
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses : Honours Theses

2005

Towards persistent resource identification with the uniform Towards persistent resource identification with the uniform

resource name resource name

Luke Brown
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

 Part of the Databases and Information Systems Commons

Recommended Citation Recommended Citation
Brown, L. (2005). Towards persistent resource identification with the uniform resource name.
https://ro.ecu.edu.au/theses_hons/1179

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/1179

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F1179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F1179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/1179

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

Towards Persistent Resource

Identification with the Uniform

Resource N arne

Luke Brown

A thesis submitted in partial fulfillment of the degree

of

Bachelor of Computer Science (Honours) at

School of Computer and Information Science

Edith Cowan University

November 2005

I certify that this thesis does not, to the best of my knowledge and belief:

(i) incorporate without acknowledgment any material previously submitted

for a degree or diploma in any institution of higher education;

(ii) contain any material previously published or written by another person

except where due reference is made in the text of this thesis; or

(iii) contain any defamatory material;

Luke Brown

28 November 2005

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

Acknowledgements

This work would not have been possible without the assistance, encourage­

ment and occasional derogatory levelling of my supervisors, friends and fam­

ily.

Thanks to the ECU School of Computer Science, most notably the Mike's John­

stone and Collins. Thanks also to the team at the ANU Supercomputing Facil­

ity, especially to Markus Buckhorn and Bob Gingold for suggesting and sup­

porting this project:

Thanks to my friends of both coasts for ensuring my procrastination was never

just wasting time. Thanks especially to Easties Teresa, Jules, Tom, AI, Cole and

Tim, and Westies Tom, Andy, Mike and Burgie.

Thanks also to my family for supporting and encouraging my entire educa­

tion, from 123 through to URN.

Special thanks to Tessa- for always being there, no matter how far apart.

iii

Abstract

The exponential growth of the Internet, and the subsequent reliance on the

resources it connects, has exposed a clear need for an Internet identifier which

remains accessible over time. Such identifiers have been dubbed persistent

identifiers owing to the promise of reliability they imply.

Persistent naming systems exist at present, however it is the resolution of these

systems into what Kunze, (2003) calls "persistent actionable identifiers" which

is the focus of this work. Actionable identifiers can be thought of as identifiers

which are accessible in a simple fashion such as through a web browser or

through a specific application.

This thesis identifies the Uniform Resource Name (URN) as an appropriate

identification scheme for persistent resource naming. Evaluation of current

URN systems finds that no practical means of global URN resolution is cur­

rently available.

Two ,new approaches to URN resolution, unique in their use of the Domain

Name System (DNS) are introduced.

The proposed designs are assessed according to their Usability, Security and

Evolution and an implementation described for an example URN namespace

of language identifiers.

iv

Contents

Acknowledgements

Abstract

1 Introduction

1.1 Motivation

1.2 Approach.

1.3 Contribution .

1.4 Organisation .

2 Research Design

2.1 Question One

2.1.1 Research Method

2.1.2 Anticipated Outcomes

2.2 Question Two

2.2.1 Research Method

2.2.2 Anticipated Outcomes

3 Internet Identification

3.1 Overview

v

iii

iv

1

1

2

3

3

5

6

6

6

7

7

7

8

8

Contents vi

3.2 Identifier Characteristics 8

3.3 The Uniform Resource Identifier 10

3.3.1 The Uniform Resource Locator 11

3.3.2 The Uniform Resource Name 15

3.4 Summary 19

4 Uniform Resource Name Implementations 20

4.1 Overview 20

4.2 URN Resolution Requirements 20

4.2.1 Usability . 22

4.2.2 Security 25

4.2.3 Evolution 27

4.3 URN Schemes 29

4.3.1 Handle . 29

4.3.2 Persistent URLs . 34

4.3.3 Archival Resource Key . 37

4.3.4 Life Sciences Identifier . 40

4.4 Summary 0 • 0 0 • 0 0 0 0 43

5 The Dynamic Delegation Discovery System 44

5.1 Overview. 44

5.2 Design .. 44

5.2.1 Rules 45

Contents vii

5.2.2 Resolution Process 46

5.3 Evaluation 51

5.3.1 Usability . 51

5.3.2 Evolution 53

5.3.3 Security 55

5.4 Summary 56

6 The Extended Dynamic Delegation Discovery System 57

6.1 Overview. 57

6.2 Design .. 57

6.2.1 Rules . 59

6.2.2 Resolution Process 62

6.3 Evaluation 66

6.3.1 Usability . 66

6.3.2 Evolution 69

6.3.3 Security 70

6.4 Summary 72

7 Experiments and Results 73

7.1 Overview •• 0 •• 0 0 • 73

7.2 The PARADISEC URN namespace 73

7.2.1 urn:paradisec:AB1:001:A. 74

7.3 DDDS Implementation 77

7.3.1 Discovery

7.3.2 Results ..

7.4 EDDDS Implementation

7.4.1 Discovery

7.4.2 Resolution .

7.4.3 Results

7.5 Summary ...

8 Conclusion

8.1 Contributions

8.2 Future Work .

A Java Implementation

Contents

A.1 Client Application- "resolverclient.java"

A.2 Storage Class- "rulestorage.java" .

A.3 DDDDS object - "ddds.java" ...

A.4 ED DDS object- "eddds.java"

References

viii

79

80

82

84

86

88

91

93

93

96

98

98

100

101

105

113

Chapter 1

Introduction

1.1 Motivation

The exponential growth of the Internet, and the subsequent reliance on the

resources it connects, has exposed a clear need for an Internet identifier which

remains accessible over time. Such identifiers have been dubbed persistent

identifiers owing to the promise of reliability they imply. Persistent identifiers

provide means to "track a specific object regardless of its physical location or

current ownership" (<:=ENDI, 2004).

The brittle nature of the Uniform Resource Locator (URL) - responsible for

most Internet identification at present - makes the need for persistent Identifi­

cation quite immediate in several appli~ation areas. The URLs primary short­

comihg is the location-centric approach taken in its design which leaves URLs

subject to failure when resource locations change -resulting in the all too com­

mon error 404, "Not Found" (Fielding et al, 1999).

Fortunately, the URL is not the only option for resource identification on the

Internet. The Uniform Resource Name (URN), developed concurrently with

the URL, was devised as a means of location independent resource naming.

The URN facilitates persistent naming whilst remaining human readable, unique

and manageable.

Despite the URNs presence, widespread use is being delayed by the lack of

1

§1.2 Approach 2

means to resolve URNs into the URLs they identify. The primary aim of this

thesis is to investigate a solution to this problem toward the goal of facilitating

the use of URNs for persistent identification.

1.2 Approach

Despite the weaknesses of the URL as an identifier, its successful use of Inter­

net domain names as locators has led to the development of mature resolution

through the Domain Name System (DNS). The DNS is a hierarchically distrib­

uted database of mappings between domain names and Internet Protocol (IP)

addresses.

Given the maturity and widespread adoption of the DNS it is the intention of

this work to describe and implement a resolution system for the URN which

leverages the DNSs functionality. The DNS has already faced and solved sev­

eral major obstacles such as that of security, load balancing and redundancy,

issues that any new distributed database system would have to address. The

DNS is also suitable as an open standard which is implemented and available

on most modern operating systems as a standard feature. DNS servers would

not require software changes for a URN resolver, simply the addition of new

records.

The notion of URN resolution via the DNS is not entirely unique. Previously, a

proposal before the Internet Engineering Task Force (IETF) known as the Dy­

namic Delegation Discovery System (DDDS) (Mealling, 2002) suggested using

the DNS to take URNs as input and return a server or list of servers able to

resolve that URN into a URL.

This work intends to establish through prototyping the viability of the DDDS

proposal and, through development of the DDDS prototype, the viability of

§1.3 Contribution 3

complete URN resolution using the DNS.

1.3 Contribution

Persistent naming systems exist at present. However, it is the resolution of

these systems into what Kunze, (2003) <:alls "persistent actionable identifiers"

that is the focus of this work. Actionable identifiers can be thought of as iden­

tifiers which are accessible in a simple fashion, such as through a web browser

or through a specific application. There are currently no persistent identifier

systems which are actionable without the use of a proxy resolver service.

An actionable persistent identifier will have widespread applications in areas

of industry and research which value the ability to reliably access and share

data collections. Such areas include the Digital Library movement, data inten­

sive sciences such as experimental particle physics and various e-commerce

applications.

The proceeds of this research will arm software developers with sufficient

specifications and working implementations to deploy a URN resolver client.

Further, it will enable network adminis.trators to populate their existing DNS

zones with data for resolving URNs.

1.4 Organisation

Chapter 2 introduces the research questions this thesis seeks to answer. The

research methods which will be employed to answer these questions are dis­

cussed.

Chapter 3 presents an overview of identification on the Internet, introducing

§1.4 Organisation 4

the Uniform Resource Identifier (URI) and its subclasses the Uniform Resource

Locator (URL) and Uniform Resource Name (URN).

Chapter 4 explores the requirements for URN resolvers and the present means

of persistent identification available on the lnternet.

Chapter 5 introduces the Dynamic Delegation Discovery System (DDDS), a

proposed system for the discovery of authoritative URN resolvers. This design

is assessed according to the guidelines outlined in Chapter 3.

Chapter 6 outlines a series of extensions to the DDDS which form the Extended

Dynamic Delegation Discovery System (EDDDS). These extensions are also

assessed according to the guidelines outlined in Chapter 3.

Chapter 7 presents a proof of concept experiment involving implementation of

the DDDS and EDDDS designs. Results are assessed in terms of the outcome

for users of these systems.

This paper concludes with an overview of the contributions made by this work

and the future work needed in this field.

Appendix A lists an implementation of the DDDS and ED DDS designs in Java.

Chapter 2

Research Design

This thesis seeks to develop a usable means of persistent Internet identifica­

tion. Previous attempts at persistent identification have shared a common lack

of effective means for name resolution. Of the various identification schemes

available, the Uniform Resource Name (URN) is considered to be the best

suited to this task.

This thesis aims to achieve this goal of enabling resolution by assessing the

viability of resolving URNs using the Domain Name System. The success of

this assessment relies upon the effective selection and adoption of research

methods to answer specific research questions.

Providing a resolution system for the URN can be achieved through design

and implementation of a prototype or ;'proof of concept" resolver. Develop­

ment of such a prototype will prove that such resolution is possible. A sec­

ond, more detailed consideration is required to determine the practicality of

the resolver system developed. This consideration will be provided through

implementation of a URN resolver for a specific namespace.

Several research methods were considered to answer the two research ques­

tions posed by this thesis. These questions, and the methods proposed to an­

swer them, are described below.

5

§2.1 Question One 6

2.1 Question One

• Does the proposed extension to the DDDS provide an adequate re­

source resolution system for the URN?

The first question posed by this research intends to determine the suitability

of the DNS to complete URN resolution. Should an extension of the DDDS

proposal provide for such URN resolution this question can be answered pos­

itively.

2.1.1 Research Method

It is proposed that this question can be addressed through adoption of the

experimental research method. Experimental research design seeks to prove

or disprove a hypothesis by completing a series of controlled tests. As the

hypothesis is concerned with the feasibility of a technical goal the quantitative

nature of experimental research design is ideal.

Such tests in this context involve both the adherence of the system devised to a

series of design goals and the demonstrated technical feasibility of URN reso­

lutiop_. Due to the nature of this work as a "proof of concept", the experiments

will prove or disprove the potential for DNS based URN resolution.

2.1.2 Anticipated Outcomes

While the URN resolver must work for this question to be answered positively,

the extent to which resolution is possible is of note. By exploring the require­

ments of URN resolution, this thesis will be able to develop clear design goals

for a resolver to reach. The ability to achieve these goals will determine if this

hypothesis is proved or disproved.

§2.2 Question Two 7

2.2 Question Two

• Can the URN resolver developed be used to resolve resources for a

URN namespace?

While question one should prove the technical feasibility of this work, ques­

tion two seeks to examine its practical application. This question is concerned

with whether or not the resolver can be used for a particular namespace and if

so, how it would be used.

2.2.1 Research Method

In answering the first research question, this thesis seeks to develop a URN

resolver which adheres to a set of design goals. Whether the first research

question is proven is governed by whether the resolver achieves these goals.

This approach, conducted through use of the experimental research method,

can also be adopted to answer the second research question. The goals how­

ever will be concerned with how immediately usable the resolver system is for

the various users involved, as distinct f~om how technically functional it is.

2.2.2 Anticipated Outcomes

Should the development of a URN resolver in question one succeed, it is in­

tended that a URN namespace be registered and a resolution network for

URNs within this namespace be developed. The process by which names

registered in this namespace can readily be resolved will be assessed in ac­

cordance with predetermined design goals.

Chapter3

Internet Identification

3.1 Overview

The purpose of this thesis is to enable persistent identification through the

implementation of a resolver system for the Uniform Resource Name. This

Chapter offers an examination of the identification systems presently available

on the Internet and justifies the choice of this class of identifier.

3.2 Identifier Characteristics

It is widely understood that the technical feasibility of persistent identification

is but one of the challenges faced in what is largely a managerial issue. Thus,

whilst it is important to have an available means of resolving an appropri­

ate identification scheme, it must first be established that the scheme in ques­

tion actively promotes the concept of persistent naming. It is then relevant to

consider the properties of identifiers which promote long term availability, or

persistence.

A general enumeration of desirable characteristics is proposed by (Falstrom

and Huston, 2004) comprising uniqueness, consistency, persistence, trust, ro­

bustness, withholding, referential consistency and structure. These character­

istics are detailed below:

8

§3.2 Identifier Characteristics 9

• Uniqueness: identifiers which are not re-used and which are only used

to refer to one object.

• Consistency: ensuring the same interpretation of the identifier within a

particular address space.

• Persistence: in this context, an identifier which remains constant for a

period of time as well as remaining accessible.

• Trust: a form of assurance to users that the identity requested is issued

by a valid entity.

• Robustness: the ability for an identifier scheme to resist various security

threats posed.

• Withholding: an identifier should only reveal those parts of its structure

relevant to the operation being performed.

• Referential Consistency: the goal of consistent interpretation of identi­

fiers when either the resource being represented or the resolution service

employed changes.

• Structure: the provision within the identifier for a hierarchy of resolu­

tion, thereby ensuring efficient interpretation and resolution.

§3.3 The Uniform Resource Identifier 10

3.3 The Uniform Resource Identifier

At a user level, all resource identification on the Internet is achieved through

use of a Uniform Resource Identifier (URI). The term URI refers to a class of

Internet identifiers specified in (Berners-Lee, 1998) and developed primarily

through the work of the World Wide Web Consortium (W3C) and the Internet

Engineering Task Force (IETF).

Oddly, there are several views as to what constitutes a URI. The confusion is

such that a paper was devised from the URI interest group to clarify the situa­

tion. The paper states: "Web-identifier schemes are, in general, URI schemes,

as a given URI scheme may define subspaces" (Mealling, 2002). This definition

asserts that all web identifier schemes are URI schemes with the distinction

based on the characteristics of the individual identifier.

Forexample,theidentifiers "http: I /www. example. com/","mailto: I /jim®

jim. net" and "ftp: I /test: 12 3®testing. com" are all instances of the

URI scheme known as the Uniform Resource Locator (URL). They do, how­

ever, use different name spaces as defined by their name space identifiers

("http:" the Hypertext Transfer Protocol (HTTP), "ftp:" the File Transfer Pro­

tocol (FTP) and "mailto:" for email addresses). This concept is further clarified

in Figure 3.1.

The URI container describes two important subspaces - the Uniform Resource

Locator (URL) designed to facilitate resource retrieval, and the Uniform Re­

source N arne (URN) designed for naming of resources. The URI standard also

provides for meta data storage in the form of the Uniform Resource Catalog

(URC). To date, the URL scheme has achieved almost universal use throughout

the Internet with very limited implementation of the URN or URC standards.

The URC locations referred to in this document imply a URL which references

metadata information.

§3.3 The Uniform Resource Identifier 11

URI

/ ~
URN URL
e.g. urn:ietf:rfc:2656 e.g. https://www.crg.com/

urn:handle:1 0.10001 ftp://user@test.com/

Figure 3.1: The Uniform Resource Identifier

3.3.1 The Uniform Resource Locator

The URL is a URI scheme which describes resources in terms of their location.

The W3C (Connolly and Berners-Lee, 1993) states that their purpose is to "re­

duce the tedium of 'log in to this server, then issue this magic command ... '

down to a single click". The URL provides a means of encapsulating all the

instructions required to retrieve a resource into a human readable string. A

URL can therefore be thought of as an algorithm for resource access. This is

clearly evident when inspecting the syntax of the URL as shown in Figure 3.2.

/ (NID): I /(domainname): (port)/(directorypath)/(filename)(arguments) /

Figure 3.2: Syntax of the Uniform Resource Locator

Where:

• NID: a name space identifier (e.g.: http, ftp)

• Domain Name: an Internet domain name (e.g.: www.foo.com)

• Port: an optional destination port number.

• Directory /Filename: a directory path to the resource.

§3.3 The Uniform Resource Identifier 12

The "namespace identifier" (NID) describes the type of service which, when

queried, will return a resource result. Common NID examples include "http: I I"

for hypertext documents, "mailto:l I" for email addresses and "ftp:l I" for

FTP addresses. Applications use namespace identifiers to ascertain which pro­

tocol and port number to use in communicating with destination servers.

The NID "http", for example, informs applications to attempt to communi­

cate using HTTP on destination port 80- the default for this namespace. The

mapping of ports to the services identified in the NID is maintained by the In­

ternet Assigned Names Authority (lANA). Operating systems which provide

Internet access have their own mechanisms for translating service abbrevia­

tions to port numbers. In UNIX this is accomplished by querying the text file

"I etc I services".

