quantization error (Mean E
0

q(t) or QE) char-
acterizes the quality of the quantization procedure along the entire stream, i.e., we should
look for lower values (see Section 2.4.6). Similarly, the mean neuron activity (Mean �(t))
characterizes the neuron usage during learning from stationary and non-stationary data
streams, measured between 0 and 1. While it is normal to have some unused neurons
separating clusters while projecting the input space, a large portion of unused neurons
is undesirable. Consequently, we should look for higher values of this measure. Both
measurements must not be confused with the assessment metrics qe(t) and �(t), since
they average values within a sliding window.
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Topographic error. The mean topographic error (Mean TE(t) or TE) measures undesir-
able distortions of the map, i.e., topological defects (see Sections 2.4.4 and 2.4.6). Values
greater than zero may not indicate topological defects, but should remain fairly close to
zero.

Convergence time. The assessment metric qe(t), for the different values of T , was used
to obtain a grasp on the delay in convergence imposed by this parameter. From the min-
imum qe(t) obtained throughout the stream, iteration where the qe(t) value falls within
5% of the minimum was computed (Convergence t), as a temporal indicator of conver-
gence. In other words, this value indicates at which point in time the map attained a
convergence of 95% against the minimum qe(t) obtained throughout the data stream.
This value is merely indicative and should be regarded with care, as it is a hard com-
parison, i.e., a value very close can be obtained much earlier, so it is not one of the main
quantitative results we are interested in.

Number of resets. The number of transitions back to the ordering state (resets) was also
obtained. A transition to this state indicates that the UbiSOM algorithm was unable to
adapt to the underlying distribution with the established learning parameters thresholds
inherited from the ordering state, i.e., �f and �f . Ideally, during the presentation of the
artificial data streams, we want the least number of resets; this indicates that the estab-
lished parameters allowed the UbiSOM to properly adjust itself to any changes in the
underlying data stream.

The objective functions fQE(T; �), f�(T; �) and fTE(T; �) represent values obtained
for MeanE

0

q(t), Mean�(t) and MeanTE(t), respectively for a particular parameteriza-
tion. The best parameters for a particular data stream are obtained by maximization of
the optimization function:

maximize
T;�

g(T; �) =
f�(T; �)

fmax
�

� fE(T; �)

fmax
QE

� fTE(T; �)

fmax
TE

with an upper limit of one and an unbounded lower limit (please note that fmax
i 6= 0 is

assumed).
Tables C.3 through C.10 present the full results for all combinations of T and � over

all artificial data streams. Additionally, the optimization scores are also presented here.
Discussion of the results can be found in Section 5.5.3.

C.2.3 Convergence with stationary and non-stationary data

This section presents additional results regarding the ones presented in Section 5.5.4,
namely for the Gauss (Figure C.4), AbruptOneTwo (Figure C.5) and DriftTwoOne (Figures
C.6 and C.7) artificial data streams. The UbiSOM parameterization for each problem
stems from the performed PSA. For each data stream the UbiSOM lattice is shown at
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C. ADDITIONAL RESULTS FROM EXPERIMENTAL EVALUATIONS

T
�

M
ea

n
E

0 q
(t
)

M
ea

n
�
(t
)

M
ea

n
TE

(t
)

C
on

ve
rg

en
ce

t
R

es
et

s
O

pt
.S

co
re

50
0

0.
5

1.
55

41
65

e-
02

9.
94

51
31

e-
01

3.
80

1e
-0

2
5

11
9

0
-6

.5
21

10
6e

-0
1

0.
6

1.
53

76
71

e-
02

9.
92

50
51

e-
01

3.
80

5e
-0

2
6

66
9

0
-6

.4
57

04
9e

-0
1

0.
7

1.
52

59
67

e-
02

9.
89

54
86

e-
01

3.
82

4e
-0

2
6

66
7

0
-6

.4
59

98
1e

-0
1

0.
8

1.
52

01
39

e-
02

9.
84

21
83

e-
01

3.
83

9e
-0

2
6

66
1

0
-6

.5
11

38
6e

-0
1

0.
9

1.
53

56
23

e-
02

9.
72

35
20

e-
01

3.
56

8e
-0

2
6

69
9

0
-6

.1
62

53
4e

-0
1

1.
0

1.
59

15
34

e-
02

8.
70

72
15

e-
01

3.
24

1e
-0

2
7

32
6

0
-6

.8
23

90
8e

-0
1

1
00

0
0.

5
1.

57
58

86
e-

02
9.

96
62

53
e-

01
3.

42
5e

-0
2

7
02

9
0

-5
.8

52
49

1e
-0

1
0.

6
1.

57
86

97
e-

02
9.

95
36

58
e-

01
3.

36
5e

-0
2

7
50

9
0

-5
.7

58
10

9e
-0

1
0.

7
1.

57
79

86
e-

02
9.

93
54

71
e-

01
3.

43
8e

-0
2

7
48

0
0

-5
.9

21
64

7e
-0

1
0.

8
1.

58
24

23
e-

02
9.

90
82

94
e-

01
3.

47
1e

-0
2

7
53

7
0

-6
.0

41
18

6e
-0

1
0.

9
1.

58
88

31
e-

02
9.

84
80

15
e-

01
3.

49
6e

-0
2

7
57

3
0

-6
.1

88
52

9e
-0

1
1.

0
1.

60
84

89
e-

02
9.

36
51

23
e-

01
3.

36
7e

-0
2

7
70

9
0

-6
.5

18
04

7e
-0

1

1
50

0
0.

5
1.

62
60

00
e-

02
9.

97
52

90
e-

01
4.

14
2e

-0
2

9
48

3
0

-7
.5

90
55

4e
-0

1
0.

6
1.

62
61

27
e-

02
9.

96
70

88
e-

01
4.

15
2e

-0
2

9
56

1
0

-7
.6

19
92

9e
-0

1
0.

7
1.

62
60

22
e-

02
9.

95
54

55
e-

01
4.

19
1e

-0
2

9
54

3
0

-7
.7

10
75

5e
-0

1
0.

8
1.

62
87

90
e-

02
9.

93
61

33
e-

01
4.

