4,975 research outputs found

    On Constructing Persistent Identifiers with Persistent Resolution Targets

    Get PDF
    Persistent Identifiers (PID) are the foundation referencing digital assets in scientific publications, books, and digital repositories. In its realization, PIDs contain metadata and resolving targets in form of URLs that point to data sets located on the network. In contrast to PIDs, the target URLs are typically changing over time; thus, PIDs need continuous maintenance -- an effort that is increasing tremendously with the advancement of e-Science and the advent of the Internet-of-Things (IoT). Nowadays, billions of sensors and data sets are subject of PID assignment. This paper presents a new approach of embedding location independent targets into PIDs that allows the creation of maintenance-free PIDs using content-centric network technology and overlay networks. For proving the validity of the presented approach, the Handle PID System is used in conjunction with Magnet Link access information encoding, state-of-the-art decentralized data distribution with BitTorrent, and Named Data Networking (NDN) as location-independent data access technology for networks. Contrasting existing approaches, no green-field implementation of PID or major modifications of the Handle System is required to enable location-independent data dissemination with maintenance-free PIDs.Comment: Published IEEE paper of the FedCSIS 2016 (SoFAST-WS'16) conference, 11.-14. September 2016, Gdansk, Poland. Also available online: http://ieeexplore.ieee.org/document/7733372

    A Framework for Reference Management in the Semantic Web

    No full text
    Much of the semantic web relies upon open and unhindered interoperability between diverse systems. The successful convergence of multiple ontologies and referencing schemes is key. This is hampered by a lack of any means for managing and communicating co-references. We have therefore developed an ontology and framework for the exploration and resolution of potential co-references, in the semantic web at large, that allow the user to a) discover and record uniquely identifying attributes b) interface candidates with and create pipelines of other systems for reference management c) record identified duplicates in a usable and retrievable manner, and d) provide a consistent reference service for accessing them. This paper describes this ontology and a framework of web services designed to support and utilise it

    Evaluation of Anonymized ONS Queries

    Full text link
    Electronic Product Code (EPC) is the basis of a pervasive infrastructure for the automatic identification of objects on supply chain applications (e.g., pharmaceutical or military applications). This infrastructure relies on the use of the (1) Radio Frequency Identification (RFID) technology to tag objects in motion and (2) distributed services providing information about objects via the Internet. A lookup service, called the Object Name Service (ONS) and based on the use of the Domain Name System (DNS), can be publicly accessed by EPC applications looking for information associated with tagged objects. Privacy issues may affect corporate infrastructures based on EPC technologies if their lookup service is not properly protected. A possible solution to mitigate these issues is the use of online anonymity. We present an evaluation experiment that compares the of use of Tor (The second generation Onion Router) on a global ONS/DNS setup, with respect to benefits, limitations, and latency.Comment: 14 page

    Towards persistent resource identification with the uniform resource name

    Get PDF
    The exponential growth of the Internet, and the subsequent reliance on the resources it connects, has exposed a clear need for an Internet identifier which remains accessible over time. Such identifiers have been dubbed persistent identifiers owing to the promise of reliability they imply. Persistent naming systems exist at present, however it is the resolution of these systems into what Kunze, (2003) calls persistent actionable identifiers which is the focus of this work. Actionable identifiers can be thought of as identifiers which are accessible in a simple fashion such as through a web browser or through a specific application. This thesis identifies the Uniform Resource Name (URN) as an appropriate identification scheme for persistent resource naming. Evaluation of current URN systems finds that no practical means of global URN resolution is currently available. Two ,new approaches to URN resolution, unique in their use of the Domain Name System (DNS) are introduced. The proposed designs are assessed according to their Usability, Security and Evolution and an implementation described for an example URN namespace of language identifiers

    Naming and Addressing Conventions for Digital Resources

    Get PDF
    This paper discusses the various naming and addressing systems used to identify and locate resources in the digital environment. there are various schemes that have been developed for this purpose, like, URL, URN, URC schemes developed by the IETF (Internet Engineering Task Force), PURL developed at OCLC. The publishing industry also has developed the Digital Object Identifier (DOI), which is being used for rights management of intellectual property. The specifications and the working of URLs, URNs, URCs, PURLs, and DOIs are discussed in detail in this paper

    Globally unique product identifiers— requirements and solutions to product lifecycle management

    Get PDF
    Managing product information for product items during their whole lifetime is challenging, especially during their usage and end-of-life phases. A major challenge is how to keep a link between the product item and its associated information, which may be stored in backend systems of different organisations. In this paper, we analyse and compare three approaches for addressing this task, i.e. the EPC Network, DIALOG and WWAI

    Recursively invoking Linnaeus: A Taxonomy for Naming Systems

    Get PDF
    Naming is a central element of a distributed or network system design. Appropriate design choices are central. This paper explores a taxonomy of naming systems, and engineering tradeoffs as an aid to the namespace designer. The three orthogonal components of the taxonomy are the characteristics of the namespace itself, name assignment, and name resolution. Within each of these, we explore a number of distinct characteristics. The position of this paper is that engineering design of naming systems should be informed by the possibilities and tradeoffs that those possibilities represent. The paper includes a review of a sampling of naming system designs that reflect different choices within the taxonomy and discussion about why those choices were made.This effort was sponsored by the Defense Advanced Research Projects Agency (DARPA) and Air Force Research Laboratory, Air Force Materiel Command, USAF, under agreement number F30602-00-2-0553
    corecore