4 research outputs found

    Luminescent Devices Based on Silicon-Rich Dielectric Materials

    Get PDF
    Luminescent silicon‐rich dielectric materials have been under intensive research due to their potential applications in optoelectronic devices. Silicon‐rich nitride (SRN) and silicon‐rich oxide (SRO) films have been mostly studied because of their high luminescence and compatibility with the silicon-based technology. In this chapter, the luminescent characteristics of SRN and SRO films deposited by low‐pressure chemical vapor deposition are reviewed and discussed. SRN and SRO films, which exhibit the strongest photoluminescence (PL), were chosen to analyze their electrical and electroluminescent (EL) properties, including SRN/SRO bilayers. Light emitting capacitors (LECs) were fabricated with the SRN, SRO, and SRN/SRO films as the dielectric layer. SRN‐LECs emit broad EL spectra where the maximum emission peak blueshifts when the polarity is changed. On the other hand, SRO‐LECs with low silicon content (~39 at.%) exhibit a resistive switching (RS) behavior from a high conduction state to a low conduction state, which produce a long spectrum blueshift (~227 nm) between the EL and PL emission. When the silicon content increases, red emission is observed at both EL and PL spectra. The RS behavior is also observed in all SRN/SRO‐LECs enhancing an intense ultraviolet EL. The carrier transport in all LECs is analyzed to understand their EL mechanism

    Silicon rich nitride for silicon based laser devices

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2008.Page 214 blank.Includes bibliographical references.Silicon based light sources, especially laser devices, are the key components required to achieve a complete integrated silicon photonics system. However, the fundamental physical limitation of the silicon material as light emitter and the limited understanding of tli~ excitation mechanism of Er in dielectric media by optical and electrical pumping methods impedes the progress of the research activities in this area. Silicon rich nitride (SRN) has been investigated as a strong candidate for silicon based laser devices. SRN has many advantages over other Si-based materials systems. These advantages include a high electrical injection level at low voltages, a low annealing temperature for Si nanocluster (Si-nc) formation and a large refractive index for strong optical confinement. Strong light emission from localized states in Si-nc embedded in SRN was demonstrated with a PLQE (Photoluminescence Quantum Efficiency) of 7%. This effect was confirmed through several experiments and first principle calculations. Thue Morse aperiodic structures were fabricated with light emitting SRN and SiO2 materials, for the first time. Through the resonance phenomena achieved using this approach an emission enhancement of a factor of 6 was demonstrated experimentally. A sequential annealing technique was investigated to enhance the light emission from the Si-nc based light emitter. Electrical injection was greatly improved with annealing treatments of SRN based devices. In particular, bipolar electrical injection into SRN led to electroluminescence which was comparable to photoluminescence in peak shape and spectral position. Er doped SRN (Er:SRN) was fabricated through a co-sputter technique to achieve light emission at the wavelength of 1.54 [mu]m.(cont.) Energy transfer from SRN td Er was confirmed and shown to have a strong dependence on Si content. Si racetrack resonator structures with a low loss value of 2.5 dB/cm were fabricated through a Local Oxide (LOCOS) process and coupled with an Er:SRN layer to investigate gain behavior. Electrical injection properties into the Er:SRN layer were investigated and the electroluminescent device was fabricated. A detailed discussion on optical and electrical excitation of Er is provided to clarify the difference of the Er excitation mechanisms. A comparison of key simulation parameters used within the two level equations for optical and electrical excitation of Er atoms is provided to explain how the parameters contribute to each excitation mechanism. The most significant differences between the parameters and excitation mechanisms are also explained. Finally a summary of important factors to achieve a silicon based laser is provided and discussed for future investigation based on the experimental data and the investigation presented in this work.by Jae Hyung Yi.Ph.D

    Efectos fotovoltaicos y de fotoconducción de estructuras con óxidos nanoestructurados

    Get PDF
    "En este trabajo de tesis proponemos la fabricación de heteroestructuras usando como capas activas ZnO:F y SiOx, que absorben radiación en diferentes rangos espectrales que van desde el UV para el caso del ZnO hasta el verde e infrarrojo para el SiOx, cubriendo un amplio rango del espectro solar, siendo una heteroestructura prometedora para aplicaciones fotónicas"