20
1e

-0
2

9
56

9
0

-7
.7

66
04

5e
-0

1
0.

9
1.

63
19

29
e-

02
9.

90
01

52
e-

01
4.

34
4e

-0
2

9
60

8
0

-8
.1

12
12

4e
-0

1
1.

0
1.

64
35

98
e-

02
9.

62
40

04
e-

01
4.

26
9e

-0
2

9
58

2
0

-8
.3

00
44

1e
-0

1

2
00

0
0.

5
1.

68
64

03
e-

02
9.

98
18

21
e-

01
4.

25
9e

-0
2

8
26

4
0

-8
.1

61
48

1e
-0

1
0.

6
1.

68
91

55
e-

02
9.

97
45

58
e-

01
4.

26
5e

-0
2

7
97

6
0

-8
.1

96
42

8e
-0

1
0.

7
1.

69
02

39
e-

02
9.

96
61

28
e-

01
4.

27
3e

-0
2

8
11

4
0

-8
.2

27
29

8e
-0

1
0.

8
1.

68
87

04
e-

02
9.

96
02

50
e-

01
4.

39
7e

-0
2

8
35

2
0

-8
.4

78
21

8e
-0

1
0.

9
1.

69
03

87
e-

02
9.

94
02

84
e-

01
4.

40
8e

-0
2

8
30

7
0

-8
.5

30
12

4e
-0

1
1.

0
1.

69
74

00
e-

02
9.

78
59

54
e-

01
4.

46
3e

-0
2

8
26

4
0

-8
.8

36
35

0e
-0

1

2
50

0
0.

5
1.

73
16

72
e-

02
9.

98
71

97
e-

01
4.

09
4e

-0
2

10
02

2
0

-8
.0

72
03

3e
-0

1
0.

6
1.

73
39

07
e-

02
9.

98
35

84
e-

01
4.

10
5e

-0
2

10
00

6
0

-8
.1

10
66

2e
-0

1
0.

7
1.

73
60

94
e-

02
9.

98
07

84
e-

01
4.

15
1e

-0
2

9
99

3
0

-8
.2

19
79

6e
-0

1
0.

8
1.

73
56

05
e-

02
9.

97
56

46
e-

01
4.

24
9e

-0
2

10
03

5
0

-8
.4

22
65

1e
-0

1
0.

9
1.

73
82

60
e-

02
9.

96
13

33
e-

01
4.

24
7e

-0
2

10
00

1
0

-8
.4

47
75

0e
-0

1
1.

0
1.

73
91

00
e-

02
9.

89
75

74
e-

01
4.

32
7e

-0
2

10
02

7
0

-8
.6

79
90

2e
-0

1

3
00

0
0.

5
1.

78
18

85
e-

02
9.

99
10

08
e-

01
4.

64
0e

-0
2

10
54

1
0

-9
.4

66
11

7e
-0

1
0.

6
1.

78
32

83
e-

02
9.

98
91

84
e-

01
4.

74
2e

-0
2

10
51

8
0

-9
.6

84
40

0e
-0

1
0.

7
1.

78
38

69
e-

02
9.

98
55

79
e-

01
4.

72
0e

-0
2

10
53

5
0

-9
.6

46
29

0e
-0

1
0.

8
1.

78
54

68
e-

02
9.

98
10

64
e-

01
4.

79
0e

-0
2

10
51

0
0

-9
.8

02
93

9e
-0

1
0.

9
1.

78
56

19
e-

02
9.

97
01

47
e-

01
4.

81
0e

-0
2

10
54

3
0

-9
.8

55
62

0e
-0

1
1.

0
1.

78
62

75
e-

02
9.

94
05

37
e-

01
4.

88
9e

-0
2

10
53

2
0

-1
.0

05
05

2e
+0

0

Ta
bl

e
C

.5
:

U
bi

SO
M

pa
ra

m
et

er
se

ns
it

iv
it

y
an

al
ys

is
fo

r
C

ha
in

da
ta

st
re

am
.

T
�

M
ea

n
E

0 q
(t
)

M
ea

n
�
(t
)

M
ea

n
T

E(
t)

C
on

ve
rg

en
ce

t
R

es
et

s
O

pt
.S

co
re

50
0

0.
5

3.
65

97
60

e-
02

9.
67

79
48

e-
01

4.
30

00
00

e-
04

2
11

9
0

2.
11

72
15

e-
01

0.
6

3.
53

07
97

e-
02

9.
53

82
20

e-
01

9.
63

33
00

e-
04

2
31

7
0

2.
21

72
00

e-
01

0.
7

2.
62

22
63

e-
02

9.
32

57
30

e-
01

1.
96

66
70

e-
03

2
55

2
0

3.
85

02
09

e-
01

0.
8

1.
46

78
11

e-
02

9.
46

52
37

e-
01

4.
96

23
33

e-
02

3
12

2
0

3.
86

51
03

e-
01

0.
9

1.
32

22
41

e-
02

9.
26

32
88

e-
01

9.
28

36
67

e-
02

3
31

8
0

1.
65

95
20

e-
01

1.
0

1.
43

70
58

e-
02

4.
31

36
74

e-
01

1.
51

00
67

e-
01

3
67

9
0

-6
.6

97
04

9e
-0

1

1
00

0
0.

5
4.

77
74

09
e-

02
9.

64
92

94
e-

01
1.

41
00

00
e-

03
3

36
8

0
-3

.0
35

39
0e

-0
2

0.
6

3.
40

54
12

e-
02

9.
50

55
31

e-
01

1.
36

00
00

e-
03

3
40

9
0

2.
42

53
86

e-
01

0.
7

2.
25

80
51

e-
02

9.
35

98
45

e-
01

6.
58

33
30

e-
03

3
55

9
0

4.
40

07
83

e-
01

0.
8

1.
36

61
86

e-
02

9.
69

49
70

e-
01

1.
10

22
00

e-
01

4
65

0
0

1.
07

71
53

e-
01

0.
9

1.
36

23
52

e-
02

9.
28

73
41

e-
01

9.
73

76
67

e-
02

4
63

8
0

1.
35

76
73

e-
01

1.
0

1.
46

87
51

e-
02

4.
65

79
99

e-
01

1.
51

88
33

e-
01

4
33

1
0

-6
.4

61
47

2e
-0

1

1
50

0
0.