The "domain name field" represents an Internet domain name from which a

resource can be retrieved. Domain names are used to provide human read­

able representations of IP addresses. Translation of domain names into the IP

addresses they represent occurs through querying the DNS. The DNS is a hi­

erarchical resolution system available as a function of most modern operating

systems.

Port Ilumbers can be optionally appended to domain names to specify the des­

tination communication port to query. This option is frequently exercised to

override the default port for a particular namespace, or to differentiate be­

tween several instances of a particular service on the same host.

The "directory I filename" field of a URL represents the actual location of a

resource upon the server identified in the URL. In some cases, arguments can

be passed to the filename to return part of a resource or to specify parameters

to a program identified by a URL.

Locating a resource on the Internet requires the interaction of all fields in a

§3.3 The Uniform Resource Identifier 13

URL. Each of the URL namespaces in use define specific means of interpreting

and processing arguments.

An example of the process of resource retrieval using URLs can be illustrated

with the URL "ftp: //luke: testl®example. com/Data_Folder/test.

dmg". When this URL is entered into a web browser, several steps are com­

pleted before the resource is returned to the user.

1. The domain name- "example.com" is extracted from the URL and, through

querying the DNS, translated into the IP address 130.59.23.221.

2. Given the specification of the "ftp" namespace, the host 130.59.23.221 is

queried using the FTP protocol on port 21.

3. Assuming a connection to the host is established, the login name "luke"

and the password "testl" is sent to the host.

4. Assuming a successful login, the host is then queried for the resource

"test.dmg" stored in the directory "Data_Folder".

5. The resource identified "test.dmg" is returned to the user from the FTP

service on the host "example.com".

The persistence of an identifier can be expressed as its resistance to change.

The URL - an extremely extensible and compact means of expressing the loca­

tion of a resource, is highly susceptible to· change in several respects.

Our previous example URL, "ftp: I /luke: testl®example. com/Data_Folder/

test . dmg", identifies an object named "test" located on a sever "example.com".

Every component in this URL could be reasonably expected to change.

The use of the NID "ftp" states that presently this resource is stored on a server

accessible using the FTP. FTP is currently the most popular means of large­

scale data transfer on the Internet. However, it is quite simplistic in its security

§3.3 The Uniform Resource Identifier 14

and transfer mechanisms. New approaches to file transfer, with corresponding

new URL namespaces, are highly likely to emerge. Should the administrator

of this resource choose to adopt such new technology, the identifier for this

resource would change.

Likewise, the user and password field - essential to resource access in this in­

stance - are highly susceptible to change given any variation in security policy

or any addition or removal of users on the server.

Although domain names are themselves abstractions to IP addresses which

can change freely, they are by nature of their hierarchy exposed to change in

structure outside of their control. Users of the "example.com" repository may,

for example, have administrative control over the "example" domain. How­

ever, the administration of the "com" domain is outside of their control and,

should the policies of this registrar change, so in turn will the domain name

and therefore the identifier.

Changes to the directory and filename structure are extremely common. Con­

sidered design of directory structure can control such change, however it can­

not prevent it altogether. Filenames change for any number of reasons, most

commonly due to changes in the resource type or changes in the directory

structure on the server hosting the resource. The filename "test.dmg" for ex­

ample identifies a disk image file. Several storage options are available for

such resources. File extensions such as ".iso" for mountable disk images and

".tgz" for compressed UNIX archives could be appropriate. Should the cu­

rators of the "test" resource choose to adopt a new storage technology, the

filename, and therefore the identifier, would change.

Should any of the above changes occur the URL used to identify the "test" ob­

ject would change. Given such change, the URL cannot be readily considered

as an option for persistent identification on the Internet.

§3.3 The Uniform Resource Identifier 15

3.3.2 The Uniform Resource N arne

Given the brittle nature of the URL and the increasing need for reliable re­

source access the Uniform Resource Name (URN) was developed, "intended

to serve as a persistent, location-independent, resource identifier" (Moats, 1997).

URNs provide unique names for resources which can be resolved into the lo­

cation of information about a resource. Such information can include resource

metadata and the location of the resource itself. A URN assumes the form

shown in Figure 3.3.

I urn: (NID): (NSS) I

Figure 3.3: Uniform Resource Name Syntax

Where:

• NID: is a namespace identifier (e.g.: "ietf")

• NSS: is a namespace specific string (e.g.: "rfc:2404")

The URN namespace identifier (NID) refers to a URN name space which has

been assigned by the lANA. Several restrictions are imposed on the structure

of the NID in the URN syntax standard (Moats, 1997). This document states

that the NID must be a case insensitive string comprised of alphanumeric char­

acters. Furthermore the NID "urn" is reserved and excluded from use.

The Namespace Specific String (NSS) serves as the actual resource name and

can include any hierarchy deemed suitable by the NID authority. It is limited

to alphanumeric characters with some select additional characters. Overall,

it is the suggestion of Sollins and Masinter, (1994) that URNs be kept "short,

use a minimum of special characters and be case insensitive" to aid in human

transcription.

§3.3 The Uniform Resource Identifier 16

Several requirements are outlined for NIDs before they can be incorporated as

a URN scheme. These requirements, outlined in (Sollins and Masinter, 1994),

define both the functional and presentation requirements for NIDs and are

listed below:

• Global scope: a URN is a name with global scope which does not imply

a location. It has the same meaning everywhere.

• Global uniqueness: the same URN will never be assigned to two different

resources.

• Persistence: it is intended that the lifetime of a URN be permanent. That

is, the URN will be globally unique forever, and may well be used as a

reference to a resource well beyond the lifetime of the resource it identi­

fies or of any naming authority involved in the assignment of its name.

• Scalability: URNs can be assigned to any resource that might conceivably

be available on the network, for hundreds of years.

• Legacy support: the scheme must permit the support of existing legacy

naming systems, insofar as they satisfy the other requirements described

here. For example, ISBN numbers, ISO public identifiers, and UPC prod­

~ct codes seem to satisfy the functional requirements, and allow an em­

bedding that satisfies the syntactic requirements described here.

• Extensibility: any scheme for URNs must permit future extensions to the

scheme.

• Independence: it is solely the responsibility of a name issuing authority

to determine the conditions under which it will issue a name.

• Resolution: a URN will not impede resolution (translation into a URL,

q.v.). To be more specific, for URNs that have corresponding URLs, there

must be some feasible mechanism to translate a URN to a URL.

§3.3 The Uniform Resource Identifier 17

e Single encoding: the encoding for presentation for people in clear text,

electronic mail and the like is the same as the encoding in other trans­

missions.

• Simple comparison: a comparison algorithm for URNs is simple, local,

and deterministic. That is, there is a single algorithm for comparing two

URNs that does not require contacting any external server, is well speci­

fied and simple.

e Human transcribability: for URNs to be easily transcribable by humans

without error, they should be short, use a minimum of special characters,

and be case insensitive. (There is no strong requirement that it be easy

for a human to generate or interpret a URN; explicit human-accessible

semantics of the names is not a requirement.) For this reason, URN com­

parison is insensitive to case, and probably white space and some punc­

tuation marks.

• Transport friendliness: a URN can be transported unmodified in the

common Internet protocols, such as TCP, SMTP, FTP, Telnet, etc.

• Machine consumption: a URN can be parsed by a computer.

• ,Text recognition: the encoding of a URN should enhance the ability to

find and parse URNs in free text.

Whereas URL NIDs differentiate the various technical mechanisms for locat­

ing resources, URN NIDs provide a means of classifying resource types. Such

classification can be derived from various means including the type of re­

source being named or the organisation responsible for its curation.

Once a group registers a URN namespace they are able to dictate various tech­

nical specifications, such as resolution, according to their needs. They are also

§3.3 The Uniform Resource Identifier 18

free to dictate the functionality provided by the NSS and the syntax used to de­

scribe this functionality. The NSS adheres to the needs of the resources being

named as dictated by those best informed of what those needs are.

An example of a URN NID is the "ISBN" URN namespace for International

Standard Book Numbers (ISBNs) (Hakala and Walravens, 2001), a numbering

system intended to provide a unique means of identifying books. The NSS

for this purpose takes an ISBN such as "188098508X" and separates the vari­

ous components which comprise an ISBN. This forms the URN "URN: ISBN:

1- 8 8 0- 9 8 50 8- X".

ISBN URNs could be used for various purposes. Take for example the URL

"http://www.amazon.com/exec/obidos/tg/detail/-/188098508X~

which represents the location of information required to purchase a book. The

various means in which a URL can change have been explored previously. By

replacing this URL with a URN such as "URN : ISBN : 1- 8 8 0- 9 8 50 8 -X" we

provide flexibility for such change through abstraction of locating a resource

from naming a resource.

It would be naive to seek a means of controlling the various manners in which

resource locations, and therefore the URLs which describe these locations, can

chan~e. The URN, through abstraction "of the location of a resource, provides

means for a URL to change freely leaving the URN persistent.

While the URN provides for persistent naming, its usability relies on an ability

to resolve URNs into the URLs they represent. The widespread adoption of

URNs is being hindered by the lack of such resolution technology.

§3.4 Summary 19

3.4 Summary

This Chapter outlined requirements for persistent identifiers and introduced

the URI. The two URI subspaces used for resource location and naming, URL

and URN, were also introduced.

Through examination of the structure and purpose of the URL and the URN, it

has been concluded that the the URN identifier is suitable for persistent iden­

tification. A means of resolution is required, however, before URNs can be

considered for widespread implementation.

Given this conclusion, Chapter 4 examines the requirements for URN resolvers

and details the current URN systems available.

Chapter4

Uniform Resource N arne

Implementations

4.1 Overview

Given the choice of the URN as a suitable means of persistent identification in

Chapter 3, Chapter 4 outlines the requirements of an effective URN resolution

system. A list of desirable URN resolver requirements is presented and these

requirements form the basis upon which the presently available means of URN

implementation are assessed.

4.2 URN Resolution Requirements

The maturity of the URN standard, and the imminent need for its implemen­

tation, would be reasonably expected to result in an available means of reso­

lution. Unfortunately, despite several proposals, this is not the case.

Several challenges are present in URN resolution most notably concerning the

flexibility by which the names can be resolved by different users with vastly

different requirements. Whereas URL namespaces propose a technical goal,

achievable when the community agrees upon a standard command syntax,

20

§4.2 URN Resolution Requirements 21

URN namespaces are designed to provide identification that meets the various

needs of a particular group.

URN resolvers exist to provide a means of resolving the name of a resource

(URN) to its location (URL) or its description (URC). This resolution function­

ality has largely been discussed in terms of a set of "hints" or "rules" which

are interpreted by the resolver. Rules provide a means for interpreting URNs

without consideration of location by matching all or part of a URN and return­

ing a location which can provide further information on the URN.

URN resolvers can only function if the URNs they resolve abide by the syn­

tax prescribed by both the URN specification (Sollins and Masinter, 1994) and

their own name space definition. Whilst there exists potential for a resolver to

check for adherence this is largely within the responsibility of publisher and

administrators. Of paramount importance is the requirement of URN unique­

ness- a feature completely necessary for reliable resolution.

Fortunately, for those seeking to implement URN systems, resolution is a topic

much discussed. As several documents exist outlining community consensus

on requirements for this procedure. The overall requirements for URN resolu­

tion are summarized in the three headings offered by Sollins, (1998) "Usability,

Security and Evolution". The requirements outlined in this document are de­

scribed below from the perspective of the different groups who will be using

the system: the clients resolving URNs, the publishers distributing URNs and

the administrators responsible for the name server infrastructure.

§4.2 URN Resolution Requirements 22

4.2.1 Usability

The first requirement for URN resolution comprises those considerations which

affect the ease with which users can resolve URNs, publishers can submit

URNs and administrators can manage URNs. It is the most important re­

quirement in the immediate sense as without usability sufficient to encourage

adoption none of the other requirements bear consideration. The primary goal

of ensuring a usable URN system is to promote persistence through simplicity.

The requirements Sollins, (1998) state "it is not sufficient for a URN resolution

system merely to make it possible for URNs to have long lifespans", insisting

that URN resolution systems should actively encourage persistence through

their design.

Client

From a user or client perspective usability is judged by the simplicity and

speed by which URN queries can be resolved into a corresponding resource

locator. Furthermore, requirements state that users should be armed with

enough functionality to "specify preferences and priorities" Sollins, (1998).

This functionality should be mutable in the instance that users wish to leave

suchcselection up to the resolver. Overall it is the performance that users will

notice first. As such, the process of URN resolution - only the first in poten­

tially several steps in resource delivery- should be as fast as possible.

The exact requirements are reproduced from (Sollins, 1998) below:

• The interface to the resolver must be simple, effective, and efficient

• The client and client applications must be able to understand the infor­

mation stored in and provided by the resolver easily, in order to be able

to make informed choices.

§4.2 URN Resolution Requirements 23

Publisher

Publishers are, in most cases, unlikely to be computer scientists, more often

curators. More often, they will be curators, research scientists and individuals.

As such URN resolution systems should be simple enough to provide these

groups with means to assign and distribute resource names. The names allo­

cated should be verifiable, easily published and once installed, "correctly and

efficiently resolvable by potential clients" Sollins, (1998). Given the vastly dif­

ferent requirements of the groups using URNs, and the various URN solutions

available, it is essential that publishers are able to choose between resolvers

and - should the need arise - change resolvers in a relatively simple fashion.

The exact requirements are reproduced from (Sollins, 1998) below:

• URN to Hint Resolution must be correct and efficient.

• Publishers must be able to select and move among resolver services to

locate their resources.

• Publishers must be able to arrange. for multiple access points for their

location information.

• Publishers should be able to provide hints with varying lifetimes.

• It must be relatively easy for publishers to specify to the management

and observe their hint information as well as any security constraints

they need for their hints.

Administration

URN administrators are likely to be those people responsible for the current

DNS infrastructure that enables the use of the URL. As such, the use of URNs

§4.2 URN Resolution Requirements 24

should pose as few new constraints upon their resources as possible. These

constraints extend to the simple insertion and management of hint informa­

tion, realistic network overheads and the flexibility to manage URN use.

The exact requirements are reproduced from (Sollins, 1998) below:

• The management of hints must be as unobtrusive as possible, avoiding

using too many network resources.

• The management of hints must allow for administrative controls that

encourage certain sorts of behavior deemed necessary to meet other re­

quirements.

• The configuration and verification of configuration of individual resolver

servers must be simple enough not to discourage configuration and ver­

ification.

§4.2 URN Resolution Requirements 25

4.2.2 Security

The issue of security in the scope of URN resolution is almost entirely within

the responsibility of the administrators. Several threats are posed to naming

systems. The three most notable cited in (Sollins, 1998) are unauthorised inser­

tion of records, unauthorised replication of databases to servers masquerad­

ing as slaves and the potential for denial of service (DoS) style attacks. These

threats are addressed further in (Sollins, 1998) in the form of three security

goals: Access Control, Server Authenticity and Server Availability.

The three security goals are essentially quite simple and common to most com­

puter systems, though the application to this system is still important. Access

control, enacted upon the database of URN mappings, implies both a single

"authoritative" version of the rule set and a reliable means of privilege con­

trol to this authoritative server. Authenticity demands a means of ensuring

that the slave servers which request updates are in fact the servers to which

authorisation has been given to act as slaves. Through replication of author­

itative servers the potential for denial of service style attacks, can be isolated

by providing several redundant instances of the database.

The privacy of those using URN system~ is an important consideration. Usage

scenarios exist where the requests sent to URN servers should not be world

viewable. Furthermore, publishers and administrators of URN information

may wish to prevent access to all of the resolution information they provide.

In the case of the URL, such privacy is largely handled as a function of resource

delivery, not resolution. Developments upon such privacy will pose a large

problem for URN implementors.

The exact requirements are reproduced from (Sollins, 1998) below:

• It must be possible to create authoritative versions of a hint with access-

§4.2 URN Resolution Requirements 26

to-modification privileges controlled.

• It must be possible to determine the identity of servers or avoid contact

with unauthenticated servers.

• It must be possible to reduce the threat of denial of service by broad

distribution of information across servers.

• It must be possible within the bounds of organizational policy criteria to

provide at least some degree of privacy for traffic.

• It must be possible for publishers to keep private certain information

such as an overall picture of the resources they are publishing and the

identity of their clients.

• It must be possible for publishers to be able to restrict access to the reso­

lution of the URNs for the resources they publish, if they wish.

§4.2 URN Resolution Requirements 27

4.2.3 Evolution

Any URN resolution system derived from current requirements needs to be

flexible enough to change when new technologies present themselves or when

other requirements change. Though it is not possible to predict the future,

we can build some reasoned assumptions into our software to enable change.

Such reasoned assumptions, in the context of URNs, are primarily concerned

with changes in the syntax, new resource endpoints and threats to security.

Adapting to changes in the syntax and interpretation of URNs is an evolu­

tionary goal which will be immediately relevant. Each name space adopting

URNs has their own syntactical requirements and as such, the resolver needs

to be generic enough to cope with varied interpretations of syntax and further

changes to this interpretation.

Changes in the resources named by URNs are highly predictable. Whilst at

present the popular means of resource location is the URL there is no guaran­

tee that in the future such locator's will be relevant. Similarly, there needs to

be extensibility within the resolver to handle queries for metadata and other

resource pointers.