    Silicon Nanocrystal Superlattices for Light-Emitting and Photovoltaic Devices

    Get PDF
    [eng] During the last decades, silicon nanocrystals have focused great attention due to the size-dependent physical properties they present, attributed to the quantum confinement effect. This, added to the bulk silicon compatibility with the well-established microelectronics technology and the low mining and manipulation costs this material presents, makes silicon a potential candidate for the growing photonics and optoelectronics fields. In particular, the tunnability of the electronic properties of silicon nanocrystals can be reached by controlling the nanocrystal size. This has been recently achieved by means of the superlattice approach, consisting of the alternated deposition of ultra-thin (2-4 nm) stoichiometric and silicon-rich layers of a given silicon-rich material. After a high-temperature annealing treatment, the silicon excess precipitates and crystallizes in the final form of nanocrystals, whose properties strongly depend on the fabrication process. Consequently, an ordered arrange of size-controlled nanocrystals (the superlattice) is obtained. In this Thesis Project, the structural, optical, electrical and electro-optical properties of silicon nanocrystal superlattices have been studied, using two different silicon-based materials as host matrices: silicon oxide and silicon carbide. The fabrication of these material systems has been carried out at different European institutions, specialists in the controlled deposition of nm¬thick films. Aiming at the nanocrystal superlattices characterization, different experimental techniques have been employed, which yield structural (transmission and scanning electron microscopies, X-ray diffraction), optical (optical absorption, photoluminescence and Raman scattering spectroscopies) and electrical / electro-optical (current versus voltage analysis in dark and under illumination, and electroluminescence, electro-optical response and light-beam induced photocurrent spectroscopies) information. From the material's point of view, the optimum structural properties that allow an almost perfect nanocrystal arrangement, size control and crystalline degree have been determined, always aiming at an optimum light emission and/or light absorption. Within this frame, fundamental studies have been performed to assess the crystalline degree of the nanostructures (confirming an atomic-thin transition layer between the crystalline nanocrystal core and the surrounding matrix), and to carefully inspect the controversial origin of luminescence within the nanocrystals when embedded in a silicon oxide matrix; as well, the structural conditions under which size-confinement of nanocrystals is reached when embedded in silicon carbide are reported. Once the best structural and optical properties from silicon nanocrystal superlattices were found, these material systems have been employed as active layers for light emitting and light converter (i.e. photovoltaic) devices. In oxide-based systems, the mechanisms that govern charge transport through the superlattices have been studied, and impact ionization has been hypothesized as the main electroluminescence excitation mechanism according to the experimental observations. In addition, the structural conditions (sublayer thicknesses, silicon-rich layer stoichiometry) that yield a maximum electroluminescence efficiency have been determined. Regarding silicon nanocrystals embedded in silicon carbide, a correlation has been established between the charge photogeneration and extraction when acting as an absorber material, which allowed assessing the structural conditions that maximize charge transport while minimizing the non-desirable recombination. Finally, via spectral response measurements, quantum confinement of excitons within silicon nanocrystals has been reported in silicon carbide matrix for the first time. In conclusion, the study on silicon nanocrystal superlattices developed within the present Thesis Project reveals the potential of silicon oxide as host matrix for silicon nanostructures to be used as light-emitting devices; instead, silicon carbide has proved a more suitable host material for photovoltaic applications, which sheds light to the future application of silicon nanocrystals as the top cell of an all-Si tandem cell.[cat] Els nanocristalls de silici han esdevingut objecte d'estudi durant l'últim quart de segle, degut a què presenten, a causa de l'efecte de confinament quàntic, unes propietats físiques dependents de la seva mida. A més, la compatibilitat del silici massiu amb la ben establerta tecnologia microelectrònica juga en favor de la seva utilització i el seu desenvolupament per a futures aplicacions en el camp de la fotònica i l'optoelectrónica. El control del creixement de nanocristalls de silici es pot dur a terme mitjançant el dipòsit de superxarxes d'entre 2 i 4 nm de gruix, on capes de material estequiomètric basat en silici s'alternen amb altres de material ric en silici. Un posterior procés de recuit a alta temperatura permet la precipitació de l'excés de silici i la seva cristal.lització, tot originant una xarxa ordenada de nanocristalls de silici de mida controlada. En aquesta Tesi, s'han estudiat les propietats estructurals, òptiques, elèctriques i electro-òptiques de superxarxes de nanocristalls de silici embeguts en dues matrius diferents: òxid de silici i carbur de silici. Amb tal objectiu, s'han emprat tot un seguit de tècniques experimentals, que comprenen la caracterització estructural (microscòpia electrònica de transmissió i d'escombrat, difracció de raigs X), òptica (espectroscòpies d'absorció òptica, de fotoluminescència i dispersió Raman) i elèctrica / electro-òptica (caracterització intensitat-voltatge en foscor o sota il.luminació, electroluminescència, resposta electro-òptica), entre d'altres. Des del punt de vista del material, s'han estudiat les propietats estructurals òptimes per tal d'obtenir un perfecte ordenament en la xarxa de nanocristalls, una major qualitat cristal.lina i unes propietats d'emissió òptimes. L'optimització del material s'ha dut a terme en vistes a la seva utilització com a capa activa dins de dispositius emissors de llum i fotovoltaics, l'eficiència dels quals ha estat monitoritzada segons els diferents paràmetres estructurals (gruix de les capes nanomètriques involucrades, estequiometria, temperatura de recuit). Finalment, els nanocristalls de silici embeguts en òxid de silici han demostrat un major rendiment com a emissors de llum, mentre que una matriu de carbur de silici beneficia les propietats d'absorció i extracció (fotovoltaiques) del sistema
    corecore