5
4.

56
02

35
e-

02
9.

67
01

92
e-

01
3.

04
66

70
e-

03
4

46
9

0
8.

48
80

53
e-

03
0.

6
3.

15
97

75
e-

02
9.

54
02

88
e-

01
2.

89
33

30
e-

03
4

48
1

0
2.

89
29

31
e-

01
0.

7
2.

17
94

08
e-

02
9.

37
94

26
e-

01
4.

51
33

30
e-

03
4

53
0

0
4.

69
56

78
e-

01
0.

8
1.

35
85

89
e-

02
9.

79
26

78
e-

01
1.

25
36

00
e-

01
5

22
6

0
3.

84
16

21
e-

02
0.

9
1.

36
91

68
e-

02
9.

48
66

19
e-

01
1.

13
49

67
e-

01
5

18
4

0
6.

85
08

07
e-

02
1.

0
1.

46
01

36
e-

02
5.

61
54

83
e-

01
1.

74
84

33
e-

01
4

97
5

0
-6

.6
98

90
9e

-0
1

2
00

0
0.

5
4.

38
40

42
e-

02
9.

68
48

31
e-

01
5.

65
33

30
e-

03
5

79
6

0
3.

29
42

34
e-

02
0.

6
3.

03
63

33
e-

02
9.

55
93

15
e-

01
6.

54
33

30
e-

03
5

80
6

0
2.

97
58

30
e-

01
0.

7
2.

02
56

18
e-

02
9.

41
67

51
e-

01
8.

58
00

00
e-

03
5

84
2

0
4.

83
83

98
e-

01
0.

8
1.

40
24

05
e-

02
9.

75
86

31
e-

01
1.

15
31

00
e-

01
6

39
2

0
7.

94
21

66
e-

02
0.

9
1.

41
41

13
e-

02
9.

46
75

46
e-

01
1.

09
01

67
e-

01
6

37
9

0
8.

10
73

10
e-

02
1.

0
1.

48
58

25
e-

02
6.

11
27

92
e-

01
1.

80
08

33
e-

01
6

21
2

0
-6

.5
28

65
9e

-0
1

2
50

0
0.

5
4.

24
91

20
e-

02
9.

69
09

99
e-

01
7.

91
66

70
e-

03
6

97
1

0
4.

97
31

87
e-

02
0.

6
2.

86
75

38
e-

02
9.

57
04

76
e-

01
9.

17
33

30
e-

03
6

97
9

0
3.

20
01

21
e-

01
0.

7
1.

48
19

07
e-

02
9.

85
12

81
e-

01
1.

10
67

33
e-

01
7

42
3

0
9.

69
03

20
e-

02
0.

8
1.

43
35

85
e-

02
9.

81
60

28
e-

01
1.

26
55

67
e-

01
7

42
9

0
1.

86
97

61
e-

02
0.

9
1.

44
41

61
e-

02
9.

56
30

99
e-

01
1.

17
90

33
e-

01
7

40
7

0
3.

70
42

60
e-

02
1.

0
1.

51
00

30
e-

02
6.

48
30

13
e-

01
1.

82
60

67
e-

01
7

29
0

0
-6

.3
39

04
8e

-0
1

3
00

0
0.

5
3.

67
08

20
e-

02
9.

68
17

22
e-

01
9.

09
00

00
e-

03
7

86
1

0
1.

63
58

06
e-

01
0.

6
2.

56
83

50
e-

02
9.

57
26

35
e-

01
8.

02
33

30
e-

03
7

85
5

0
3.

88
99

24
e-

01
0.

7
1.

47
64

46
e-

02
9.

87
47

38
e-

01
1.

25
50

33
e-

01
8

34
6

0
2.

12
91

93
e-

02
0.

8
1.

45
87

55
e-

02
9.

82
07

77
e-

01
1.

31
16

33
e-

01
8

33
6

0
-1

.0
67

02
9e

-0
2

0.
9

1.
46

97
16

e-
02

9.
57

99
13

e-
01

1.
20

12
33

e-
01

8
31

0
0

2.
15

50
68

e-
02

1.
0

1.
52

41
09

e-
02

6.
70

52
10

e-
01

1.
87

41
33

e-
01

8
19

2
0

-6
.3

99
97

6e
-0

1

Ta
bl

e
C

.6
:

U
bi

SO
M

pa
ra

m
et

er
se

ns
it

iv
it

y
an

al
ys

is
fo

r
d5

k2
0

da
ta

st
re

am
.

267



C. ADDITIONAL RESULTS FROM EXPERIMENTAL EVALUATIONS

T
�

M
ean

E
0q (t)

M
ean

�
(t)

M
ean

T
E(t)