Evolutionary considerations with regar~ to users of URN resolvers are impor­

tant, but it is also relevant to consider the trend of continuing sophisticated

security threats to computer systems. It is unwise to assume that such threats

against URN resolvers, will never transpire, and as such, patches and updates

to fix security problems need to be guaranteed.

The exact requirements are reproduced from (Sollins, 1998) below:

• A resolver must be able to support scaling in at least three dimensions:

the number of resources for which URNs will be required, the number of

publishers and users of those resources, and the complexity of the dele-

§4.2 URN Resolution Requirements 28

gation, as authority for resolution grows and possibly reflects delegation

in naming authority.

• A hint resolution environment must support evolution of mechanisms -

specifically for a growing set of URN schemes, new kinds of local URN

resolver services, new authentication schemes and alternative resolver

schemes acting simultaneously.

• A resolver must allow the development and deployment of administra­

tive control mechanisms to manage human behavior with respect to lim­

ited resources.

§4.3 URN Schemes 29

4.3 URN Schemes

The following section presents four of the approaches to persistent naming.

Each of these approaches specifies syntax and resolution semantics which en­

ables users to deploy identifiers with some or all of the URN characteristics.

Specification of syntax and resolution processes can, however, restrict users

and does not allow for the diversity of requirements that is likely.

As most of the requirements outlined in (Sollins, 1998) are not addressed by

these systems, they are presented in terms of their history, syntax and reso­

lution. Some consideration is also given to their adherence to the evaluation

criteria for URN resolvers.

4.3.1 Handle

Developed by the US based Corporation for National Research Initiatives (CNRI),

the handle system provides "an efficient, extensible and secured global name

service for use on networks such as the Internet". The Handle system has been

implemented by several groups such as Hewlett Packard (HP) and the massa­

chusetts Institute of Technology (MIT)~. with their DSpace repository project

(Hewlett Packard, 2003), the International Digital Object Identifier group (IDF),

with their Digital Object Identifier (DOl) system (Paskin, 2004) and various

American defense agencies working on the Defense Virtual Library (DVL)

(Markheim, 2004).

Major outcomes of the Handle project have been the development of a URN

name space for Handle documents and an open protocol for the resolution

of these names. By defining their own name space, as all other implementa­

tions discussed here have, handle implementers are able to control resolution

architecture much more effectively. The Handle system is comprised of multi-

§4.3 URN Schemes 30

ple local resolvers which, when registered with an appropriate Global Handle

Registry (GHR), become part of a global set of unique identifiers.

Syntax

Each "handle" takes the syntactical form shown in Figure 4.1:

urn: (handle): (HandleNamingAuthority) I (HandleLocalName)

Figure 4.1: Handle Identifier Syntax

Where:

• Handle Naming Authority: is the unique name of a delegated resolution

authority.

• Handle Local Name: is the locally unique resource name being refer­

enced.

There are two important fields in the handle URN - the naming authority and

the local name. Naming authority strings are delegated by a GHR to a Local

Handle Service (LHS). The LHS assumes responsibility for mappings between

handle local names and resource locations within its name space. Delegating

resolution authority in such a fashion renders the GHR solely responsible for

uniqueness of its delegated name spaces and the LHS solely responsible for

uniqueness of the resources in its database.

The assigned naming authority string provides a point of resolver delegation

and, as such, is tightly controlled. However, it is left to the local authorities to

determine the syntax of the local name. This leaves publishers free to devise

their own structures to ensure uniqueness and usability.

§4.3 URN Schemes 31

Resolution

Resolution of handles into uniform resource locations (URLs) occurs in a four

stage process as shown in Figure 4.2.

I
Client with global
service information

------------------------.
4. Result of client request

<-------------------------------.
3. Request to responsible

Local Handle Service
1. Client
query for
naming
authority
"10.1045"

2. Service information
for "10.1045' v

v

I
Globa~ Handle I

Reg1.stry

Local Handle Service
responsible for the
naming authority
"10.1045"

Figure 4.2: Handle resolution procedure (Sun et al, 2003)

The resolution process starts with a client querying the GHS for the LHS re­

sponsible for the naming authority the handle cites. Once determined, this

information is returned by the GHS to the client with specific service informa­

tion necessary to contact the LHS. This service information is used to build a

query against the LHS which in tum responds with a URL for the resource.

Handle resolvers are presently implemented as a Java service which can run

on either a single server per name space or can be distributed across several

servers for performance and reliability. Performance can be further enhanced

through use of the caching functionality within the handle framework. Handle

caching servers can also be used to reduce bandwidth requirements and speed

up requests.

As mentioned, the handle service relies on its own resolution system, which

means conventional web clients wishing to access handle services will presently

need to either have a browser plug in or make use of a proxy server in order to

resolve handles to URLs. A further and more pressing problem is the lack of

§4.3 URN Schemes 32

interoperability between handle servers. Rather than providing a global reso­

lution space, handle resolvers provide resolution only for the resources known

to its database.

Evaluation

Handle's resolution framework offers strong security features. However, its

evolutionary and usability features are open to criticism.

The Handle System requires new client and server software to be installed on

every node seeking to participate in resolution. Although this software ap­

pears quite simple to install and configure, many organisations will require

strict security and performance validation before installing new software on

production servers, thereby limiting the adoption and usability of the system.

Furthermore, the choice of the Java language for servers (for portability rea­

sons) leads to serious questions about server performance should the handle

server be faced with numerous queries.

The DOl project has shown that the Handle can be implemented to incorpo­

rate economic incentives. This project requires payment of registration fees in

return for allocation of identifiers and has, to date, been quite successful.

Security concerns in Handle are well addressed with various technologies. The

issue of Access Control has been met with per-resource controls on data with

a Challenge-Response style authentication system. The issue of privacy has

been addressed with optional cryptography of all client and server data inter­

change.

In terms of evolutionary considerations, Handle does not specifically address

issues of change in its design. However, the availability of source code for the

platform means that implementers will be able to implement any changes they

consider appropriate so long as they have the technical expertise. However,

§4.3 URN Schemes 33

the issue of URN growth is of some concern. Despite provisions for caching

and distribution of resolution it remains to be seen how the Handle server will

perform under a heavy load.

§4.3 URN Schemes 34

4.3.2 Persistent URLs

The Persistent Uniform Resource Locator (PURL) system is a means of embed­

ding persistence into the current URL standard through the maintenance of a

database of redirection addresses. This framework relies on the HTTP redi­

rection functionality which has been available since the release of HTTP 1.0

(Fielding et al, 1999). Whilst not technically a URN system, its rate of adoption

amongst Digital Library groups warrants consideration of its value.

Syntax

The PURL syntax is the same as that of a URL as shown in Figure 4.3.

http://(ResolverAddress)/(directoryfield)/(resourcenarne)

Figure 4.3: Persistent URL Syntax

Where:

• Resolver Address: is an Internet domain name that represents a resolver

for this resource.

• Directory Field: represents further hierarchical classification of the re­

source.

• Resource Name: represents the name of the resource sought.

Whilst the PURL does appear as a standard URL, the domain name field has

an important difference as it is used to identify the address of a resolver from

which the name specified as a resource location can be redirected into its actual

URL. This URL is not at all necessarily linked to the PURL.

§4.3 URN Schemes 35

Resolution

Lacking a global structure, the PURL system essentially creates identification

islands whereby one resolver cannot be used to gain information further up

the resolution chain. Within the domains themselves there is some provision

for hierarchy as the name field can be used as a delegation point. This provides

for two varieties of domains- "top level domains and sub domains" (Shafer

et al, NA)- which are differentiated based upon whether they appear in the

resolver address field (top level domain) or the directory field (sub domain).

This hierarchy does not provide the benefits which it might should it extend

over several resolvers. However, it does provide an administrative hierar­

chy which aids PURL database administrators greatly when considering user

rights management for database updates. The clear delegation of resolvers has

resulted in simple web based registration and rights assignment to the resolver

itself.

Users can point a browser at a PURL server and apply on line to be a reg­

istered administrator for a top level or sub level domain. PURL resolution

can also be managed by means of access group or on a per user basis which

restricts unregistered users from being able to view pages at all should the

access permissions on the pages not be specified public.

Though the PURL system enjoys widespread use, its applications are some­

what limited to institutions that do not require any form of interaction between

their resources and the resources resolvable through other PURL servers. Fur­

thermore the isolation of resolvers means the benefits of efficiency and inter­

operability that distributed resolution systems such as the Handle system and

the DNS enjoy are not available.

§4.3 URN Schemes 36

Evaluation

The PURL system is not technically a URN resolution system and does not

warrant evaluation as such. However, the approaches taken to usability by

this project are valuable.

PURLs are manageable through a series of web interfaces which are accessi­

ble when a user directs their browser at a PURL resolver. If the user is an

authorised administrator, all mappings of PURL to resource can be managed

on line. These mappings are stored on the PURL server and form the basis of

HTTP redirects which are executed when a user requests the given PURL. This

simplicity of administration and deployment is the PURLs strongest feature.

§4.3 URN Schemes 37

4.3.3 Archival Resource Key

Another proposed solution to the problem of persistent identification is the

Archival Resource Key (ARK) devised by John Kunze from the University of

California for first release in 1992. The ARK system emphasizes several ne­

glected points with regard to persistent identifiers - most importantly, "per­

sistent actionable identifiers, where an actionable identifier is one that widely

available tools such as web browsers can use" (Kunze, 2003). Its specification

further stresses the "importance of the association between a string and an

information object" (Kunze, 2003).

Syntax

The ARK syntax is designed to be encapsulated within a standard URL, how­

ever its structure expands well beyond and, similarly to Handle, is purposely

resemblant of a URN identifier as shown in Figure 4.4. The purpose of this

design is to enable users to extract that ARK component of a URL string to

ensure ongoing usefulness "when the web no longer exists" (Kunze, 2003).

I http: II (NMAH) I ark: I (NAAN) I (ResourceName) I

Figure 4.4: Archival Resource Key Syntax

Where:

• NMAH: is the Name Mapping Authority Host port.

• ARK: is the ARK label.

• NAAN: is the Name Assigning Authority Number.

• Name: is a identifying string issued by the NAAN.

§4.3 URN Schemes 38

In a URN context this identifier would be changed such that the NMAH, es­

sentially the location of a proxy server for URN resolution, would be "dis­

covered" and therefore not tied into the identifier. The NAAN number is a

globally unique assigned number that directs the resolver to the organisations

that originally assigned the Name to the object in question. NAANs are num­

bers in the form of 5 or 9 digits. This scheme will allow for up to a 100,000

NAANs in 5 digit form and up to a billion in 9 digit form.The name com­

ponent is a NAAN-assigned alphanumeric string which can also include six

characters (11=", 11
@",

11$", 11
_

11
,

11*", 11+", 11#"). The 110/o" character is used to

present encoded representations of characters not in the allowed list. Object

hierarchy in naming is permissible through the inclusion of further/'s in the

naming of the ARK.

Resolution

ARKs can be resolved into either a resource location, a location for meta data

information or a statement outlining the guarantees of persistence the identi­

fier implies.

In its present form ARK requires the use of proxy resolution services and the

NMAH points to the location of such a service. It is anticipated that this will

not be the case for long as means by which to resolve URNs become available.

ARKs identified by the NMAH are global - that is 11 ARKs that differ only in

the optional NMAH part identify the same object" (Kunze, 2003). This is sim­

ilar in functionality to the Handle system and an important difference when

compared to the PURL system as there is a implicit guarantee of uniqueness.

Once resolvers are located however the local resolution of ARKs is conducted

through a four step process very similar to the Handle process outlined above.

The technical implementation of this process is unclear from the initial pro-

§4.3 URN Schemes 39

posal documents. However, suggestions exist for protocol development specif­

ically for this purpose.

Evaluation

ARKs have potential for success given the strong importance placed upon

their persistence throughout their design. However, they have yet to address

security in their specification and some questions remain about their usability.

Using the ARK system involves editing flat-file databases of resource to identi­

fier mappings. Although these can be laid out in a simple format, the issues of

access and editing procedures need to be addressed. Furthermore, the issue of

economic incentives has not been introduced or suggested in the ARK context.

According to the ARK specification, the system is designed with evolution in

mind - "ARK mechanisms are first defined in high level, protocol indepen­

dent terms so that mechanisms may evolve and be replaced over time without

compromising fundamental service objectives" (Kunze, 2003). This philoso­

phy is present throughout the documentation as the technologies involved in

the implementation of the ARK system are described in general terms with

their purpose clearly defined.

§4.3 URN Schemes 40

4.3.4 Life Sciences Identifier

The Life Sciences Identifier (LSID) is a namespace of URN identifiers which

"are persistent, location-independent resource identifiers for uniquely nam­

ing biologically significant resources including but not limited to individual

genes or proteins, or data objects that encode information about them". De­

veloped in cooperation with International Business Machines (IBM) the LSID

scheme has a well developed means of resolution, making use of emerging

Web Services technology for describing and resolving resources.

Syntax

The LSID has a well defined identifier structure which aids in its efficient res­

olution. This structure is displayed in Figure 4.5.

urn: lsid: (AuthorityiD): (NamespaceiD): (Obj ectiD) (: (RevisioniD))

Figure 4.5: Life Science Identifier Syntax

Where:

• ,AuthorityiD: is an Internet domain name representing the URN owner

and resolver.

• NamespaceiD: represents the collection the identifier belongs to.

• ObjectiD: is an uniquely assigned number for a resource inside this col­

lection.

• Revision ID: is an optional version iterator.

Being a domain specific namespace there is little to be gained from an exam­

ination of this syntax. Of notable importance, however, is the authority ID

§4.3 URN Schemes 41

field, an Internet domain name representing an authoritative server for this

resource. While dynamic resolution is discussed in the LSID proposal, this

means of retrieval presents a "shortcut" which effectively rears the head of

location dependence.

Resolution

Resolution in the LFID system is achieved through use of Web Services tech­

nology. Simply put, Web Services provide an application interface for the

World Wide Web (WWW). Through use of the WWW, communication between

applications and the platform neutral standards used throughout is greatly

simplified, making Web Services a very useful distributed systems technology.

The first step in the resolution of an LFID is the discovery of a resolver for

the identifier cited. In most cases, the resolver is expressed as an Internet do­

main name in the AuthorityiD field. Work has been completed on providing

a location independent means of resolver discovery using the Dynamic Dele­

gation Discovery System (DDDS). However, the use of this system is optional

for LFID at present. The DDDS is discussed at length in Chapter 5.

Once a suitable resolver has been found, the client sends a Simple Object Ac­

cess Protocol (SOAP) message to the authoritative resolver asking for the avail­

able services for this resource. This process is completed using the "getAvail­

ableServices()" method and, if successful, will return a list of services available

along with the protocols required to access them.

Finally the user is able to query any of the services available using the "get­

Data()" method.

§4.3 URN Schemes 42

Evaluation

LSID systems are targeted toward a very specific subset of the scientific com­

munity- consequently, assessment of their usability has to take into considera­

tion the types of users that can be expected. In light of this the simple method

calls required to retrieve LSID resources are quite reasonable. Furthermore,

the various client utilities developed for the purpose of LSID retrieval provide

an alternative and highly user friendly means of resource access.

In terms of evolutionary considerations the extensive use of Web Services tech­

nologies can be seen as both a strength and a potential weakness. On one hand,

the method implementation for resource retrieval is abstracted from the user

and therefore free to change almost completely. However, the use of Web Ser­

vice protocols such as SOAP leaves the resolver open to failure as standards

evolve.

Though largely ignored throughout the specifications security issues in the

LSID system could be comprehensively addressed through use of the various

standards present in the field. Such standards could be extended to provide

privacy to users and publishers. However, it remains to see how this will be

achieved.

§4.4 Summary 43

4.4 Summary

This Chapter introduced four systems which aim to solve the problem of per­

sistent identification through URN deployment. Each system was found to be

deficient in its means of resolution due to the inability for actionable identifi­

cation without proxy resolution.

Chapter 5 introduces the DDDS - a globally actionable means of URN resolver

discovery which could potentially remove the need for proxy resolution.

Chapter 5

The Dynamic Delegation Discovery

System

5.1 Overview

Chapter 4 outlined the various URN implementations available presently. This

Chapter explores the Dynamic Delegation Discovery System (DDDS), a pro­

posed mechanism for the location of URN resolvers. This system is described

and assessed according to the requirements of usability, security and evolution

introduced in Chapter 3.

5.2, Design

Perhaps the most significant move toward wide scale URN resolution has been

the DDDS, developed as a generic application to "implement lazy bindings of

strings to data, in order to support dynamically configured delegation sys­

tems" (Mealling, (2002). The DDDS is outlined in a set of five "request for

comment" papers and although it remains generic enough for a variety of po­

tential applications it provides a potential means for URN resolver discovery.

Unlike the URN systems discussed previously, the DDDS does not specify syn-

44

§5.2 Design 45

tax for identifiers, nor does it actually provide functionality for resource reso­

lution. Instead the DDDS aims to partially solve the URN resolution problem

by accepting a URN string input and traversing a database of "rules" toward

the goal of locating a resolver server which is able to further dissect the URN

into a resource location. This process is known as resolver discovery. By re­

solving a URN into the location of a responsible server the DDDS achieves the

valuable goal of connecting the disparate URN resolution schemes available

into an interoperable network of identifiers. This provides implementors with

the flexibility to develop their own name semantics and their own algorithms

for URN resolution.

5.2.1 Rules

The DDDS concept is based upon the notion of a "rule" which is the product

of querying a database given a certain "key". The key required is itself the

product of processing an "Application Unique String", a string input by the

user, against a "First Well Known Rule", a default rule which is specific to the

particular DDDS application at hand. It is common for one query to return

several rules for the given key. There are six fields which comprise a rule;

orde:r, preference, service, flag, regular expression and replacement.