C
onvergence

t
R

esets
O

pt.Score

500
0.5

4.38363e-03
9.997364e-01

8.89e-03
7

097
0

-7.078195e-01
0.6

4.35046e-03
9.996733e-01

9.46e-03
7

123
0

-7.587525e-01
0.7

4.32545e-03
9.996407e-01

9.67e-03
8

260
0

-7.751411e-01
0.8

4.31921e-03
9.995747e-01

9.91e-03
8

264
0

-7.980672e-01
0.9

4.31551e-03
9.994804e-01

9.79e-03
8

266
0

-7.854593e-01
1.0

4.31374e-03
9.993422e-01

9.99e-03
8

267
0

-8.052874e-01

1
000

0.5
4.77001e-03

9.999377e-01
7.12e-03

8
623

1
-6.025113e-01

0.6
4.76664e-03

9.999408e-01
7.34e-03

8
623

1
-6.239016e-01

0.7
4.76411e-03

9.999377e-01
7.42e-03

8
623

1
-6.314409e-01

0.8
4.76512e-03

9.999351e-01
7.53e-03

8
623

1
-6.426428e-01

0.9
4.76282e-03

9.999354e-01
7.44e-03

8
623

1
-6.332046e-01

1.0
4.76206e-03

9.999270e-01
7.48e-03

8
623

1
-6.370752e-01

1
500

0.5
4.73490e-03

1
6.89e-03

8
906

0
-5.728771e-01

0.6
4.73490e-03

1
6.89e-03

8
906

0
-5.728771e-01

0.7
4.73490e-03

1
6.89e-03

8
906

0
-5.728771e-01

0.8
4.73490e-03

1
6.89e-03

8
906

0
-5.728771e-01

0.9
4.73490e-03

1
6.89e-03

8
906

0
-5.728771e-01

1.0
4.73490e-03

1
6.89e-03

8
906

0
-5.728771e-01

2
000

0.5
4.99266e-03

1
7.47e-03

12
519

0
-6.790144e-01

0.6
4.99266e-03

1
7.47e-03

12
519

0
-6.790144e-01

0.7
4.99266e-03

1
7.47e-03

12
519

0
-6.790144e-01

0.8
4.99266e-03

1
7.47e-03

12
519

0
-6.790144e-01

0.9
4.99266e-03

1
7.47e-03

12
519

0
-6.790144e-01

1.0
4.99266e-03

1
7.47e-03

12
519

0
-6.790144e-01

2
500

0.5
5.21247e-03

1
6.08e-03

16
041

0
-5.808758e-01

0.6
5.21247e-03

1
6.08e-03

16
041

0
-5.808758e-01

0.7
5.21247e-03

1
6.08e-03

16
041

0
-5.808758e-01

0.8
5.21247e-03

1
6.08e-03

16
041

0
-5.808758e-01

0.9
5.21247e-03

1
6.08e-03

16
041

0
-5.808758e-01

1.0
5.21247e-03

1
6.08e-03

16
041

0
-5.808758e-01

3
000

0.5
5.36115e-03

1
5.35e-03

13
091

0
-5.355355e-01

0.6
5.36115e-03

1
5.35e-03

13
091

0
-5.355355e-01

0.7
5.36115e-03

1
5.35e-03

13
091

0
-5.355355e-01

0.8
5.36115e-03

1
5.35e-03

13
091

0
-5.355355e-01

0.9
5.36115e-03

1
5.35e-03

13
091

0
-5.355355e-01

1.0
5.36115e-03

1
5.35e-03

13
091

0
-5.355355e-01

Table
C

.7:
U

biSO
M

param
eter

sensitivity
analysis

for
A

brup-
tO

neTw
o

data
stream

.

T
�

M
ean

E
0q (t)

M
ean

�
(t)

M
ean

TE(t)
C

onvergence
t

R
esets

O
pt.Score

500
0.5

5.22414e-03
9.985755e-01

1.5330e-02
21

387
1

-8.149456e-01
0.6

5.14299e-03
9.972757e-01

1.6430e-02
15

791
0

-8.647634e-01
0.7

5.09008e-03
9.953763e-01

1.7445e-02
21

360
0

-9.153686e-01
0.8

5.04623e-03
9.910925e-01

1.7225e-02
15

795
0

-8.991903e-01
0.9

4.94304e-03
9.795986e-01

1.1970e-02
15

786
0

-5.909780e-01
1.0

5.53565e-03
7.347355e-01

1.3185e-02
5

961
0

-1.011956e+00

1
000

0.5
4.94659e-03

9.987274e-01
5.2350e-03

29
524

0
-1.863917e-01

0.6
4.86550e-03

9.982649e-01
6.8600e-03

29
521

0
-2.654765e-01

0.7
4.89365e-03

9.958548e-01
4.0800e-03

25
809

0
-1.135749e-01

0.8
4.85912e-03

9.927826e-01
4.0850e-03

27
884

0
-1.107509e-01

0.9
4.80230e-03

9.821779e-01
4.7600e-03

19
819

0
-1.498815e-01

1.0
5.35486e-03

7.433131e-01
9.3700e-03

8
191

0
-7.522899e-01

1
500

0.5
5.05546e-03

9.986921e-01
5.4750e-03

27
684

0
-2.196898e-01

0.6
4.96472e-03

9.980608e-01
5.5450e-03

20
070

0
-2.080774e-01

0.7
4.79992e-03

9.972050e-01
6.9600e-03

33
870

0
-2.605206e-01

0.8
4.82665e-03

9.929180e-01
4.3900e-03

26
214

0
-1.222816e-01

0.9
4.88594e-03

9.823304e-01
4.8650e-03

19
936

0
-1.707328e-01

1.0
5.44228e-03

7.527134e-01
9.2000e-03

11
921

0
-7.487956e-01

2
000

0.5
5.03535e-03

9.987983e-01
6.0050e-03

27
948

0
-2.463617e-01

0.6
5.07621e-03

9.981944e-01
5.4900e-03

42
926

0
-2.247655e-01

0.7
5.04500e-03

9.972478e-01
5.9650e-03

34
117

0
-2.473500e-01

0.8
4.96230e-03

9.934211e-01
5.0600e-03

28
108

0
-1.844875e-01

0.9
4.95394e-03

9.836751e-01
4.9100e-03

27
819

0
-1.841489e-01

1.0
5.48447e-03

7.636120e-01
9.9600e-03

12
353

0
-7.890081e-01

2
500

0.5
5.48435e-03

9.985640e-01
5.4500e-03

46
222

1
-2.952252e-01

0.6
5.17897e-03

9.979710e-01
5.3650e-03

46
155

0
-2.362344e-01

0.7
5.11334e-03

9.972803e-01
5.8150e-03

46
185

0
-2.509629e-01

0.8
4.95060e-03

9.955320e-01
6.5150e-03

34
352

0
-2.636828e-01

0.9
5.03696e-03

9.843045e-01
5.3050e-03

26
390

0
-2.210353e-01

1.0
5.53600e-03

7.726926e-01
9.7850e-03

16
305

0
-7.791172e-01

3
000

0.5
5.24434e-03

9.986762e-01
6.3500e-03

43
743

0
-3.037032e-01

0.6
5.20917e-03

9.982327e-01
6.0900e-03

43
635

0
-2.829421e-01

0.7
5.27926e-03

9.967641e-01
5.8550e-03

25
276

0
-2.834990e-01

0.8
5.05163e-03

9.945718e-01
5.7150e-03

43
450

0
-2.368864e-01

0.9
5.04961e-03

9.845118e-01
5.4100e-03

27
943

0
-2.291131e-01

1.0
5.58158e-03

7.743236e-01
9.3450e-03

16
523

0
-7.604284e-01

Table
C

.8:
U

biSO
M

param
eter

sensitivity
analysis

for
D

riftTw
oO

ne
data

stream
.