The order and preference components dictate the schedule of processing for

the numerous rules returned. The order field is usually sufficient for this task.

In the case that several records have been assigned the same order the prefer­

ence field is consulted to determine which rule is to be processed first. This

flexibility can be used in several situations - for example, when distinguishing

between the different resolution services offered on the one destination server.

The service field is used to ascertain which of the prescribed application ser­

vices available are sought. The services available will differ depending on the

§5.2 Design 46

DDDS application. Likely examples in the URN context include "return URLs

for given URN" and "return metadata for given URN".

The flag component of a rule is responsible for "steering" the application ac­

cording to the types of rules it is receiving. Flags are responsible for declaring

whether the rule processed is to be deemed "terminal" -in which case the

application returns the processed key back to the user. Flags also tell the ap­

plication what type of information has been stored in the key.

The regular expression field stores a POSIX regular expression rule, used to

describe or match a string. When regular expression rules find a match they

can replace the matching string component with a replacement - as present in

the replacement field of the DDDS rule. These fields are used in conjunction to

test if the application unique string is of the format described by the rule and,

to produce a new string in the case of a match. The string produced forms the

new key either used in the next lookup procedure or returned to the user.

5.2.2 Resolution Process

The exact manner in which rules are processed is documented in the DDDS

specification (Mealling, 2002) and can be summarised in the following steps:

1. The first well known key is applied to the application specific string to

produce a key.

2. The database identified by the key is queried for an ordered set of rules.

3. The regular expression in each rule is processed in order until a non­

empty string is produced.

4. The service field is checked against user requirements, return to step 3 if

incompatible.

§5.2 Design 47

5. If terminal flags are present return key to the user. Otherwise, return to

step 2 with new key.

6. When a terminal lookup is found, return the key, services and flags to

the user.

This process is shown in Figure 5.1

+--------- Application Unique String
+-----+ input!

·---------+ .First Hell Known Rule I
+--------+ !output!

··------+ Firat Key
I
+----<--------------<--------------+

k!y (a ooos databaoo always I +-----+ takes a key and returns
!input! a rule) h

+---------+ +------------+ I Lookup key in DDDS Database!
+---------+ +-----------· !output[

+------+ rule set

I (the input to a rule
rule oct io the rule and the AUS.
+-----+ The output is always

+---------------->linputl either a key or the result)
·---------------+ +------------------+

I Apply Rules to Application Unique String!
until non-ettpty result are obtained
that moot the applications requirements

+---------------+ +-----------------+ !output!
>!-------+ . ______________ :r _____________________ . 1

I Was the last matching rule terminal? I No >------+
>!---------------------------------------+ Yes (if the rule isn't terminal then

I its output is the new key which
is used to find a new rule set)

+------------------------------------+
I. The output of the last rule is the I

result desired by the application
+------------------------------------+

Figure 5.1: DDDS resolution process. (Mealling, 2002)

In applying the DDDS algorithm to the resolution of the URN we are required

to determine the values relevant to the fields comprising a rule. Consideration,

must also be given toward the exact semantics of processing rules.

§5.2 Design 48

The Application Unique String, the URN specified by the user, will be gov­

erned by the syntax conventions outlined in the URN specification (Moats,

1997). These requirements state that a URN should assume the basic structure

of a "urn:" prefix, a Namespace Identifier (NID) and a Namespace Specific

String (NSS). The further restrictions based on case and allowable characters

stated in this document provide a well defined URN specification and, there­

fore, a well defined Application Unique String.

The first well known rule, in the URN case, will be responsible for ensuring the

input provided is a valid URN and returning a key which represents the root

server responsible for URN resolution. The regular expression required to vali­

date a URN as conforming to the specifications outlined in (Moats, 1997) is rep­

resented in Figure 5.2. This rule matches the URN prefix and the namespace

identifier syntax, as well as the explicitly disallowed characters. It does not fur­

ther restrict the namespace specific string, as this is variable on a namespace

basis.

[uU][rR][nN]:[.[A \"&<>[]\A'{\!}~]]+:[.[A \"&<>[]\A '{\IJ~]]+

Figure 5.2: First well known rule for URN validation

The issue of services in the URN context is open to interpretation at present. A

document exists outlining service specifications (Mealling, 1999), however the

services outlined are for resolution of URis (i.e. URLs or URNs of any form)

and make no consideration of the functionality offered by the DDDS. A subset

of these services can be considered relevant - those being the services which

provide resolution of URNs to URis and URNs to metadata information. In

the DDDS implementation presented these services are represented as "N2L"

and "N2C". As the DDDS is not actually a complete resolution system, no

immediate consideration of the mechanics of these services is required.

§5.2 Design 49

Finally, the flags component of the rules will need to inform the application

when to leave the query process and, furthermore, what action to take upon

completion. The four flags specified by (Mealling, 1999), "S", "A", "U", and

"P" are case insensitive and mutually exclusive. "S" informs the application

that the key returned provides a location of service records, "A" denotes a

DNS A record has been returned, "U" denotes a URI for a resolver service and

"P" states that the rest of the algorithm is application specific and should be

handled outside the DDDS algorithm.

Though not dictated by the specifications, an obvious and practical choice for

the database which provides rule storage in the DDDS is the DNS. The DNS

is practically universally available on modern operating systems and is there­

fore well placed to facilitate widespread URN adoption. In order to represent

the DDDS rule structure in the DNS, a new Resource Record (RR) was de­

vised, known as the Name Authority Pointer (NAPTR). This record provides

for storage of all six rule fields in the standard manner by which other Internet

resources are represented. An example NAPTR record is shown in Figure 5.3.

www .. foo.-corn.
;; order pref flags service rcqoxp

IN NAPTR 100 100 "s" "http+I2R" ""
IN NAPTR 100 100 ''s" "£tp+I2R" "''

replacement
_http._tcp.foo.com.
_ftp._tep.foo.com.

Figure 5.3: NAPTR format

The NAPTR record represents the rule structure previously discussed. Its in­

clusion in the DNS specification allows theoretical access to the caching and

security functionality that is critical within the context of a distributed resolu­

tion network.

The DNS currently does not provide a simple method for inserting rules into

the rule database. Several graphical user interfaces and web portals exist for

this purpose, however the common means of inserting rules is editing config-

§5.2 Design 50

uration files directly.

§5.3 Evaluation 51

5.3 Evaluation

5.3.1 Usability

The DDDS offers several extensions to the usability of current URN systems

and closely adheres to the requirements suggested in (Sollins, 1998).

Users

From the perspective of a user or client, the DDDS provides a simple and effi­

cient method of resolving URNs which requires minimal user interaction. As

the DDDS algorithm and rule storage mimics that of the URL quite closely,

the interfaces with which clients interact should not pose a significant learn­

ing curve. The DDDS resolution procedure should pose quite a small time

overhead to the user within the larger goal of resource access. It is impor­

tant to note however that the interactions between the DDDS and the resolver

which is discovered may in fact result in increased time to resource access and

increased complexity.

Publishers

The DDDS offers publishers several advantages not present in other resolvers

- most notably the option to change between resolver frameworks without is­

suing new identifiers and freedom regarding the identifiers they issue. The

DDDS does not however solve the problem of presenting varying resource

"lifetimes" and introduces complexity with the use of regular expression rules.

The DDDS also does not suggest an obvious means of publisher managed

rules.

Administrators

The largest unsolved problem regarding usability exists within the scope of

administering and managing rules. This is simply because of the complexities

§5.3 Evaluation 52

posed by the use of regular expressions. Although issue should not require

frequent expert assistance, deriving rules to efficiently setup a namespace is

a non-trivial task. Where publishers are left with minimal regular expression

interaction by the DDDS, managers and administrators will need to be well

versed in the creation of rules.

The DDDS offers managers and administrators several concessions. The net­

work traffic overhead posed by the DDDS is quite minimal and the use of the

DNS as a rule database should alleviate any new security concerns that may

be posed by other URN systems such as Handle, which developed their own

network protocols. Finally, the issue of configuring new resolvers should be

quite simple given the DNSs ability to create slave servers securely and simply.

§5.3 Evaluation 53

5.3.2 Evolution

A primary concern with evolution is managing the ability to scale within a

system which is likely to experience growth. Fortunately, the adoption of the

URL has reached such colossal figures that many of the problems likely to be

faced can be solved by incorporating the same solutions that worked for the

URL. Employing the DNS as a database for rule storage effectively solves these

problems immediately.

The DNS has several features that ensure its scalability- most notably replica­

tion functionality, caching and a well structured name hierarchy. These func­

tions are available without any consideration required on the part of URN ad­

ministrators. The use of NAPTR preference and order values further ensures

that URN managers can control the traffic that reaches both the resolvers it

operates and the resources to which they refer.

Along with the rule database, DDDS resolvers themselves need to expect changes

in the mechanics of URN resolution. These changes will not necessarily affect

the persistence of the resources identified, but may affect their accessibility if

DDDS resolvers cannot cope with such changes. The present DDDS algorithm

is generic enough to incorporate new s.ervices and flags. Major changes will,

however, require updates to resolver software. It is quite probable that such

changes would extend functionality of resolvers, and that the functionality of­

fered presently will be persistent throughout change.

Finally, the DDDS needs to be able to delegate resolution to new resolver sys­

tems as they emerge. This should not pose an immediate problem for the

DNS based approach so long as the resolvers devised can be accessed through

one of the three access methods previously discussed. The DNS "SRV" record

approach to resource access provides perhaps the most evolvable means of

delegating resource resolution.

§5.3 Evaluation 54

The more general issue of evolving to a need for economic frameworks for

URN issuing and maintenance should be quite trivial given the hierarchy of

resolution the DNS employs. This hierarchy is already home to an economic

model through the current management of Internet domain names by Internet

service providers. Extension of this system, or the development of new URN

based providers using similar business models, should be relatively simple

and will be necessary as demand for resources identified by URNs continues.

§5.3 Evaluation 55

5.3.3 Security

The DDDS inherits the security flaws present in the DNS along with the mea­

sures made to address these flaws. Privacy in the DDDS, however, is unfortu­

nately non existent- no functionality exists to protect the privacy of users or

publishers. Several steps can be considered to improve this situation, although

the solutions would require quite substantial improvements to the DNS as a

whole.

Access control, as it relates to the hint databases, is reliant on the credentials

of the operating system hosting the DNS server. Whilst this does expose the

database to potential corruption through the use of an insecure operating sys­

tem, the DNS database is somewhat protected as long as the administrative

accounts on the systems are secure.

Authenticity is a major problem with DNS servers, consequently users have to

implicitly trust remote servers. Resolution requests can be intercepted and, if

returned in time, answered by malicious hosts to redirect users to false hosts.

Similarly, DNS "Cache Poisoning" can occur, involving malicious information

being entered into valid DNS servers via cache. These security problems are

partially addressed in the DNS Security .Extensions (DNSSEC) proposed by the

DNSSEC IETF working group (Arends et al, 2005), however no widespread

implementation has been achieved as yet.

The threat of denial of service attacks can be addressed through replication of

the database both by the means provided in the DNS software and by pro­

viding multiple records for each resource. Such multiple records and servers

can be further protected by sheer number, geographic location and Internet

connectivity as appropriate.

§5.4 Summary 56

5.4 Summary

The DDDS presents a way to join the currently disparate URN resolution sys­

tems into a URN system capable of global resolution. Although the interac­

tions between the DDDS and the resolvers it joins are not as yet defined, the

ability to return various resource access methods should ensure these interac­

tions are possible.

While the DDDS does not provide a means to resolve resource locations, it

does manage to achieve several of the goals outlined in the URN resolver spec­

ifications. The DDDS provides efficient resource access to users with sufficient

prospects for evolution in its structure even though it faces several challenges

in relation to security and privacy.

Given the adherence to resolver requirements demonstrated in this Chapter,

Chapter 6 seeks to outline extensions to the DDDS which would provide for

complete resource resolution.

Chapter 6

The Extended Dynamic Delegation

Discovery System

6.1 Overview

Chapter 5 introduced the DDDS, a means of discovering resolvers for URNs.

This Chapter introduces the Extended DDDS (EDDDS)- a system for the dis­

covery of URN resolvers and the subsequent resolution of URNs into resource

locations. This system is described, prototyped and assessed according to the

requirements of usability, security and evolution used throughout this thesis.

6.2. Design

The EDDDS presents a three phase approach to resolving URN identifiers: re­

solver discovery, resource resolution and service execution. While the discov­

ery process is essential to globally actionable URNs, it is possible- depending

upon the other URN systems in place - for the resolver to delegate resource

resolution and service execution to another system, such as Handle.

Resolver discovery involves locating an authoritative resolver - capable of

translating a URN supplied into the location of the resource it identifies. This

57

§6.2 Design 58

phase of the ED DDS is completed in a very similar fashion to that of the DDDS

and, should the implementer wish, the EDDDS resolver can be used to point

to alternative URN systems, as the DDDS does. The primary difference is the

ability for the EDDDS to continue resolution of the URN once an authoritative

server has been located.

Resource resolution in the EDDDS involves the translation of a URN into the

location of information about the resource it identifies. This information can

be its location (URL), metadata about the resource (URC), the location of in­

formation to ensure data integrity, or the location of information regarding

resource persistence.

The first two phases: discovery and resolution - provide the functionality re­

quired of a resolver. These two phases, likely to be implemented as an operat­

ing system library, provide application programmers with the ability to build

applications which use URNs. The final phase- service execution- dictates

how the data the URN refers to is processed and presented to the user and

would therefore be part of a resolution application for a specific namespace.

While resolution of the URN is completed before the service execution phase,

a resolver application will need to implement the services offered in order to

be useful. The service execution phase involves the retrieval and processing

of the information stored by a URN. In several cases, this procedure can be

quite simple. User requirements can vary greatly depending on namespace,

however, and these requirements are best met with variations in service execu­

tion. A detailed explanation of the plethora of ways URNs could be processed

is clearly outside the scope of this thesis. However, an example of how a

namespace could implement services is discussed in Chapter 7.

§6.2 Design 59

IN NAPTR "<ORDER>" "<PREFERENCE>" "<FLAGS>Q "<SERVICES>""<REGEX>""<REPLACE>"

IN NAPTR "1 00~ "1 0" "RES:FTP" "N2l:audio/mpg""urn:paradlsec:AB1 :001 :A2~"ftp://ftp.paradisec.org.au/AB1/001/A2"

Figure 6.1: ED DDS NAPTR standard format and example

6.2.1 Rules

EDDDS uses a DNS based database of NAPTR records as rules to guide the

resolution process. The rules used by the EDDDS are required to be flexible

to provide both partial resolution (resolver discovery) and complete resource

resolution (location information).

The overall NAPTR structure as a six field resource record (order, preference,

flag, service, rewrite and replacement) has been retained. The NAPTR record

appears as shown in Figure 6.1.

The interpretation of the order and preference values will remain the same in

the EDDDS. These fields will assume new capabilities in two respects: guid­

ing resolution of replicated resources to cater for demand, and distinguishing

between various access methods for identical resources. These capabilities are

inherent in the nature of a resource resolver and do not require further under­

standing of the operation of these fields.

The representation of regular expressions in the EDDDS will remain the same

as before- however, their interpretation and capabilities have been extended

greatly. Where before simple matching expressions proved adequate resource

curators with thousands of identifiers to manage may choose to use more elab­

orate expressions to reduce the amount of records required for a resource. It

will be up to publishers and administrators to provide guidelines for expres­

sion use, simple expressions must be encouraged for non-technical users, the

power of more complex expressions may be attractive to administrators.

The contents of the flag and service fields have been changed significantly to

§6.2 Design 60

provide the extra functionality demanded by a resource resolver.

Flags

The flags field, only returned to the user in the final step of resolution, is

responsible for notifying resolvers as to the type of server which has been

reached. This extension is essential to inform applications on whether are­

solver server has been discovered, or if a resource has already been resolved.

The presence of any flags in a rule represents a terminal lookup if the rule

matches. This means the resolution process stops querying the database and

either returns a discovered server address or a resolved location to the user.

The flag syntax consists of two strings separated by a":" character. The first

string represents server type and is either "DIS"- to represent the resolver dis­

covery phase of resource resolution or "RES" -to inform the client application

the entire resolution process has been completed.

While the process of resolver discovery is a matter of locating a server, reso­

lution involves returning a locator to a service. The important distinction is

the difference in the communications protocols required between servers and

services. Another important distinction exists between the notion of Internet

serviCes discussed in the context of the flag NAPTR field, and services as dis­

cussed in the context of the URN resolution service represented in the NAPTR.

In the discovery case valid entries for the flag field are "A" to represent a DNS

A record, "AAA'' to represent the IPv6 variant of the A record, "SRV" to rep­

resent a DNS service record and "URL" to represent a Uniform Resource Lo­

cator. In the case that the resolver located is actually an ED DDS server capable

of resource resolution, the application is returned a "NAPTR" - representing

the location of further NAPTR rules. These strings have been changed subtly

from the format they took in the DDDS in order to follow, where applicable,

§6.2 Design 61

the naming conventions for DNS resource records. The use of these IETF man­

aged conventions will ensure both a consistent interpretation by implementors

and the simple addition of new standards as they become available.

In the resolver case, the services being used are represented through their

Internet service abbreviations, as maintained by the lANA. These abbrevia­

tions define the access methods for the service in question. The abbreviation

"HTTP", for example, is maintained by the lANA to represent the Hypertext

Transfer Protocol, a service which commonly operates on destination port 80.

Services

With the addition of resolution capabilities the importance of services in the

EDDDS will increase dramatically. The service field syntax accepts any of the

following URN resolution services: "N2L" for URN to URL resolution, "N2C"

for URN to URC resolution, "N2S" for the resolution of data integrity informa­

tion and "N2P" to resolve a URN into an assertion of the persistence offered

by its authoritative resolver. Other service requirements can be reasonably ex­

pected to arise and should follow a similar three character structure. Multiple

service capability can be asserted by separating service identifiers with "+"

characters. A server capable of fulfilling N2S and N2L services, for example,

would have the service string "N2L+N2S".

In addition to the new services offered in the EDDDS, users are now able to

specify a preferred means of resource delivery where available. These service

identifiers vary according to the service specified and, should the user wish,

can be muted altogether. Where possible, the descriptions used adhere to rel­

evant standards.

The N2L and N2C services both identify a type of content which is described

by the lANA in its Multipart Internet Mail Extensions (MIME) standard. By

§6.2 Design 62

using MIME identifiers to describe content being requested, the user and pub­

lisher have a clear idea of the resource being published and requested. A ser­

vice field such as "N2L:audio/mpeg" would be an appropriate means of re­

questing audio in a mpeg format. A more general service request of "N2L:audio"

would simply request the audio resources identified by a given URN.

The N2S service describes a means of asserting digital integrity of the resource

identified. There are several means by which implementors may choose to

offer this service. The RSA and DSA algorithms provide similar functionality

to assert digital identity. Therefore, a service field such as "N2S:RSA" requests

an RSA encoded digital signature assertion of the integrity of this resource.

6.2.2 Resolution Process

Resolution in the EDDDS occurs in a two phase process incorporating resolver

discovery and resource resolution. The resolver discovery function, similar

to that provided by the DDDS, is essential to providing globally resolvable

URNs- whether they be eventually resolved by EDDDS servers or other URN

systems. Users are able to specify the contents of the flag and service fields

completely or partially. The service type is the only field which must match

for the a rule to be considered as appropriate.

The discovery process occurs in a 6 step process:

1. The First Well Known Key is applied to the Application Specific String

to Produce a Key.

2. The Database represented by the Key is queried for an ordered set of

rules.

3. The regular expression in each rule is processed in order until a non­

empty string is produced.

§6.2 Design 63

4. Check service and flags fields against user requirement, return to step 3

if incompatible.

5. If terminal flags are present return key to the user, otherwise return to

step 2 with new key.

6. When terminal lookup found return the key, services and flags to the

user or proceed with resolution.

The discovery process is shown in Figure 6.2

Application Unique String
Applied to First Well

Known Rule

Lookup records for key
sort according to
order/preference

No: Loop with new key

Figure 6.2: The ED DDS discovery algorithm represented as a flow chart

In the discovery process, records are processed until a "DIS" flag is found in

a record which satisfies the users service requirements and, where possible,

provides the access methods which the user has requested. If the server is a

EDDDS resolver server it will have a "NAPTR" flag which informs the client

§6.2 Design 64

application that NAPTR records are to be found at the location represented by

the key. These records are then processed in a very similar fashion to those

above:

1. Query the database represented by the key for ordered NAPTR records

(rules).

2. Apply the regular expression rules in order until a non empty key is

found which matches user service type requirements.

3. Add the rule which produced the key to a new array and continue process­

ing rules until completed.

4. Sort rule set according to those which best represent user requirements.

5. If selected key is terminal return results to the user otherwise return to

step 2 with new key.

6. Upon terminal lookup return key services and flags to the user.

The resolver process is shown in Figure 6.3

§6.2 Design 65

Retrieve rules
for current key

I
Lookup records for key

sort according to
order/preference

I
Process keys in order until
non empty string returned

Add matching key to list,
Loop until all matching

keys expired Loop with current key

Sort matching keys by
adherance to user

service requirements

Is the best
match terminal?

Loop with new key

Return Key, flags and Services
to client application

Figure 6.3: The ED DDS resolution algorithm represented as a flow chart

§6.3 Evaluation 66

6.3 Evaluation

6.3.1 Usability

Due to the inheritance of functionality from the DDDS, the EDDDS inherits

several usability characteristics of the DDDS. The predominant characteristics

are the efficiency and security benefits of using the DNS and the challenges of

using regular expressions. These characteristics, and the new usability charac­

teristics introduced by the EDDDS, are discussed below from the perspective

of the users, publishers and administrators of the resolver.

Users

Were an EDDDS implementation to be introduced at the operating system

level, present users of the Internet would notice little difference between the

use of URLs and URNs- excepting the persistent availability of the resources

they retrieve. Client applications which interact with an operating system ED­

DDS library, would operate in very similar means to applications which cur­

rently use URLs. Examples of such interaction from a user perspective could

be the execution of programs which retrieve data files, input as URNs by the

user, and the access of resources identified by URNs with tools such as web

browsers.

Although the notion of simple resource access is promising, the EDDDS of­

fers client applications and users the potential to specifically address the re­

quirements for the resource they require. Requesting resource information in

a specific format, with the optional extended service string, empowers users

to select the access method and data format that best suits their needs.

The DDDS, with its simple structure and use of the DNS, proposed a quick

means of resolver discovery with the total resolution time reliant on the server

§6.3 Evaluation 67

discovered. Although this remains true of the EDDDS in the case of discovery

of a non-EDDDS server, complete resolution through the EDDDS never leaves

the DNS proving for resource access times comparable to the URL, which also

uses the DNS.

Publishers

The EDDDS introduces an opportunity for users to specify much greater detail

with regards to the services they require. This consequently allows publishers

to tailor their data to the requests of users. Consider, for example, the case of

an audio file "xyl" which is available in a smaller sized ".mp3" format and a

higher quality, higher sized format ".wav". The use of complex services allows

publishers to advertise both formats according to the requirements of the user

and order their rules according to their own requirements.

The EDDDS makes extensive use of regular expressions in order to guide res­

olution. Despite the complications of using regular expressions in the DDDS,

the separation of discovery and resolution in the EDDDS introduces an oppor­

tunity for the simplification of regular expressions.

Resolver discovery, usually the source of more complex expressions, could

quite easily be delegated to the admini.strators of authoritative URN servers,

with lhe resolution expressions remaining the responsibility of publishers. The

advantages of such delegation would be the opportunities for interfaces to be

created which accept user input, through means such as forms, and translate

their intentions into regular expressions. Such opportunities are increasingly

possible as resolver discovery is completed and the size of the potential ex­

pression decreases.

Separation of discovery and resolution also leads to a clearer environment for

the creation of economic models of URN control. It can be reasoned that pub­

lishers buy namespaces, or segments thereof, from administrators. The intra-

§6.3 Evaluation 68

duction of the "N2P" service, for the assertion of persistence, would allow

publishers to guarantee their resources according to the agreements they have

with namespace providers.

Administrators

Other than the scope for the creation of economic models of resolver discov­

ery and/ or resource resolution, administrators of URN namespaces are largely

unaffected by the changes in the EDDDS. The features of the DNS which al­

lowed them to control server load and improve redundancy in the case of the

DDDS still apply and have been furthered with new flexibility in the provision

of services. High bandwidth resource applications, such as streaming audio,

could be distinguished from lower bandwidth applications by use of the ser­

vice field and subsequently directed to more appropriate servers.

The notion of complete resource resolution through the EDDDS, instead of

discovery and delegation to another system, does provide administrators with

both a more predictable idea of traffic requirements, as well as a probable de­

crease in the bandwidth overheads of URN resolution.

§6.3 Evaluation 69

6.3.2 Evolution

Evolution of the EDDDS, as with the DDDS, benefits greatly from the DNS.

Scalability and accessibility are helped immensely by the ubiquity and invest­

ment made in the DNS by the Internet community.

Scalability has also been revised with the EDDDS. Resource publishers are

now able to specify the characteristics of their resources in terms of both their

access mechanisms and the content format. This allows for the segmentation

of high bandwidth or high demand items to avoid network saturation.

Where the EDDDS differs from the DDDS in terms of design, evolution has

been carefully considered. As with all distributed systems, the Internet relies

upon standards to ensure interoperability. The new flag and service syntax in­

troduction by the EDDDS mimics that issued by the relevant standards bodies,

in this case the lANA and IETF.

The introduction of new resolution services in the EDDDS is very likely. As

such the service execution phase of resource retrieval has been separated from

the discovery and resolution phases. Implementation of new services simply

requires an abbreviated identifier and the population of NAPTR rules.

§6.3 Evaluation 70

6.3.3 Security

Given the continued use of the DNS as a database for rule storage, the EDDDS

shares the same security considerations as the DDDS. The introduction of data

integrity initiatives provides some respite from the challenges discussed pre­

viously. However, the security of the EDDDS remains closely reliant on the

security of the DNS.

Data integrity in the EDDDS is asserted using the "N2S" service. This service

returns the location of digital signature information for the resource being re­

trieved. "A digital signature of a message is a number dependent on some

secret known only to the signer, and, additionally, on the content of the mes­

sage being signed." (Menezes et al, 1996).

The use of digital signatures relies on the existence of a Public Key Infrastruc­

ture (PKI) to enable public key authentication. Public key authentication is

an asymmetric authentication process which consists of public and private

keys. "The public key defines an encryption transformation Ee, while the pri­

vate key defines the associated decryption transformation Dd" (Menezes et

al, 1996). PKI systems consist of a means to distribute public keys and issue

private keys through a "Certificate Aut~ority".

Given a means to distribute public keys to users of a particular namespace,

that namespace can begin to assert integrity of its data using digital signa­

tures. Several algorithms for asserting integrity with digital signatures exist,

the most common of which are the "RSA" and "DSA" algorithms.

Signing a message requires "transforming the message and some secret infor­

mation held by the entity into a tag called a signature", according to Menezes

et al, (1996). Commonly, a compressed version of the message called a "mes­

sage digest" is created and signed. This digest is distributed as the digital

signature of the original message.

§6.3 Evaluation 71

The process of authorisation of a digital signature involves three steps. First,

the user computes a message digest of the data they have received. Secondly,

the signature is decrypted using the public key of the namespace. Finally,

the two message digests are compared. If the digests are the same, the data

retrieved is valid and intact.

Providing privacy remains a major challenge in the EDDDS. Namespaces which

choose to adopt PKI could in theory use some of the encryption functionality

to scramble data transferred between DNS servers and EDDDS clients. Such

a system would affect the public and global resolution of URNs, although in

some application areas it could be deemed appropriate.

§6.4 Summary 72

6.4 Summary

This Chapter presented a novel approach to the problem of URN system through

extending functionality offered by the DDDS, a mechanism for the discovery

of URN resolvers.

Both the EDDDS and DDDDS designs have been evaluated according to their

adherence to the URN resolver requirements of usability, security and evolu­

tion. However, proof is required that these designs are functional.

Such proof of concept is presented in Chapter 6 with a series of resolution

experiments presented for a namespace of language identifiers. The results

returned to the user in both the DDDS and EDDDS cases are presented and

discussed.

Chapter 7

Experiments and Results

7.1 Overview

The previous two Chapters in this thesis outlined the DDDS, an algorithm for

discovering URN resolvers, and the ED DDS, a series of proposed extensions to

this algorithm to enable resource resolution. This Chapter presents an example

implementation of both the DDDS and the EDDDS for a URN namespace of

language identifiers in order to provide proof of concept for these designs.

7.2 The PARADISEC URN namespace

The PARADISEC URN namespace seeks to provide the Pacific and Regional

Archive for Digital Sources In Endangered Cultures (PARADISEC) organisa­

tion with a persistent means of identifying resources stored within its archives.

By applying for an lANA registered URN namespace, this thesis has been able

to prescribe the syntax and resolution mechanisms that are required to access

data identified with PARADISEC URN identifiers. URN namespaces are is­

sued upon submission of a namespace application document to the IETF. Pro­

posed namespaces are published as Internet-Drafts while accepted namespaces

are issued as Internet-Standards, or RFCs.

73

§7.2 The PARADISEC URN namespace 74

PARADISEC is a partnership between four major Australian universities which

exists to ensure the long term survival of languages and cultures that may have

otherwise been forgotten by history. "Over 2000 of the world's 6000 different

languages are spoken in Australia, the South Pacific Islands (including around

900 languages in New Guinea alone) and Southeast Asia" (N I A, 2005). It is

claimed that "within the next century this number is likely to drop to a few

hundred" (N I A, 2005).

Due to the increasing number of research papers being produced citing infor­

mation within the PARADISEC archive, it is important to develop an identifier

scheme which encourages the persistence of these citations and, therefore, the

communities ability to access them.

The PARADISEC URN syntax is comprised of three important fields- the col­

lection, item and name. Each of these fields are assigned unique identifiers by

PARADISEC curators when a resource is submitted to the archive. The collec­

tion is represented by the initials of the contributor, the item is an incrementing

number for each item submitted and the name is the filename of the resource.

These result in a URN in the form shown by Figure 7.1

urn :paradisec: (collection): (item): (name)

Figure 7.1: PARADISEC identifier syntax

7.2.1 urn:paradisec:AB1:001:A

To illustrate the process by which the DDDS and EDDDS can be applied to

PARADISEC URNs, the resolution of URN urn: paradisec :ABl: 001 :A will

be described. In both cases, the user is required to submit two pieces of in­

formation to the URN resolver- the URN to be resolved and the services re­

quired. In this case, an "N2L'' URN to URL service will be illustrated for both

§7.2 The PARADISEC URN namespace 75

the DDDS and EDDDS, with extra parameters incorporated into the EDDDS

service specification.

The testbed environment used is outlined in Figure 7.2. This environment con­

sists of a network of Berkley Internet Names Database (BIND) DNS servers

referring to two resource repositories, located at the University of Sydney and

the Australian Partnership for Advanced Computing. This design was in­

tended to show the potential for delegation between resource locations and

the institutions that host them. Whilst these location names were chosen for

illustrative purposes, the implementation was conducted on DNS servers at

the ANU aliased with these domain names.

Top level URN E]
ONS server
"urn.arpa" ••••

/I DNSservers 1 ~!J PARADISEC

§ :~:~:~:~:~:::~:~~~::~: a "ns3.paradisec.org.au"

Resolvers fa •
other URN '''' .. _ .. , ~

PARADISEC
. "collections.paradisec.org.au" • • • • ~~~;·.~... li II

Resource ~ ~ Storage Facilites

"da::::,::~~::::::au• ~ jfil :IJ -"'"'

~
Authoratativeserver
fortheABl Collection
"torres.unisyd.edu.au"

Figure 7.2: An example environment for PARADISEC URN identifiers

In the POSIX regular expression library, case insensitivity is expressed by pro­

viding both the lower and upper case values for each character. For example,

matching "urn:paradisec" would involve separating each character into its up-

§7.2 The PARADISEC URN namespace 76

per and lower case values. An expression such as

"[uU][rR][nN]:[pP][aA][rR][ii][dD][sS][eE][cC]" results. Therefore, although

the PARADISEC namespace is specified as case-insensitive, all examples in

this thesis are assuming user input in lower case for the purpose of readabil­

ity.

§7.3 DDDS Implementation 77

7.3 DDDS Implementation

This section outlines the discovery of an authoritative server for the PAR­

ADISEC URN "urn: paradisec :ABl: 001 :A". Thematchingrulesprocessed

by the application at each stage of the process are displayed and discussed.

In order to enable resolver discovery, the DDDS algorithm was implemented

in a "ddds" Java application. The sequence diagram shown in 7.3 shows the

interactions between this application, the "resolverClient" client application

and the DNS.

• 1(
re

so
lv

er
C

iie
nt

O

EJ
ge

tO
rd

er
ed

R
ec

or
ds

O

c
:J

ke

yU
ni

qu
e(

)

dd
ds

(U
R

N
, S

er
vi

ce
)

'\

re
so

lv
e(

)
/

L
o

o
p

 w
h

ile
 ru

le
s

ex
is

t a
n

d
 a

 re
n

t t
e

rm
in

a
l

/
~
g
e
n
e
r
a
t
e
 k

e
y

ke
yU

ni
qu

e(
ke

y)

'\

/

ge
tO

rd
er

ed
R

ec
or

ds
(k

ey
)

'\

q
u

e
ry

 D
N

S

7
'\

/

I/

N
A

P
TR

 r
ec

or
ds

I/

ru
le

S
to

ra
ge

O

~ J
 sort

 re
co

rd
s

"
I/

re

tu
rn

 r
ul

eS
to

ra
ge

 o
b

je
ct

I"

F
ig

ur
e

7.
3:

 U
M

L
 d

ia
gr

am
 d

es
cr

ib
es

 th
e

D
D

D
S

 ja
va

 im
pl

em
en

ta
ti

on

<
:.

0
')

 "'' (;,) 8 ss S" l ~ 5l"

:::::
!". § "'' CXI

§7.3 DDDS Implementation 79

7.3.1 Discovery

The first query to the DNS seeks all records at the root level of the URN tree.

It is envisaged that this would be directed toward a root server at the lANA,

as is the case with Internet domain names at present. There exists a urn.arpa

domain, administered by the lANA, which could be used for this purpose.

The resolver will process each of the rules until it finds a match of service and

rule. In the paradisec case, the successful match would be the rule shown in

Figure 7.4.

IN NAPTR "1 00" "10" "A" "N2L""[urn:paradisec:[.[A\"&<>[J\A'{\IHJ+:[.[A\"&<>[)\A '!\IHJ""ns1.paradisec.org.au"

Figure 7.4: PARADISEC namespace NAPTR record

The second query to the DNS is for a resolver for the ABl collection, now that

the authoritative PARADISEC namespace resolver has been located. The rule

which matches this requirement is shown in Figure 7.5. Although continued

matching of rules for this type of resolver could be expected, it is assumed

that the resolver for this collection is authoritative for all items in the ABl col­

lection. Therefore, the final query, which should be expected to be a terminal

query, will result in the specification of an access method for the resolver of

this collection. The flag which prescribes this access method, one of either S,

A or U, will require different actions from the user.