268



C. ADDITIONAL RESULTS FROM EXPERIMENTAL EVALUATIONS

T
�

M
ea

n
E

0 q
(t
)

M
ea

n
�
(t
)

M
ea

n
TE

(t
)

C
on

ve
rg

en
ce

t
R

es
et

s
O

pt
.S

co
re

50
0

0.
5

5.
65

33
5e

-0
3

9.
97

47
73

e-
01

1.
96

95
49

e-
02

6
09

3
1

-5
.6

37
67

2e
-0

1
0.

6
5.

33
61

7e
-0

3
9.

96
64

78
e-

01
2.

20
80

55
e-

02
6

93
9

1
-5

.7
65

96
9e

-0
1

0.
7

5.
04

88
6e

-0
3

9.
94

83
01

e-
01

2.
20

75
55

e-
02

6
91

3
1

-5
.2

74
52

7e
-0

1
0.

8
5.

20
61

5e
-0

3
9.

92
46

74
e-

01
2.

69
25

67
e-

02
6

89
6

0
-6

.9
61

32
8e

-0
1

0.
9

4.
95

14
6e

-0
3

9.
83

53
69

e-
01

2.
80

60
70

e-
02

6
93

4
0

-6
.9

24
32

5e
-0

1
1.

0
4.

60
26

2e
-0

3
8.

93
88

33
e-

01
3.

50
20

88
e-

02
6

90
5

0
-9

.1
92

28
0e

-0
1

1
00

0
0.

5
5.

28
79

2e
-0

3
9.

98
10

59
e-

01
1.

48
40

37
e-

02
7

16
3

1
-3

.5
98

63
3e

-0
1

0.
6

5.
00

90
1e

-0
3

9.
97

66
49

e-
01

1.
54

80
39

e-
02

7
16

1
1

-3
.2

92
44

9e
-0

1
0.

7
5.

14
16

4e
-0

3
9.

96
97

42
e-

01
2.

07
90

52
e-

02
7

16
4

0
-5

.0
50

24
4e

-0
1

0.
8

5.
03

38
0e

-0
3

9.
94

56
76

e-
01

2.
03

20
51

e-
02

7
17

8
0

-4
.7

49
37

5e
-0

1
0.

9
4.

88
33

7e
-0

3
9.

87
95

14
e-

01
2.

13
95

53
e-

02
7

18
6

0
-4

.8
56

48
9e

-0
1

1.
0

4.
57

76
2e

-0
3

9.
31

57
35

e-
01

2.
74

85
69

e-
02

7
20

1
0

-6
.6

19
09

5e
-0

1

1
50

0
0.

5
5.

20
28

0e
-0

3
9.

98
54

26
e-

01
1.

51
60

38
e-

02
9

45
7

1
-3

.5
35

07
3e

-0
1

0.
6

5.
18

76
7e

-0
3

9.
98

27
55

e-
01

1.
71

15
43

e-
02

9
46

6
1

-4
.0

69
23

7e
-0

1
0.

7
5.

09
19

8e
-0

3
9.

97
19

04
e-

01
2.

09
80

52
e-

02
9

47
1

0
-5

.0
14

49
1e

-0
1

0.
8

5.
03

36
8e

-0
3

9.
94

70
42

e-
01

2.
05

85
51

e-
02

9
48

7
0

-4
.8

23
46

4e
-0

1
0.

9
4.

88
90

7e
-0

3
9.

88
45

31
e-

01
2.

17
05

54
e-

02
9

49
6

0
-4

.9
50

06
9e

-0
1

1.
0

4.
63

41
5e

-0
3

9.
35

01
03

e-
01

2.
85

15
71

e-
02

9
49

5
0

-6
.9

78
79

7e
-0

1

2
00

0
0.

5
5.

23
31

8e
-0

3
9.

98
85

02
e-

01
1.

40
05

35
e-

02
9

79
4

1
-3

.2
55

92
0e

-0
1

0.
6

5.
27

83
4e

-0
3

9.
98

21
76

e-
01

1.
51

50
38

e-
02

9
79

4
1

-3
.6

69
09

2e
-0

1
0.

7
5.

34
78

7e
-0

3
9.

97
13

96
e-

01
1.

61
00

40
e-

02
9

79
4

1
-4

.0
74

14
5e

-0
1

0.
8

5.
10

34
4e

-0
3

9.
95

75
39

e-
01

2.
14

15
54

e-
02

9
79

4
0

-5
.1

73
36

1e
-0

1
0.

9
4.

97
76

4e
-0

3
9.

88
37

64
e-

01
1.

93
95

48
e-

02
9

79
4

0
-4

.4
47

88
2e

-0
1

1.
0

4.
67

87
4e

-0
3

9.
04

26
97

e-
01

2.
01

15
50

e-
02

9
79

4
0

-4
.9

66
80

1e
-0

1

2
50

0
0.

5
5.

27
58

4e
-0

3
9.

98
69

92
e-

01
1.

39
65

35
e-

02
10

17
6

1
-3

.3
21

46
9e

-0
1

0.
6

5.
26

39
7e

-0
3

9.
98

10
86

e-
01

1.
24

30
31

e-
02

10
17

6
1

-2
.8

68
06

4e
-0

1
0.

7
5.

22
70

8e
-0

3
9.

98
09

96
e-

01
2.

00
90

50
e-

02
10

17
6

0
-4

.9
90

22
2e

-0
1

0.
8

5.
14

38
3e

-0
3

9.
97

06
74

e-
01

1.
83

10
46

e-
02

10
17

6
0

-4
.3

45
01

9e
-0

1
0.

9
5.