IN NAPTR "1 00" "10" "" "N2L''"urn:paradisec:ab1 :[.[A\"&<>[J\A '{\IJ-J+]:[.[A\"&<>0\A'{\IH+J"ab1.collections.paradisec.org"

Figure 7.5: PARADISEC ABl collection record

§7.3 DDDS Implementation 80

7.3.2 Results

Now that an appropriate resolver for this URN has been located, the DDDS

returns one of several types of rules to the user as a successful result. These

rules, their format and usage are presented below.

SRV resolution

In the case of a SRV record being returned, the user must be able to further

resolve DNS SRV records, as specified in (Esibov et al, 2000). These records

provide users with a domain name and a port number on which to access

resources. An example rule which would return a SRV record is shown in

Figure 7.6.

IN NAPTR "1 00" "1 0" "S""N2L""urn:paradisec:ab1 :001 :a"" _http._tcp.paradisec.org.au"

Figure 7.6: PARADISEC example SRV resolution

SRV records provide a further level of abstraction to the user as they prescribe

the service provided to the user according to its definition as managed by the

lANA, not according to a port number ·as in the case of a URL. Although the

use of port numbers in URLs give a user a reasonable idea of the service to ex­

pect, the use of SRV records assures the users understanding and subsequent

use of the correct access protocol. SRV records afford the user the clearest idea

of what step to take next in resource resolution however they do not specify

syntax for resolution to continue. Therefore, the user or client application can

reliably access the server specified, but the query process to resolve the cited

URN is unclear and not suggested by the rule returned.

§7.3 DDDS Implementation 81

URL resolution

AU flag returned to the user indicates a URL has been returned. This provides

information for accessing the resolver cited but, as mentioned, no guarantees

on protocol conformity. Such a URL record returned would appear as shown

in the replacement field of Figure 7.7. In this instance, the user has been re­

turned what appears to be a website, however, there is no means of specifying

the resource access methods required.

IN NAPTR "100" "10" "U""N2L" "urn:paradisec:ab1:001:a" "http://www.paradlsec.org.au/resolver/"

Figure 7.7: PARADISEC example URL resolution

One solution to this is to incorporate a complete or partial substring of the

first well known rule into the result through use of a back reference. A back

reference is a regular expression concept which involves taking part of the

matched string p-ortion and incorporating it into the replacement expression.

Incorporated in this manner, the URL resolution approach is of some use to the

user, provided the URL scheme returned is actionable by the client application.

A resolution

The most simplistic return value, an A record, simply provides the user with

an IP address of a host, which should be responsible for resource resolution. A

rule which would produce such a record is shown in Figure 7.8. The domain

name represented in the replacement field would be returned as a key and

queried by the client resolver for an IP address.

This is the least useful of the various return values as the user is left to guess

what the next point of interaction with the resolution process should be. No

access protocol or port number are provided.

§7.4 EDDDS Implementation 82

IN NAPTR "1 00" "1 0" "A""N2L" "urn:paradisec:ab 1 :001 :a" "resolver.paradisec.org.au"

Figure 7.8: PARADISEC example A record resolution

7.4 EDDDS Implementation

As with the DDDDS resolver, the ED DDS resolver developed was implemented

as a Java object which can be instantiated with a URN string and a user defined

service flag. This implementation is modelled in Figure 7.9.

• 1\
ll

!S
O

iv
i

1 d
l'

"
'"

"
"
''
''
"
o

 1
I

,.,
,,,

.,0

I

I
ke

yU
nl

qu
eQ

I

I ,.
,

... ,"
"'"'

1

ed
dd

s{
U

R
N

,S
er

vl
ce

)

re
so

lv
eO

lo

o
p

 w
hi

le
 r

ul
es

ex
lr

ta
nd

 a
re

nt
te

rm
ln

al

di
sc

ov
er

R
es

:o
!v

er
O

')

e
n

e
ra

te
 ke

y
p

ca
nw

er
es

ol
ve

?(
O

JS
:N

A
P

TR
)

ke
yU

nl
qu

e(
ke

y}

qu
er

yO
N

S
ge

tO
rd

er
ed

R
ec

or
ds

(k
ey

)

ru
le

St
or

ag
e

ru
le

ru

le
S

to
ra

ge
O

)

so
rt

re
co

rd
s

Lo
op

 w
hi

le
 ru

le
s

ex
is

t a
nd

 a
re

nt
te

rm
ln

al

re
so

lv
eR

es
ou

rc
e{

ru
le

)
tj

_
e
n

e
ra

te
 k

ey

ke
yU

ni
qu

e(
ke

y)

qu
er

yD
N

S

ge
tO

rd
er

ed
R

ec
or

ds
(k

ey
)

ru
le

St
or

a
•O

D

 sortrec
or

ds

ru
le

St
or

ag
e

ru
le

so

rtS
er

vl
ce

s(
ru

le
sD

)

re
tu

rn
 r

ul
eS

to
ra

ge
 o

bj
ec

t
I"

F
ig

ur
e

7.
9:

 U
M

L
 d

ia
gr

am
 d

es
cr

ib
es

 t
he

 E
D

D
D

S
ja

va
 im

pl
em

en
ta

ti
on

I
"r

tS
eN

im
O

I

EJ

N
A

PT
R

re
co

rd
s

N
AP

TR
 re

co
rd

s

ru
le

St
or

ag
e[

l
[P

"~'
""d

'

C
O

':>

-..
..:]

~
 gj ~ t3 "2
. s ~ it

;:!
". § 0
0

V

J

§7.4 EDDDS Implementation 84

In this example, the user has specified the urn "urn :paradisec :ABl: 001:

A" and the flags "N2L:audio/mpeg". The resolution of this identifier follows

the discovery and resolution of this resource and presents the various service

results that the user can expect.

7.4.1 Discovery

The first rule processed by the ED DDS accepts the URN entered by the user as

input and returns a key upon finding a match. As the example URN meets

the syntax requirements, the key produced will be the location of the root

DNS server for URN records. Traditionally, root servers are managed by the

lANA and in this example the server address "urn.arpa" is used. This server is

queried for NAPTR records and produces rules for each of the urn namespaces

registered. The records shown in Figure 7.10 represent a match for the par­

adisec namespace.

IN NAPTR "100' "10" "'"N2L+N2P+N2C+N2S""urn:paradisec:[.[A\"&<>0\II'I\IHI+:[.(A\"&<>0\II'{\IHJ+" nsl.paradisec.org.au

IN NAPTR "1 00" "1 0" """N2L+N2P+N2C+N2S""urn:paradisec:[.[A\"&<>0\A '1\1)-Jl+:[.[A\"&<>0\A '1\1)-JJ+" ns2.paradisec.org.au

IN NAPTR "100" "10' """N2L+N2P+N2C+N2S""urn:paradisec:[.[A\"&<>0\~~'I\IHI+:[.[A\'&<>0\A'{\IHI+" ns3.paradisec.org.au

Figure 7.10: The top level or root PARADISEC resolver records

As there are three records which match the paradisec namespace, all iden­

tically ordered and offering identical services, the EDDDS will use the first

record it finds. This record will be different for each resolution attempt. This

"round robin" approach to DNS server location is commonly used for high de­

mand servers such as web servers and has the effect of load balancing queries.

Assuming the use of "ns1.paradisec.org.au", the EDDDS algorithm loops and

queries this key for a set of rules. Once ordered, the rules appear as shown

in Figure 7.11. In this case, given the request for the collection "AB1" the

§7.4 EDDDS Implementation

"abl.paradisec.org.au" record will match.

IN NAPTR "1 00" "1 0" "" "N2L+N2P+N2C +N25" "urn:paradisec:ab 1 :[.[A\ "&<>0\A' !\ll-ll+" ab 1.collections.paradisec.org.au

IN NAPTR "200" "1 0" "" "N2L+N2P+N2C +N25" "urn:paradisec:tk 1 :[.[A\ "&<>0\A' !\IHJ+:[.[A \"&<>0\A' !\ll-ll+" tk 1.collections.paradisec.org.au

IN NAPTR "300" "1 0" "" "N2L +N2P+N2C+N25" "urn:paradisec:jc1 :[.[A\"&<> 0\A' !\ll-ll+" jc1.collections.paradisec.org.au

Figure 7.11: Ordered rules for a subset of PARADISEC collections

85

In the final EDDDS loop, the server responsible for the ABl collection is queried

for rules. The rules returned will appear as shown in 7.12. Despite all rules

matching the requirements for this query, the lowest ordered rule is terminal

and as such, is returned to the user. This record specifies the location of more

NAPTR records and therefore can continue to be processed inside the ED DDS.

IN NAPTR "1 00" "1 0" "DIS:NAPTR""N2L+N2P+N2C+N2S""urn:paradisec:ab1 :[.[A\'&<>[J\A '1\IJ-J]+" ab1.arts.unisyd.edu.au

IN NAPTR '200" "1 0" "DIS:A""N2L+N2P+N2C+N2S"urn:paradisec:ab 1 :[.[A\'&<>[J\A '!\1}-]]+:[.[A\"&<>[J\A '!IIHJ+" 150.203.0.178

IN NAPTR "300" "1 0" "DIS:SRV" "N2L +N2P+N2C+N2S"''urn: paradisec:ab 1 :[.[A \"&<>[]\A' !IIHJ+" _tcp._http.handle-srv.unisyd.edu.au

Figure 7.12: Discovered resolvers for the ABl collection

Had the AAA, A, SRV or URL records been ordered higher the user would re­

ceive a rule specifying the location of an authoritative server to pursue outside

of the EDDDS, as is common in the traditional DDDS. At present, it is not pos­

sible to provide further guidance to the user after this value is returned. With

some consideration to the way in which records are resolved with systems

such as Handle and Purl this would be feasible.

§7.4 EDDDS Implementation 86

7.4.2 Resolution

Given the key "ab1-res.paradisec.org.au" returned in the final step of the dis­

covery phase had a NAPTR flag, it is now possible to attempt resource res­

olution using the EDDDS. The client service requirements specified for this

process were "N2L:audio/mpeg" and the discovered rule states that N2L is

an available service. The following steps involve finding the best fit for these

service requirements.

The PARADISEC namespace organises data in a hierarchical fashion accord­

ing to collection, item and name. The PARADISEC collection AB1 represents

several items. This hierarchical structure introduces potential for resolver del­

egation, as shown in Figure 7.13.

IN NAPTR "1 00" "1 0" '"'"N2L""urn:paradisec:ab1 :001 :[.*]"torres.unisyd.edu.au"

IN NAPTR "200" "10" "'"'N2L""urn:paradisec:ab1 :012:[.*]"torres-data.paradisec.org.au"

IN NAPTR "300" "1 0" "'"'N2L""urn:paradisec:ab1 :002:[.*]"torres.store.anu.edu.au

Figure 7.13: Resolver servers available for the 001 item

The "001" item, and the torres.unisyd.edu.au server responsible for its data

storage have several records which match the resource name" A". These records,

shown in Figure 7.14, present various different resources identically ordered

with preferences used to reflect the more common requests expected by the

curators.

IN NAPTR 100 10 "RES:http" "N2L:text/html" "urn:paradisec:ab1 :001 :a" http://dataserv.unisyd.edu.au/ab1/001/a.html
IN NAPTR 100 10 "RES:http" "N2L:audio/wav" "urn:paradisec:ab1:001:a" http://store.anu.edu.au/ab1/001/a.wav
IN NAPTR 10010 "RES:ftp" "N2L:audio/mpeg" "urn:paradisec:ab1:001:a" http://store.anu.edu.au/ab1/001/a.xml

Figure 7.14: Resolution options for the urn:paradisec:AB1:001:A resource

Although all of these records match the key, and are subsequently stored for

§7.4 EDDDS Implementation 87

service proce.ssing, the service request is not matched completely by any of

them. Therefore, each of the records are sorted by their adherence to the ser­

vice "audio I mpeg". The best match is found by performing a regular expres­

sion match between the string presented in the service field of the rule and the

service specified by the user.

In this case, the best service match is the "N2L:audio/wav" service offered by

a resource stored at the ANUSF. As the flag field of this record, "RES:http" is

terminal, the EDDDS returns with this rule.

§7.4 EDDDS Implementation 88

7.4.3 Results

Whereas in the DDDS the address of a discovered server is offered, successful

resolution of ED DDS identifiers provides the user with a location address and

a statement of the services offered at that location. It is important to note that

the execution of services will vary greatly between namespaces - therefore,

inclusion of service execution in an EDDDS resolver would greatly restrict us­

ability.

In this example discussed the most simple example of resource resolution,

N2L. The record set presented in Figure 7.15 shows an example of the other

services which might be offered by a server responsible for this URN. The

process of service execution for each of these services is described below.

IN NAPTR 100 10 "RES:http" "N2C" "urn:paradisec:ab1 :001 :a" http://dataserv.unisyd.edu.au/ab1/001/a.xml
IN NAPTR 100 10 "RES:http" "N2S:RSA" 'urn:paradisec:ab1:001:a' http://store.anu.edu.au/ab1/001/a
IN NAPTR 100 10 "RES:ftp" "N2L:audio/mpeg' "urn:paradisec:ab1:001 :a" http://store.anu.edu.au/ab1/001/a.mpeg
IN NAPTR 100 10 "RES:http" 'N2P" "urn:paradisec:ab1 :001 :a" http://policies.paradisec.org/

Figure 7.15: Alternative service options for the urn:paradisec:ABl:OOl:A resource

N2L

In the N2L case, a URL is returned which represents the resource which was

queried. In the PARADISEC example, this resource is held by a server which

runs a HTTP, FTP or RTSP service.

As all of these resources are actionable, there are several methods by which

information can be returned to the user. The most simple method, as used in

this example, would be to return the URL only -leaving the task of gathering

the resource up to the user. Alternatively, the service could use a platform

specific tool, such as GNU "wget" for UNIX systems, to retrieve the resource.

Ideally, URN resolution could be implemented as a native or "plugin" function

§7.4 EDDDS Implementation 89

for web browsers. This would enable users to very simply access resources

identified by URNs in a similar fashion to the way web resources are accessed.

In other namespaces such simple resolution might not be appropriate. Loca­

tion addresses returned may be a subset of an image which is to be retrieved

and processed according to further guidelines. Alternatively, they could be

email addresses which are to be transparently used by a Message Transfer

Agent (MTA) to send a clients email and could even be the location of a web

service to be invoked by a client application.

N2C

In the simplest example, metadata associated with a resource could be re­

trieved in one of the three methods mentioned above. As metadata in the

PARADISEC namespace is actionable via HTTP, the process of returning are­

source location is sufficient.

URC information can be stored in several formats from informal means such

as plain text files, through to established standards, such as the Dublin Core

Metadata Initiative (DCMI). Although these formats are all representable through

a URL, applications may retrieve, interpret and process metadata quite differ­

entlY:

N2S

Digital signatures in the EDDDS provide a means for users to ensure that the

data they retrieve is valid. Digital signatures were discussed in Chapter 6.

The PARADISEC implementation returns only a URL location of a digital sig­

nature for the record listed. Matching and processing this signature against a

hash of the resource retrieved is achievable through various libraries for vari-

§7.4 EDDDS Implementation 90

ous programming languages.

Distinguishing between signatures encrypted with the DSA or RSA encryption

algorithms is done through use of the service flag. Implementation of a public

key encryption system, necessary for the distribution of public and private

keys to perform signature checks, is outside of the scope of the EDDDS.

N2P

There are several ways in which persistence can be asserted by a resource. In

the case where a user is simply using the persistence value as a guide to the

longevity of their resource, a textual representation may be appropriate. In

other examples, the date format may need to follow a machine consumable

format such as the Julian date format.

Furthermore, functionality exists to use the Time To Live (TTL) value in the

DNS. This value, commonly used for caching purposes, could be interpreted

as a guaranteed time frame for the resource information to remain static by

either the user or the client application.

In the PARADISEC example, users would use the persistence value as a guide

to estimate the longevity of their citations. Given this direct user interaction,

dates are displayed in a simple "DDMMYYYY" format.

In the PARADISEC namespace example, persistence is stated as a best effort

estimation of the life of the identifier. In other examples, this assertion may

be guaranteed by various administrators and enforced by way of economic

agreements with publishers.

§7.5 Summary 91

7.5 Summary

The implementation of the DDDS and EDDDS systems proves that the algo­

rithms suggested in Chapters 5 and 6 can solve the problem of URN discovery

and resolution. Furthermore, the successful processing of rules toward resolu­

tion justifies the selection of the DNS as a database.

The demonstrated resolution of the PARADISEC identifier urn: paradi sec:

AB 1 : 0 0 1 :A illustrates the various strengths of the DDDS and ED DDS sys­

tems, most notably concerning the opportunities for providing for and assert­

ing the persistence of resources via flexible NAPTR records. Any of the rules

traversed in this example could be extensively restructured, and the resource

locations subsequently moved, without any changes to the structure of the

URN identifier. This would not have been possible with the URL without em­

ploying specific technologies such as web-server redirection.

Implementation of the DDDS provides the user with a very simple set of re­

sults, as specified by the DDDS design. Whilst in theory the goal of resolver

discovery has been reached, a major obstacle exists regarding the clear defini­

tion of the interactions between the DDDS and the resolvers discovered. This

problem is not solved in the design or implementation of the EDDDS as it re­

quires consensus between all other URN systems on a standard for querying

their resolvers. The availability of a global discovery system does, however,

provide these groups with a means for implementing their own EDDDS sys­

tems which incorporate a namespace and resolver specific means of dealing

with the resolver servers discovered.

The EDDDS implementation discussed in this Chapter provides a means for

users to access a variety of services identified by URNs. Although simple dis­

covery is an option in this implementation, complete resolution is available

with various options for delegation and delivery of user requirements.

§7.5 Summary 92

The various features of the DDDS and the EDDDS have previously been cri­

tiqued in accordance with the aims of usability, security and evolution. This

implementation provides proof of functionality for these algorithms.

Chapter 8

Conclusion

This work sought a means of persistent identification which, unlike the sys­

tems currently available, was accessible and "actionable" in a uniform and

global manner.

Resources are presently identified on the Internet through use of a URL. This

work proved the unsuitability of the URL for persistent resource access. Re­

solving URLs on the Internet is made possible through use of the DNS. This

work sought to explore current approaches to partial URN resolution with the

DNS and suggest extensions which would provide for complete URN resolu­

tion.

8.1 . Contributions

• Does the proposed extension to the DDDS provide an adequate resource

resolution system for the URN?

The resolution system proposed in this work, the EDDDS, achieves both tar­

gets of being actionable and persistent while conforming to many of there­

quirements outlined in (Arends et al, 2005).

The use of the URN for persistent identification has always seemed optimal.

A comparison of the current approaches to Internet identification against a list

93

§8.1 Contributions 94

of desirable characteristics justifies this assumption.

Given the use of such an established identifier, the current attempts at resolu­

tion were examined and found to be lacking in several areas. Most notable was

the inability of any of the current URN systems to provide globally actionable

identifiers without the use of a proxy resolution service. Proxy resolution - a

process usually as simple as encapsulating a URN into a URL- undermines

the goal of persistence by making identifiers reliant on the proxy and the tech­

nology the proxy implements.

The DDDS, a URN system capable of partial URN resolution, was found to

be quite useful in a number of respects. Its design, once implemented and

evaluated, was found to be suited to the goals of this work. The DDDS did

not, however, completely satisfy the goal of actionable identification.

In order to satisfy this goal, a number of extensions to the structure of the

DDDS were proposed and named the EDDDS. These extensions were imple­

mented and proved to provide an actionable identifier in the form of the URN.

• Can the URN resolver developed be used to resolve resources for a URN

namespace.

The proof of concept implementations of both the DDDS and ED DDS achieved

several outcomes. First, technical feasibility of the algorithms proposed was

demonstrated. This demonstration included proof of successful interactions

with the NAPTR DNS record and successful results in varied resolution sce­

narios. Secondly, this work demonstrated the ease by which a group can de­

ploy persistent means of identification. The PARADISEC namespace imple­

ments its own naming hierarchy to meet the goals of identification in the lan­

guage community.

It has been understood throughout this research that an actionable identifier

§8.1 Contributions 95

is just one of the many factors that affect the persistence of a resource on the

Internet. That said, the flexibility introduced by the EDDDS encourages per­

sistence by virtue of its design. Requiring only suitable management by pub­

lishers and administrators of URN identifiers to ensure persistence.

Whilst there are several questions to be answered and policies to be developed

before the EDDDS could be implemented on a wide scale, the design proposed

provides a strong foundation upon which the URN identifier can reach its po­

tential on the Internet.

§8.2 Future Work 96

8.2 Future Work

Although the EDDDS provides a means for groups to start resolving their own

URNs now, there are several considerations for future work to ensure its suc­

cessful implementation on a wider scale.

Usability

At present, the EDDDS provides an efficient means of retrieving resource in­

formation, but no means of efficient publishing. The use of regular expressions

requires unrealistic technical proficiency on the part of the user. One possible

solution is a system of forms where most expressions could be simplified on a

per-namespace basis and incorporated into a web interface to the DNS for use

by publishers.

Although the various EDDDS implementations will be subject to their own

performance requirements, the ability of the DNS to rapidly return queries af­

fects all Internet users. Incorrect use of the NAPTR record, being either the use

of exceedingly long fields or simply too many records, could adversely affect

DNS servers -especially the root servers. This problem may be addressed with

either replication of servers or controls on NAPTR format, however, modelling

will be necessary to devise acceptable use.

Security and Privacy

Despite proven and reliable means of integrity assertion within EDDDS, the

DNS remains flawed in relation to both security and privacy. Future work

in this field will remain hampered by the need to maintain interoperability

between DNS servers across the world.

Evolution

It is unreasonable to expect that universal adoption of the ED DDS for resource

§8.2 Future Work 97

resolution will occur. Therefore, interaction with other resolvers, such as those

discussed in this work, will need to be improved. At present, authoritative

resolvers can be located regardless of type - however, there is no means for

these servers to assert their capabilities or the means by which they can be

accessed.

Policy

Given the amount of administrative control used by governments and indus­

try bodies over assigned Internet domain names and URL namespace iden­

tifiers, it is naive to imagine URNs, whose namespace identifiers represent

similar interests as domain names, will be without such control.

It remains to be seen what level of control will be required in order to maintain

operation of a global network of URNs. At the very least restriction of the IETF

policy on assigning URN namespace identifiers can be anticipated.

In line with this development in policy, an economic model for the issuing

of URN namespace identifiers, maintenance of authoritative servers and is­

suance of individual resource identifiers may be deemed necessary.

Appendix A

Java Implementation

A.l Client Application- "resolverclient.java"

I•
* Application creates aud iuvokes au DDDS resolver object.

* @author Luke Brown luke@bur. st

* ®version 0.1

•I
public class resolverClient {

public static void main(String args []) {

String application Unique = "urn: paradisec: abl :001: a";

String serviceRequired = "N2L";

/* Attempt resolution using the DDDS */
try {

I* Create DDDS Resolver object */
d?.ds d = new ddds(applicationUnique, serviceRequired);

I• Set Debug Flag •I

d. se!Debug ();

/* Fill storage object *I

ruleStorage dddsResults =d. resolve();

/* Print retrieved rule aud generate Jiual key */
System. out. println ("Rule ... returned: ... \n"

+ "Order .. = ... "

+ dddsResults. order

+ "\n"

+ "Preferences ... = .. "

+ dddsResu1ts. preference

+ "\n"
+ "Flags-=-"

+ dddsResults. flags

+ "\n"

+ "Services ... = ... "

+ dddsReaults. service

+ "\n"

+ "Expression ... = ... "

98

§A.l Client Application- "resolverclient.java"

+ dddsResults. regexp

+ "\n"
+ "Replacement ... = ... "

+ dddsResults. replacement

+ "\n\n"
+ "Final ... key ... -= .. "

+ application Unique. replaceA11 (dddsResults. regexp,

dddsResults. replacement));

catch (Exception e) {

System. err. prin tin (e. get~essage ());

System. out. println ("Error ... resolving~!");

I* Attempt resolution using tile EDDDS */

try {

/* Service requirements exte11ded *I
serviceRequired = "N2L: audio/mpeg";

I• Create EDDDS Resolver object •I

eddds e =new eddds(applicationUnique, serviceRequired);

I• Set debug flag to true •I

e. set Debug();

f* Fill ruleStorage object test with resolved ruleset *f

rulcStorage edddsResults = e. resolve ();

/* Priut retrieved rule */

System. out. println ("Rule ... returned: ... \n"

+ "Order .. = ... "

+ edddsRcsults. order

+ "\n"

+ "Preferences ... = ... "

+ edddsResults. preference

+ "\n"

+ "Flags ... = ... "

+ edddsResults. flags

+ "\n"

+ "Services ... = ... "

+ cdddsResults, service

+ "\n"

+ "Expression ... = ... "

+ edddsResults. regexp

+ "\n"

+ "Replacement...= ... "

+ edddsResults. replacement

+ "\n");

catch (Exception e) {

System. err. println (e. getMessage ());

System, out. println (" Error ... resolving JJRN!") i

99

§A.2 Storage Class- "rulestorage.java"

A.2 Storage Class- "rulestorage.java"

I•
* This class provides a rule storage structure for NAPTR records

* ®aut/tor Luke Brown luke@bur. st

* ®versiou 0.1

public class rulcStorage {

int order;

in t preference;

String flags;

String service;

String regexp;

String replacement;

I•
* ruleStorage coustructor, builds a ruleStorage object to represent

* the given values of a NAPTR record.

•I
public ruleStorage(int o, int p, String f, Strings, String reg, String rep) {

order = o;

preference = p;

flags = f;

service = s;

regexp = reg;

replacement = rep;

100

§A.3 DDDDS object- "ddds.java"

A.3 DDDDS object- "ddds.java"

mport javax.naming.*;

import javax .naming. directory.*;

import java.util.*;

import java. util.regex.*;

import java. util. Enumeration. *i

I•
* This class provides au implementation of tlze DDDS URN resolutiou algoritltm.

* ®alltltor Luke Browu, fuke@bur, st

* ®version 0.1

•I
public class ddds {

final String firstKnown "urn:[\ \w&&["#%/11+:.*";

String userService = "";

String appUnique =

String key = "";

Vector v =new Vector();

boolean debug = false;

I* Class Constructor

* ®param Accepts a String URN and a String of tlte required Services

•I
public ddds (String aUni, String usrSvc)

I•

/* Check for valid arguments */

if (Pattern .matches(firstKnown, aUni)) {

this, userService = usrSvc;

this .appUnique = aUni;

key = aUni. replaceAll (firstKnown, "urn. arpa");

else {

I• Notifies Clieut app •I
System. err. println ("Error: .. MalformedJJRN");

System. exit (0);

* ®param Method takes URN supplied through constructor aud attempts resolutiou

* ®return A string array of results is returued

•I
public ruleStorage resolve() {

ruleStorage result =new ruleStorage(O, 0, "");

boolean rewrite = true;

boolean terminal false;

f* we have a key, we have a aus, loop commences here: *I

main"while:

/* Continue tv/tile rewrite rules are present and no terminal flags are fouud *f

while (rewrite && ! terminal)

I• if key is 1111ique add to list •I
if (keyUnique(v, key)) {

101

§A.3 DDDDS object- "ddds.java"

v. addElement(key);

/* else exit witl1 loop couditiou *I
else {

System. err. println ("Error: ... Key ... Unchanged, ... Loop ... Detected");

rewrite = false;

break main_while;

I* Get sorted record set for current Key *I

if (debug) {

System. out. println ("Debug: -Looking-up-key:-" + key);

ruleStorage [] ruleSet = getSortedRecords (key);

/* Process keys returned iu order */
for (int i 0; i < ruleSet.length; i ++)

if (debug) {

System. out. println ("Debug: ... Record: ... " + + " ... Expression: ... "

+ ru1eSet [i f. regexp + " ... Replacement: ... "

+ ruleSet [i]. replacement + " ... Flags: ... "

+ ruleSct[i]. flags);

/* A successful rule Must: match, produce a 11011

empty stri11g and l~t~ue valid (or no) flags */

if (Pattern, matches(ruleSet [i]. regexp, appUnique)

&& (appUnique. replaceAll (ruleSet [i]. regexp,

ruleSet [i]. replacement) I= "")

&& ruleSet [i] . service. equalslgnoreCase (userService))

/* Rule acceptable, generate new key *I

key = appUnique. replaccAll (ruleSct [i]. regexp,

ruleSet [i] . replacement);

if (debug) {

System. out. println ("Debug: ... Gcnerated....l'Jew ... Key!: " + key);

I* Clteck if this rule is termiual *I

String flag = ruleSet[i]. flags. substring (0 ,1);

if (flag. equalslgnoreCase ("A") II flag. equalslgnorcCase ("U")

II flag. equalslgnoreCase("S") II flag. equalslgnoreCase ("P"))

terminal = true;

I* Terminal records are returned to the user *I

if (terminal) {

if (debug)

System. out. println ("Debug: ... Terminal ... Fiags ... Found: ... "

+ ruleSet [i]. flags);

result= ruJeSet[i];

I* Eud Loop, Termiual Flags located *I

break;

I* Returu successful rule to user *I

102

§A.3 DDDDS object- "ddds.java"

return resu1t;

private ruleStorage [] getSortedRecords (St~ing key) {

int numNaptrs = 0;

ruleStorage [] ruleSet = new ru]eStorage [100];

try {

//defiue DNS server euvironmeut

Hash table env = new Hash table();

env. put("java .naming. provider. uri", "dns: I I 127.0.0.1 I");

env. put("java .naming. factory. initial",

"corn. sun. jndi. dns. DnsContextFactory");

DirContext DnsRes =new InitialDirContext(env);

//perform lookup

if (debug) {

System. out. println ("Debug: ... Performing ... Lookup ... with .. key: .. " + key);

Attributes a ttr = DnsRes. get Attributes (key,

new String [] { "NAPIR" });

NamingEnumeration attrl = attr. getA11 ();

if (attrl.hasMore()) {

//grab csv string of records

String nextKey = ((attrl, next()). toString ());

II break records into iudividunl strings

String[] nextArr = nextKey. split(" ,w");

ruleStorage [] temp = new ruleStorage [(nextArr .length) - 1];

1/foreach striug build a ruleStorage object

for (int i = 0; i < nextArr .length; i ++) {

//split em with regex

String[] tempArr = nextArr[i].split("w");

int buffer = 0;

//if the first element is tl1e label

if (tempArr [0]. equals ("NAPIR:"))

buffer = 1;

ruleStorage napStruct = new ruleStorage (Integer

. parselnt (tempArr[O + buffer]), Integer

.parselnt(tempArr[l +buffer]),

tempArr[2 + buffer] 1 tempArr[3 + buffer] 1

tempArr[4 + buffer], tempArr[5 + buffer]);

ruleSet [i J = napStruct;

numNaptrs++;

else {

System. err. prin tln ("Error: J'JoJJNS ... Records ... Returned");

System. exit (I);

catch (Exception e)

System.err.println("Error!: ... " +e);

System. exit (1);

I* sort rules by order tlteu preference ... *I

for (int z = (numNaptrs- I); z >= 0; z--) {

for (int j =I; j <=z; j++) {

103

I•

§A.3 DDDDS object- "ddds.java"

/* If we're more important than the next up, transfer *I
if (ruleSet [j - 1]. order > ruleSet I j]. order)

ruleStorage ternpOrder;

tempOrder = ruleSet I j - 1];

ruleSetij- 1] = ruleSetij];

ruleSet [j] = tempOrder;

/* If we're more important AND a higher preference, transfer *I

else if (ruleSetij- !].order== ruleSetij].order

&k ruleSet I j - I]. preference > ruleSet I j]. preference) {

ru leStorage tempPref;

tempPref = ruleSet[j - I];

ruleSetij- I]= ruleSet[j];

ruleSet[j] = tempPref;

ru leStorage {] ruleSetTidy = new ru leStoragc [numNaptrs];

System. array copy (ruleSet, 0, ruleSetTidy, 0, numNaptrs);

return ruleSetTidy;

* Method checks keys are unique

* ®param Vector of seen keys and current key

@returu Returns True is key is unique, false if key has beeu seen.

•I
private boolean keyUnique(Vector v, String key) {

I•

boolean found = true;

Iterator vi = v. iterator ();

while (vi. hasNext ()) {

if (vl.next() ==key)

found = false;

retarn found;

* Method sets debug flag for verbose output

•I
public void setDebug ()

debug = true;

104

§A.4 EDDDS object- "eddds.java"

A.4 EDDDS object- "eddds.java"

import javax.naming.*;

import javax .naming. directory.*;

import java. util.*;

import java. u til. regcx. *;

import java.util,Enumeration.*;

I•
* This class provides a11 implementatiou of the DDDS URN resolution algorit1tm.

* ®author Luke Brown, luke®bur. st

* ®version 0.1

•I
public class eddds {

final String firstKnown "urn:[\ \w&&["#%/]]+:.*";

boolean debug = false;

String userService

String key = "";
String appUnique

/* Class Constructor checks URN syntax conformance aud generates first key

* ®param String representations of the application uuique string (URN entered)

* and the firstKnowu rule

•I
public eddds(String aUni, String usrSvc)

I•

I* Check for valid arguments */
if (Pattern. matches(first Known, aUni))

this . userService = usrSvc;

this. appUnique = aUni;

this .key = appUnique. replace All ("urn:([\ \w&&['#%1]]+):.•", "urn. arpa");

else {

I• Invalid URN rejected •I
System. err. println (''Error: .. Malformed..l.JRN");

* Method resolve calls the discovery aud resolution

* phase methods to guide resource resolution

•I
public ruleStorage resolve() {

I•

ruleStorage result = discoverResolver ();

if (result. flags. equalslgnoreCase ("DIS :NAPrn."))

result= resolveResource(result);

return result;

* Resolver Discovery metTwd, implemeuts a11

* extended DDDS URN resOlver discovery algorithm.