17
86

7e
-0

3
9.

92
02

75
e-

01
1.

93
50

48
e-

02
10

17
6

0
-4

.7
54

07
4e

-0
1

1.
0

4.
90

83
0e

-0
3

9.
51

21
18

e-
01

1.
69

55
42

e-
02

10
17

6
0

-4
.0

00
55

9e
-0

1

3
00

0
0.

5
5.

60
78

8e
-0

3
9.

98
16

44
e-

01
1.

30
95

33
e-

02
10

72
5

1
-3

.6
65

72
8e

-0
1

0.
6

5.
42

42
0e

-0
3

9.
98

46
14

e-
01

1.
56

65
39

e-
02

11
83

0
1

-4
.0

71
71

5e
-0

1
0.

7
5.

14
21

9e
-0

3
9.

98
43

98
e-

01
1.

94
70

49
e-

02
12

01
7

0
-4

.6
59

61
7e

-0
1

0.
8

5.
25

70
1e

-0
3

9.
96

45
23

e-
01

1.
94

65
49

e-
02

10
72

5
0

-4
.8

81
18

8e
-0

1
0.

9
5.

20
55

8e
-0

3
9.

92
29

07
e-

01
1.

98
75

50
e-

02
10

72
5

0
-4

.9
48

95
6e

-0
1

1.
0

4.
96

57
4e

-0
3

9.
53

91
98

e-
01

1.
76

60
44

e-
02

10
72

5
0

-4
.2

76
36

5e
-0

1

Ta
bl

e
C

.9
:

U
bi

SO
M

pa
ra

m
et

er
se

ns
it

iv
it

y
an

al
ys

is
fo

r
C

lo
ud

s
da

ta
st

re
am

.

T
�

M
ea

n
E

0 q
(t
)

M
ea

n
�
(t
)

M
ea

n
TE

(t
)

C
on

ve
rg

en
ce

t
R

es
et

s
O

pt
.S

co
re

50
0

0.
5

1.
39

84
75

e-
02

9.
94

52
78

e-
01

3.
64

60
00

e-
02

8
84

3
0

-5
.1

74
66

8e
-0

1
0.

6
1.

39
10

13
e-

02
9.

91
70

42
e-

01
3.

58
33

33
e-

02
8

85
2

0
-5

.0
58

27
7e

-0
1

0.
7

1.
37

24
21

e-
02

9.
86

16
60

e-
01

3.
83

20
00

e-
02

8
86

6
0

-5
.3

52
05

9e
-0

1
0.

8
1.

36
46

86
e-

02
9.

75
54

53
e-

01
3.

87
80

00
e-

02
8

88
9

0
-5

.4
72

57
2e

-0
1

0.
9

1.
36

02
88

e-
02

9.
49

49
03

e-
01

3.
82

86
67

e-
02

7
38

3
0

-5
.6

29
86

0e
-0

1
1.

0
1.

33
87

88
e-

02
7.

68
92

04
e-

01
6.

73
20

00
e-

02
7

39
9

0
-1

.1
58

26
2e

+0
0

1
00

0
0.

5
1.

36
16

26
e-

02
9.

97
14

96
e-

01
4.

12
66

67
e-

02
9

08
4

0
-5

.6
02

75
1e

-0
1

0.
6

1.
35

60
15

e-
02

9.
95

78
41

e-
01

4.
29

73
33

e-
02

9
08

1
0

-5
.8

29
78

4e
-0

1
0.

7
1.

34
65

91
e-

02
9.

93
15

25
e-

01
4.

47
33

33
e-

02
9

09
5

0
-6

.0
50

82
8e

-0
1

0.
8

1.
33

87
85

e-
02

9.
88

76
59

e-
01

4.
54

66
67

e-
02

9
11

5
0

-6
.1

48
85

7e
-0

1
0.

9
1.

32
99

78
e-

02
9.

79
02

87
e-

01
4.

92
20

00
e-

02
9

09
5

0
-6

.7
40

18
9e

-0
1

1.
0

1.
30

62
78

e-
02

9.
19

76
08

e-
01

6.
41

53
33

e-
02

9
15

0
0

-9
.3

77
43

2e
-0

1

1
50

0
0.

5
1.

37
88

75
e-

02
9.

98
16

39
e-

01
5.

09
06

67
e-

02
9

41
7

0
-7

.1
38

62
3e

-0
1

0.
6

1.
36

86
74

e-
02

9.
97

57
84

e-
01

5.
17

80
00

e-
02

9
42

1
0

-7
.2

02
61

7e
-0

1
0.

7
1.

35
70

16
e-

02
9.

95
55

39
e-

01
5.

07
93

33
e-

02
9

42
9

0
-6

.9
95

75
1e

-0
1

0.
8

1.
35

12
89

e-
02

9.
91

97
25

e-
01

5.
14

00
00

e-
02

9
43

2
0

-7
.0

81
46

0e
-0

1
0.

9
1.

34
01

14
e-

02
9.

84
41

97
e-

01
5.

47
86

67
e-

02
9

43
3

0
-7

.5
80

19
4e

-0
1

1.
0

1.
30

73
67

e-
02

9.
50

06
00

e-
01

6.
75

46
67

e-
02

9
51

1
0

-9
.5

83
55

3e
-0

1

2
00

0
0.

5
1.

39
52

11
e-

02
9.

98
35

37
e-

01
4.

87
66

67
e-

02
9

42
8

0
-6

.9
33

96
0e

-0
1

0.
6

1.
38

16
08

e-
02

9.
97

97
93

e-
01

4.
74

46
67

e-
02

9
43

8
0

-6
.6

47
72

2e
-0

1
0.

7
1.

37
08

87
e-

02
9.

97
02

64
e-

01
4.

81
20

00
e-

02
9

45
6

0
-6

.6
82

19
0e

-0
1

0.
8

1.
36

38
98

e-
02

9.
93

83
06

e-
01

4.
81

26
67

e-
02

9
47

6
0

-6
.6

66
50

0e
-0

1
0.

9
1.

35
26

69
e-

02
9.

87
33

63
e-

01
5.

12
93

33
e-

02
9

48
8

0
-7

.1
21

71
6e

-0
1

1.
0

1.
31

97
32

e-
02

9.
60

10
82

e-
01

6.
17

86
67

e-
02

9
63

0
0

-8
.7

17
07

1e
-0

1

2
50

0
0.

5
1.

41
23

35
e-

02
9.

98
69

88
e-

01
5.

36
20

00
e-

02
10

09
3

0
-7

.7
67

64
6e

-0
1

0.
6

1.
40

47
90

e-
02

9.
98

60
69

e-
01

5.
38

26
67

e-
02

10
08

7
0

-7
.7

46
58

8e
-0

1
0.

7
1.

39
28

45
e-

02
9.

97
81

83
e-

01
5.

25
60

00
e-

02
10

08
2

0
-7

.4
83

93
2e

-0
1

0.
8

1.
38

57
59

e-
02

9.
94

34
22

e-
01

5.
29

13
33

e-
02

10
09

4
0

-7
.5

21
64

9e
-0

1
0.

9
1.

37
25

58
e-

02
9.

87
55

37
e-

01
5.

57
73

33
e-

02
10

08
3

0
-7

.9
20

71
6e

-0
1

1.
0

1.
33

74
26

e-
02

9.
64

71
88

e-
01

6.
70

60
00

e-
02

12
85

5
0

-9
.5

74
14

1e
-0

1

3
00

0
0.

5
1.

43
58

14
e-

02
9.

98
60

21
e-

01
5.

34
80

00
e-

02
13

36
9

0
-7

.9
11

43
0e

-0
1

0.
6

1.
42

58
63

e-
02

9.
98

41
53

e-
01

5.
49

86
67

e-
02

13
37

7
0

-8
.0

66
85

3e
-0

1
0.

7
1.

41
54

57
e-

02
9.

97
75

35
e-

01
5.

31
53

33
e-

02
13

37
0

0
-7

.7
29

82
8e

-0
1

0.
8

1.
40

58
25

e-
02

9.
94

38
57

e-
01

5.
35

66
67

e-
02

13
37

4
0

-7
.7

57
60

5e
-0

1
0.

9
1.

39
16

97
e-

02
9.

87
29

97
e-

01
5.

63
86

67
e-

02
13

38
2

0
-8

.1
47

27
9e

-0
1

1.
0

1.
35

54
75

e-
02

9.
65

18
29

e-
01

6.
76

06
67

e-
02

13
80

3
0

-9
.7

76
06

0e
-0

1

Ta
bl

e
C

.1
0:

U
bi

SO
M

pa
ra

m
et

er
se

ns
it

iv
it

y
an

al
ys

is
fo

r
H

ep
ta

da
ta

st
re

am
.

269



C. ADDITIONAL RESULTS FROM EXPERIMENTAL EVALUATIONS

specific stages of the data stream, namely (A) when the algorithm transitions to the learn-
ing state; (B) at Convergence t also from the PSA; (C) at the middle of the data stream,
and; (D) at the end of the data stream, depicting how the map evolves over time. Also,
obtained values for the local quantization error E

0

q(t), assessment metrics qe(t) and �(t),
and learning parameters �(t) and �(t) areshown, depicting the evolution of the learning
procedure. The drift function d(t) is not explicitly shown, since the learning parameters
are estimated proportionally to it. Hence, the behavior of �(t) and �(t) is the same as the
drift function d(t) in the learning state, i.e., a weighted average between qe(t) and �(t) at
specific points in time. Regarding these results, the following can be observed:

Gauss (Figure C.4) — first of all, the UbiSOM replicates the quantization performed by
the Online SOM algorithm in a streaming setting. After the initial unfolding by ordering
state (A) the algorithm then proceeds to the learning state and evolves into a increasing
better representation of the underlying distribution, consequence of the decreasing trend
of the qe(t) metric that reflects itself in the learning parameters. In this data stream the
�(t) is always equal to 1 because all neurons are utilized in the quantization procedure.

AbruptOneTwo (Figure C.5) — after converging to the initial underlying distribution of
the data stream, i.e., a single Gaussian cloud, an abrupt change occurs which is then re-
flected in the qe(t) metric causing the learning parameters to increase significantly. Note
that the algorithm was able to adapt to the new distribution, i.e., two Gaussian clouds,
in less than T iterations. This fact is easily observed because the algorithm did not tran-
sition back to the ordering state. During both stable phases of the data stream the learn-
ing parameters decreased monotonically and allowed the algorithm to achieve a correct
quantization of the input space.

DriftTwoOne (Figures C.6 and C.7) — these results pertain the discussion made at the
end of Section 5.5.4, regarding a mismatch between the PSA obtained parameterization
and a better one obtained experimentally. By using a relatively low � value (Figure C.7),
although increasing the responsiveness to the moving clusters, this causes the lattice to
perform “jumps” over this evolving distribution harming the quantization procedure,
and therefore, the quantization errors. This is easily observed by comparing the behav-
iors of the �(t) metric along time, which causes spikes in the learning parameters.

C.2.4 Exploratory Cluster Analysis

This section only presents an additional result for the d5k20 stationary data stream that
shows that a high number of clusters can be identified through the UbiSOM algorithm.
Figure C.8 presents the final lattice and corresponding U-Matrix, together with the evolu-
tion of the assessment metrics and learning parameters. The evolution behavior is similar
to, e.g., the Complex data stream and from the U-Matrix the expected 20 clusters can be
inferred.
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C. ADDITIONAL RESULTS FROM EXPERIMENTAL EVALUATIONS

UbiSOM (20 x 40) | t = 1500

A

UbiSOM (20 x 40) | t = 14314

B

UbiSOM (20 x 40) | t = 50000

C

UbiSOM (20 x 40) | t = 100000

D

(a) Convergence of the map along time: (A) t = 1500; (B) t = 14 314; (C) t =
50 000; (D) t = 100 000.
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(b) Assessment metrics and learning parameters evolution.