•I

105

§A.4 ED DDS object- "eddds.java"

private ruleStorage discoverResolver () {

ruleStorage resultDis =new ruleStorage(O, 0,

Vector vDis =new Vector();

boolean rewrite = true i

boolean terminal = false;

f* we have a key, we 1wve a a us, loop commeuces here: *I

main_ while:

"");

/* Coutiuue while rewrite rules are present aud 110 terminal flags are fouud *I

while (rewrite && ! terminal)

/* if key is unique add to list */

if (keyUnique(vDis, key)) {

v Dis . addElement (key);

/* else exit wit11 loop coudition */
else {

System. err. println ("Error: ... Key ... Unchanged, ... Loop ... Detected");

rewrite = false;

break main-while;

/* Get sorted record set for current Key *I

if (debug) {

System. out. println ("Debug: -Looking"up"key: "" + key);

ruleStorage [] ruleSet = getSortedRecords (key);

/* Process keys returned in order */
for (int i = 0; i < ruleSet.length; i++)

if (debug) {

System. out. println (''Debug: ... Record: ... " + i + " ... Expression: ... "

+ rulcSet [i I. reg~xp + '' ... Replacement: ... "

+ ruleSet [i }. replacement + " ... Flags: ... "

+ ruleSet [i [.flags);

f* A successful rule Must: match, produce a 11011 ~mpty string aud have valid service type*/

if (Pattern. matches(ruleSet [i [. regexp, appUnique) &&

(appUnique. replaceAII (ruleSet [i]. regexp, ruleSet [i]. replacement) I= "") &&

ruleSet [i J. service. substring (0 ,3). equalslgnoreCase (userService. substring (0 ,3)))

/* Rule acceptable, generate new key */
key = appUnique. replaceA11 (rulcSet [i J. regexp, ruleSet [i }. replacement);

if (debug) {

System. out, println ("Debug: ... Generated..Ne\-v ... Kcy l: ... " + key);

/* Check if tllis rule is terminal,

* 11011 empty striugs (literal '"' excepted) are termiual

•I
terminal = (ruleSet (i }. flags. equalslgnoreCase ("")

II ruleSet [i]. flags . equalslgnoreCase ("\"\"")) ? false: true;

I* Terminal records are returued to t11e user */

if (terminal) {

if (debug) {

System. out. print In ("Debug: ... Terminal ... Flags ... Found: ... "

106

I•

§A.4 EDDDS object- "eddds.java"

+ ruleSet(i].flags);

result Dis ruleSct [i];

return resultDis;

I* End Loop, Terminal Flags located */

break;

/* Return successful rule to user */
return resultDis;

* Metlwd accepts a termiual resolver discovery rule, finds the resolver

* a11d queries it for resource information.

* ®parm11 a ruleStorage object which describes the discovered resolver.

•I
private ruleStorage resolveResource (ruleStorage disRule)

ruleStorage result = new rulcStorage (0, 0, "",

ruleStorage [I matched = new ruleStorage (100];

int matchedKeys = 0;

Vector vRes = new Vector ();

boolean rewrite = true;

boolean terminal = false;

"");

key = appUnique. replaceAll (disRule. regexp, dis Rule. replacement);

/* we have a key, we l1ave a a us, loop commences It ere: *I

main_ while:

/* Coutiuue while rewrite rules are present aud no terminal flags are found */

while (rewrite && ! terminal)

/* if key is unique add to list */

if (keyUnique(vRes, key)) {

vRes. addE!ement(key);

/* else exit with loop condition */
·} else {

System. err. println ("Error: ... Key ... Unchanged, ... Loop ... Detected");

rewrite = false;

break main_ while;

/* Get sorted record set for current Key */

if (debug) {

System. out. prin tin ("Debug: -Looking-up-key:-" + key);

ruleStorage [] ruleSet = getSortedRecords (key);

System. out. println (" ru leset ... length ... is ... " + ruleSet .length);

/* Process keys returued in order *I

matchedKeys = 0;

for (int i = 0; i < ruleSet .length; i ++)

if (debug)

System. out. prin.tln ("Debug: .. Record: ... " + i + " ... Expression: ... "

+ ruleSet[i].regexp +'' .. Replacement: ... "

107

I•

§A.4 EDDDS object- "eddds.java"

+ ruleSet (i]. replacement + " ... Flags: ... "

+ ruleSet[i].flags);

/* A successful rule Must: match, produce a 11011

empty string and have valid (or no) flags *I

if (Pattern. matches (ruleSet [i]. regcxp, appUnique)

&& (appUnique. replaceAll (ruleSct[i]. regexp,

ruleSet[i [.replacement) I= "")

&& ruleSet [i] . service. substring (0 ,3). equalslgnoreCase (userService. substring (0 ,3)))

matched[i] = ruleSet[i];

matchedKeys++;

if (matchedKeys == 0) {

System. err. println ("No rnatching .. records for ... Key: ... " + key);

break main~ while;

ruleStorage [] matched Tidy = new ruleStorage [matchedKeys];

System. arraycopy (matched, 0, matched Tidy, 0, matched Keys);

matched Tidy = sortService (userService, matched Tidy);

/* Rule acceptable, geuerate uew key *f

key = appUnique. replaceAll (matchedTidy [0]. regexp,

matched Tidy [0]. replacement);

if (debug) {

System. out. println ("Debug: ... Generated.Ne\v ... Key!: ... " + key);

/* Clieck if this rule is terminal */

terminal = (matchedTidy [Oj. flags. equalslgnoreCase ("") II
matched Tidy [0 j. flags. equa!slgnoreCase ("\"\""))

? false: true;

/* Termiual records are returned to the user */

if (terminal) {

if (debug)

System. out. println ("Debug: ... Terminal ... Flags ... Found: ... "

+ matchedTidy[Oj.flags);

result = matchedTidy !01;

I* End Loop, Terminal Flags located */
break;

I* Return successful rule to user *I

return result;

* Method orders services by best effort matcl1

* ®param service flags and unordered array

* ®return ordered array of ruleStorage objects

•I
private ruleStorage (J sortService (String services, ruleStorage [J rules) {

108

§A.4 EDDDS object- "eddds.java"

String userContent = "";
String user Delivery = "";

I* Ascertain User requirements */

String [1 userServices = services . s p 1i t (": ");

if (userServices .length == 2) {

String[] userScrviccContent = userServices [1]. split("/");

userContent = userServiceContent (OJ;

user Delivery = userServiceContent.length == 2 ? userServiceContent [11:"'';

System.out.println("Debug: ... Sorting ... Array: ... User ... values:\n" + userContent + ", ...

for (int z = (rules.length- 1); z >= 0; z--) {

for (int j = 1; j <= z; j++) {

+ userDe1ivery);

I* Get Content aud Delivery striugs for botlt current and next record up *I

String tempLowerContent, tempUpperContent, tempLowerDelivery, tempUpperDelivery;

String(] tempLowerServices = rules[j].service.split(":");

tempLowerServices = tempLowerServices [1]. split("/");

tcmpLowerContent = tempLowcrServices [0];

tempLowerDelivery = tempLowerServices .length == 2 ? tempLowerServices [1]: "";

String[] tempUpperServices = rules[j-1].service.split(":");

tempUpperServices = tempUpperServices [1]. split("/");

tempUpperContent = tempUpperServices [OJ;

temp Upper Delivery = tempUpperServices .length == 2 ? tempUpperServices [1 I:"";

System. out. println ("Debug: .. Sorting .. Array: ... \nUpper ... Values : .. ''

+ tempUpperContent + ", ...

+ tempUppcrDelivery

+ "\nLower .. Values:"

+ tcmpLowerContent + ", ...
+ tempLowerDclivery);

/* if this rule meets service CONTENT and DELIVERY

* (aud above doesnt) trausfer

•I
if (tempLowerContent. equalsignoreCase (userContent) &&

tempLowerDelivery. equalslgnoreCase (userDelivery) &&

I tempUpperContent. equalslgnoreCase (userContent) &&

! tempUpperDelivery. equalsignoreCase (user Delivery) II
/* if this rule meets service CONTENT a11d DELIVERY

* (aud above only meets content) transfer

•I
tempLowerContent. cqualslgnorcCase (userContent) &&

tempLowerDelivery. equalslgnoreCase (userDelivery) &&

tempUpperContent. equalsignoreCase (userContent) &&

I tcmpUpperDelivery. equalslgnoreCase (user Delivery) II
I•
*OR this rule meets service CONTENT (a11d above doesut)

* transfer

•I
tempLowerContent. equalsignoreCase (userContent) &&

! tempUpperContent. equalsignoreCase (userContent) II
I•
* OR this rule meets service CONTENT

* and DELIVERY (and above DOES) and we

109

§A.4 EDDDS object- "eddds.java"

* lwve a lower order, trausjer

•I
tempLowerContent. equalslgnoreCase (userContent) &&

ternpLowerDelivery. equalslgnoreCase (user Delivery) &&

tempUpperContent. equalslgnoreCasc (userContent) &&

tempUppcrDelivery. equalslgnoreCase (user Delivery) &&

rules [j J. order < rules [j -1]. order II
I•
* OR this rule meets service CONIENT

* (and above DOES) and we have a lower

* order, transfer

•I
tempLowerContent. equalsignoreCase (userContent) &&

! tempLowerDelivery. equalslgnoreCase (user Delivery) &&

tempUpperContent. equalslgnoreCase (uscrContent) &&

I tempUpperDelivery. equalslgnoreCase (user Delivery) &&

rules[j].order< rules[j-1].order II
I•
* OR this rule meets service CONTENT

• and DELIVERY (and above DOES) and we

* have a lower preference, trausfer

•I
tempLowerContent. equalslgnoreCase (userContent) &&

tempLowerDelivery. equalslgnoreCasc (user Delivery) &&

tempUpperContent. equalslgnoreCase (userContent) &&

temp Upper Delivery. equalslgnoreCase (user Delivery) &&

rules [j]. preference < rules [j -1]. preference II
I•
* OR tflis rule meets service CONTENT

* (aud above DOES) aud we have a lower

* prefereuce, trausfer

•I
tempLowerContent. equalslgnoreCasc (userContent) &&

! tempLowerDelivery. equalslgnoreCase (userDelivery) &&

tempUpperContent. equalslgnoreCase (userContent) &&

I tempUpperDelivery. equalslgnoreCase (user Delivery) &&

rules [j]. preference < rules [j ~ 1]. preference

) {

/* debug message */
System. out. println ("Debug: ... attempting ... transfer");

f* perform trausfer operation */
ruleStorage tempTransfer = rules [j -1];

rules[j -1] = rules[j];

rules [j] = temp Transfer;

return rules;

I•
* Metl10d retrieves records for a given key

* ®parm11 key to form the next eddds database query

* @retun! ordered array of ruleStorage objects

•I
private ruleStorage [] getSortedRecords (String key) {

110

§A.4 EDDDS object- "eddds.java"

int numNaptrs == 0;

ruleStorage {J ruleSet =new ruleStorage [100];

try {

I* Configure DNS parameters *f
Hashtable env = new Hash table();

env. put ("java. naming. provider. uri", "dns: I I 127.0.0 .1 I");

env. put ("java. naming. factory. in i ti a 1",

"com. sun. jndi. dns. DnsContextFactory");

DirContext DnsRes =new InitialDirContext(env);

I• Query DNS witlt supplied key •I

if (debug) {

System. out. println ("Debug: ... Performing-Lookup ... with ... key: ... " + key);

Attributes attr = DnsRes.getAttributes(key,

new String[] { "NAPIR" });

NamingEnumeration attrl = attr, get All();

I* If we got results process them */
if (attrl.hasMore()) {

/* csv string of records *I

String nextKey = ((a ttrl . next()). toString ());

f* break records into iudividual strings */

String[) nextArr = nextKey. split(",-");

ruleStorage[] temp= new ruleStorage[(nextArr.length)- I];

II Joreach striug build a ruleStorage object

for (int i = 0; i < nextArr .length; i++) {

//split em with regex

String[) tempArr = nextArr[i]. split("-");

int buffer = 0;

II if the first element is the label

if (tempArr [0]. equals ("NAPIR:"))

buffer = I;

ruleStorage napStruct = new ruleStoragc (Integer

. parselnt (tempArr[O + buffer]), Integer

. parselnt (tempArr[l + buffer]),

tempArr[2 + buffer], tempArr[3 + buffer],

tempArr[4 + buffer L tempArr [5 + buffer]) ;

ruleSet [i] = napStruct;

numNaptrs++;

I* We didu 't get any records, returu Jailed */
else {

System. err. prin tin ("Error: ...No..DNS ... Records ... Returned");

System. exit (I);

catch (Exception e)

System.err.println("Errorl: ... '' +e);

System.exit(l);

I* sort array of result:; by order tfteu prefereuce */

for (int z = (numNaptrs - I); z >= 0; z--) {

111

§A.4 EDDDS object- "eddds.java"

for (int j =I; j <= z; j++)

/* If we're more importaut than t11e next up, transfer */
if (ruleSet[j - I J. order > ruleSet (j]. order)

ruleStorage tempOrder;

tempOrder = ruleSet(j- I];

ruleSet(j- I(= ruleSet[j];

ruleSet I j] = tempOrder;

I* If we're more important AND a higher prefereuce, transfer *I

else if (ruleSet (j - I]. order == ruleSet I j]. order

&& ruleSet (j - I J. preference > ruleSet I j J. preference) {

rulcStorage tempPref;

temp Pre! = ruleSet[j - I];

ruleSet[j - I] = ruleSet[j];

ruleSet (j] = tempPref;

/* Copy working array to correct length array of ruleStorage items */

ruleStorage [] ruleSetTidy =new ruleStorage [numNaptrs];

System.arraycopy(ruleSet, 0, ruleSetTidy, 0, numNaptrs);

/* Return ruleStorage array */

return ruleSetTidy;

Method checks keys are unique

* @param Vector of seen keys aud current key

* ®return Returus True is key is uuique, false if key has been seen.

•I
private static boolean keyUnique(Vector v, String key) {

boolean found = true;

Iterator vi = v. iterator ();

while (vl.hasNext()) {

il (vl.next() ==key)

,.found= false;

return found;

* Method sets debug flag for verbose output

•I
public void setDebug ()

debug = true;

112

References

Author Not Available (2005) PARADISEC information leaflet. [on-line] Avail­

able WWW: http: I lwww. paradisec. org. au1Paradisec_PR04. pdf

Arends, A., Austein, R., Larson, M., Massey, D., & Rose, S. (2005) DNS security

introduction and requirements. [on-line] Available WWW: http: I lwww.

ietf.orglrfclrfc4033.txt

Berners-Lee T. (1998) Uniform resource identifiers (URI), generic syntax. [on­

line] Available WWW: http: I lwww. ietf. orglrfclrfc2396. txt

CENDI. (2004) Persistent identification: A key component of an e-government

infrastructure. [on-line] Available WWW:

http:llcendi.dtic.millpublicationsl04-2persist_id.html

Connolly, D. & Berners-Lee, T. (1993) Web naming and addressing overview.

[on-line] Available WWW: http: I lwww. w3c. orgiAddressingl

Esibov, L., Gulbrandsen, A., & Vixie, P: (2000) A DNS RR for specifying the

location of services. [on-line] Available WWW: http: I lwww. ietf. orgl

rfclrfc2782.txt

Falstrom, P. & Huston, G. (2004) A survey of internet identifiers. [on-line]

Available WWW:

http:llwww.ietfreport.isoc.orglidrefldraft-iab-identifiesl

Fielding, R., Berners-Lee, T., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., &

Leach, P. (1999) Hypertext transfer protocol - HTTP/1.1. [on-line] Available

WWW:http:llwww.w3.orgiProtocolslrfc2616l

113

§A.4 EDDDS object- "eddds.java" 114

Hakala, J. & Walravens, H. (2001) Using international standard book num­

bers as uniform resource names. [on-line] Available WWW: http: I /www.

ietf.org/rfc/rfc3187.txt

Kunze, J. (2003) Towards electronic persistence using ARK identifiers. [on­

line] Available WWW: http:// dot. ucop. edu/home/ j ak/ arkcdl. pdf

Markheim, S. (2004) The defence virtual library. [on-line] Available WWW:

http://dvl.dtic.mil/

Mealling, M. (1999) URI resolution services necessary for URN resolution.

[on-line] Available WWW: http: I /www. faqs. org/rfcs/rfc2483. html

Mealling, M. (2002) The dynamic delegation discovery system. [on-line] Avail­

able WWW: http://www. ietf. org/rfc/rfc3305. txt

Mealling, M. & Denenberg, R. (2002) URNs: Clarifications and reccomenda­

tions. [on-line] Available WWW: http: I /www. ietf. org/rfc/rfc33 05.

txt

Menezes, A., Oorschot, P., & Vanstone, S. (1996) Handbook of Applied Cryp­

tography. CRC Press; USA.

Moats, R. (1997) URN syntax. [on-line] Available WWW: http: I /www. ietf.

org/rfc/rfc2141

Hewlett Packard (2003) DSpace: Preserving digital data for the ages. [on­

line] Available WWW: http: I /www. hpl. hp. com/news/2003/july_sept/

dspace.html

Paskin, N. (2004) The digital object identifier. [on-line] Available WWW:

http://www.doi.org/overview/sys_overview_02160l.html

Shafer, K., Weibel, S., Jul, E., & Fausey, J. (N I A) Introduction to persistent

uniform resource locators. [on-line] Available WWW: http: I /purl. oclc ·

§A.4 EDDDS object- "eddds.java" 115

orgldocslinet96.html

Sollins, K. (1998) Architectural principles of uniform resource name resolu­

tion. [on-line] Available WWW: http: I lwww. cis. ohiostate. edulhtbinl

rfclrfc2276.html

Sollins, K. & Masinter, L. (1994) Functional requirements for uniform re­

source names. [on-line] Available WWW: http: I lwww. ietf. orglrfcl

rfc1737.txt

Sun, S., Lannom, L., & Boesch, B. (2003) Handle system overview. [on-line]

Available WWW: http: I lwww. handle. netlrfclrfc3650. html

Yin, R & Campbell, D (2002) Case Study Research: Design and Methods Sage

Publications; USA.

	Towards persistent resource identification with the uniform resource name
	Recommended Citation