Figure C.4: The UbiSOM evolution over the stationary Gauss data stream, with T = 1500
and � = 0:7.
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UbiSOM (20 x 40) | t = 13091

A

UbiSOM (20 x 40) | t = 50000

B

UbiSOM (20 x 40) | t = 51000

C

UbiSOM (20 x 40) | t = 51500

D

UbiSOM (20 x 40) | t = 52000

E

UbiSOM (20 x 40) | t = 100000

F

(a) Convergence of the map along time: (A) t = 13 091; (B) t = 50 000; (C) t = 51 000; (D) t = 51 500; (E)
t = 52 000; (F) t = 100 000.
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(b) Assessment metrics and learning parameters evolution.

Figure C.5: The UbiSOM evolution over the non-stationary AbruptOneTwo data stream,
with T = 3000 and � = 0:7.

272



C. ADDITIONAL RESULTS FROM EXPERIMENTAL EVALUATIONS

UbiSOM (20 x 40) | t = 50000

A

UbiSOM (20 x 40) | t = 75000

B

UbiSOM (20 x 40) | t = 100000

C

UbiSOM (20 x 40) | t = 125000

D

UbiSOM (20 x 40) | t = 150000

E

UbiSOM (20 x 40) | t = 200000

F

(a) Convergence of the map along time: (A) t = 50 000; (B) t = 75 000; (C) t = 100 000; (D) t = 125 000; (E)
t = 150 000; (F) t = 200 000.
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(b) Assessment metrics and learning parameters evolution.

Figure C.6: The UbiSOM evolution over the non-stationary DriftTwoOne data stream,
with T = 1000 and � = 0:8.
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UbiSOM (20 x 40) | t = 50000

A

UbiSOM (20 x 40) | t = 75000

B

UbiSOM (20 x 40) | t = 100000

C

UbiSOM (20 x 40) | t = 125000

D

UbiSOM (20 x 40) | t = 150000

E

UbiSOM (20 x 40) | t = 200000

F

(a) Convergence of the map along time: (A) t = 50 000; (B) t = 75 000; (C) t = 100 000; (D) t = 125 000; (E)
t = 150 000; (F) t = 200 000.
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(b) Assessment metrics and learning parameters evolution.

Figure C.7: The UbiSOM evolution over the non-stationary DriftTwoOne data stream,
with T = 1000 and � = 0:5.
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(b) Assessment metrics and learning parameters evolution.

Figure C.8: The UbiSOM evolution over the stationary d5k20 data stream, final lattice and
corresponding U-Matrix, with T = 2000 and � = 0:7.

275



C. ADDITIONAL RESULTS FROM EXPERIMENTAL EVALUATIONS

276



D
Triple-Cascaded Moving Average

Assessment metrics in the UbiSOM algorithm, namely the average quantization error and
average neuron utility, are computed over a sliding window of fixed size, e.g., a sliding
window of size T . The objective is to determine if the current codebook can adequately
describe the underlying distribution. Hence, error/utility values obtained during the
iterations of the algorithm are averaged using a moving average. In filter theory, such
average can be regarded as a linear filter, more precisely a finite impulse response filter.
However, the output of such filters can produce undesirable results if we intend to esti-
mate learning parameters based on this output, i.e., we are interested in monotonically
decreasing/increasing values without discontinuities (smooth responses); also, we want
to minimize the impact of noise (produces sporadic higher error values).

MA1 MA2 MA3

E′(t) qe(t)

Figure D.1: Triple moving average (3MA) filter, by cascading three moving averages of
decreasing window sizes.

Smoother filter responses can be obtained with Gaussian filters, at the expense of a
higher computational cost. A Gaussian filter is considered the ideal time domain filter
whose impulse response is an approximation of a Gaussian function (Blinchikoff and
Zverev 2001). It also has additional advantages when compared to linear filters, namely
minimizing the rise and fall time of the response. To overcome the additional computa-
tion overhead, Gaussian filters can be approximated by cascading n linear filters (Wells
1986). A “cascade” means we feed the output of the first stage (a single linear filter) into
the input of the next stage and so on.
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The Gaussian filter in the current implementation is approximated by three simple
moving averages (n = 3), by decreasing the respective window lengthsby a specific fac-
tor (Figure D.1). These individual window sizes are decreased by a factor of 1:2067. This
specific factor was derived numerically and isn’t available in any scientific literature at
the time of writing, but only in a web forum1. However, this factor was empirically
validated during this research by obtained results, which are briefly presented in this ap-
pendix.

Comparatively, for a simple moving average (MA) of length T , the 3MA imposes the
computation of the three decreasing window sizes that obey the aforementioned factor.
Hence, the problem is establishing the window size M of the first stage, which is derived
in Eq. (D.1).

M

1:2067
+

M

1:20672
+

M

1:20673
= T

M 2:8458 = T (D.1)

M =
T

2:08458

As an example, calculating M for T = 1000 yields

M =
1000

2:08458
� 479:712 :

The set of desired window sizes is derived from Eq. (D.1) as

�
479:712

1:2067
;

479:712

1:20672
;

479:712

1:20673

�
:

The consecutive window lengths are finally obtained by rounding the previous val-
ues to their closest integers, i.e., f398; 329; 273g:

Figure D.2 depicts a comparison between MA and 3MA filters. In Figure D.2a the
impulse response for each filter with T = 1000 is shown, where the input is always zero
with the exception in t = 1500 where it is one (the impulse). In Figure D.2b the step
response for the same window size is illustrated. In both figures the scale on the left
pertains the input values, i.e., impulse and step, and the scale of the right pertains the
output of the filters.

From these comparisons we can observe that 3MA clearly produces a smoother out-
put with no abrupt changes in the output. If we consider the inputs as errors, then the
response to noise (the impulse) has less impact in the 3MA filter, because it only reaches
the highest response during a very short period of time. In case of true change (the
step), the 3MA minimizes the rise time. Another important thing that can be extracted

1https://judithcurry.com/2013/11/22/data-corruption-by-running-mean-
smoothers/#comment-417814
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(a) Impulse response.
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(b) Step response.

Figure D.2: Comparison between MA and 3MA filters.

from these comparisons is that the Gaussian-like moving average effectively gives more
importance to the later inputs. As such, the 3MA is considered ideal for the UbiSOM
learning parameter estimation.
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