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Abstract 

The exponential growth of the Internet, and the subsequent reliance on the 

resources it connects, has exposed a clear need for an Internet identifier which 

remains accessible over time. Such identifiers have been dubbed persistent 

identifiers owing to the promise of reliability they imply. 

Persistent naming systems exist at present, however it is the resolution of these 

systems into what Kunze, (2003) calls "persistent actionable identifiers" which 

is the focus of this work. Actionable identifiers can be thought of as identifiers 

which are accessible in a simple fashion such as through a web browser or 

through a specific application. 

This thesis identifies the Uniform Resource Name (URN) as an appropriate 

identification scheme for persistent resource naming. Evaluation of current 

URN systems finds that no practical means of global URN resolution is cur­

rently available. 

Two ,new approaches to URN resolution, unique in their use of the Domain 

Name System (DNS) are introduced. 

The proposed designs are assessed according to their Usability, Security and 

Evolution and an implementation described for an example URN namespace 

of language identifiers. 
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Chapter 1 

Introduction 

1.1 Motivation 

The exponential growth of the Internet, and the subsequent reliance on the 

resources it connects, has exposed a clear need for an Internet identifier which 

remains accessible over time. Such identifiers have been dubbed persistent 

identifiers owing to the promise of reliability they imply. Persistent identifiers 

provide means to "track a specific object regardless of its physical location or 

current ownership" (<:=ENDI, 2004). 

The brittle nature of the Uniform Resource Locator (URL) - responsible for 

most Internet identification at present - makes the need for persistent Identifi­

cation quite immediate in several appli~ation areas. The URLs primary short­

comihg is the location-centric approach taken in its design which leaves URLs 

subject to failure when resource locations change -resulting in the all too com­

mon error 404, "Not Found" (Fielding et al, 1999). 

Fortunately, the URL is not the only option for resource identification on the 

Internet. The Uniform Resource Name (URN), developed concurrently with 

the URL, was devised as a means of location independent resource naming. 

The URN facilitates persistent naming whilst remaining human readable, unique 

and manageable. 

Despite the URNs presence, widespread use is being delayed by the lack of 

1 



§1.2 Approach 2 

means to resolve URNs into the URLs they identify. The primary aim of this 

thesis is to investigate a solution to this problem toward the goal of facilitating 

the use of URNs for persistent identification. 

1.2 Approach 

Despite the weaknesses of the URL as an identifier, its successful use of Inter­

net domain names as locators has led to the development of mature resolution 

through the Domain Name System (DNS). The DNS is a hierarchically distrib­

uted database of mappings between domain names and Internet Protocol (IP) 

addresses. 

Given the maturity and widespread adoption of the DNS it is the intention of 

this work to describe and implement a resolution system for the URN which 

leverages the DNSs functionality. The DNS has already faced and solved sev­

eral major obstacles such as that of security, load balancing and redundancy, 

issues that any new distributed database system would have to address. The 

DNS is also suitable as an open standard which is implemented and available 

on most modern operating systems as a standard feature. DNS servers would 

not require software changes for a URN resolver, simply the addition of new 

records. 

The notion of URN resolution via the DNS is not entirely unique. Previously, a 

proposal before the Internet Engineering Task Force (IETF) known as the Dy­

namic Delegation Discovery System (DDDS) (Mealling, 2002) suggested using 

the DNS to take URNs as input and return a server or list of servers able to 

resolve that URN into a URL. 

This work intends to establish through prototyping the viability of the DDDS 

proposal and, through development of the DDDS prototype, the viability of 
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complete URN resolution using the DNS. 

1.3 Contribution 

Persistent naming systems exist at present. However, it is the resolution of 

these systems into what Kunze, (2003) <:alls "persistent actionable identifiers" 

that is the focus of this work. Actionable identifiers can be thought of as iden­

tifiers which are accessible in a simple fashion, such as through a web browser 

or through a specific application. There are currently no persistent identifier 

systems which are actionable without the use of a proxy resolver service. 

An actionable persistent identifier will have widespread applications in areas 

of industry and research which value the ability to reliably access and share 

data collections. Such areas include the Digital Library movement, data inten­

sive sciences such as experimental particle physics and various e-commerce 

applications. 

The proceeds of this research will arm software developers with sufficient 

specifications and working implementations to deploy a URN resolver client. 

Further, it will enable network adminis.trators to populate their existing DNS 

zones with data for resolving URNs. 

1.4 Organisation 

Chapter 2 introduces the research questions this thesis seeks to answer. The 

research methods which will be employed to answer these questions are dis­

cussed. 

Chapter 3 presents an overview of identification on the Internet, introducing 
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the Uniform Resource Identifier (URI) and its subclasses the Uniform Resource 

Locator (URL) and Uniform Resource Name (URN). 

Chapter 4 explores the requirements for URN resolvers and the present means 

of persistent identification available on the lnternet. 

Chapter 5 introduces the Dynamic Delegation Discovery System (DDDS), a 

proposed system for the discovery of authoritative URN resolvers. This design 

is assessed according to the guidelines outlined in Chapter 3. 

Chapter 6 outlines a series of extensions to the DDDS which form the Extended 

Dynamic Delegation Discovery System (EDDDS). These extensions are also 

assessed according to the guidelines outlined in Chapter 3. 

Chapter 7 presents a proof of concept experiment involving implementation of 

the DDDS and EDDDS designs. Results are assessed in terms of the outcome 

for users of these systems. 

This paper concludes with an overview of the contributions made by this work 

and the future work needed in this field. 

Appendix A lists an implementation of the DDDS and ED DDS designs in Java. 



Chapter 2 

Research Design 

This thesis seeks to develop a usable means of persistent Internet identifica­

tion. Previous attempts at persistent identification have shared a common lack 

of effective means for name resolution. Of the various identification schemes 

available, the Uniform Resource Name (URN) is considered to be the best 

suited to this task. 

This thesis aims to achieve this goal of enabling resolution by assessing the 

viability of resolving URNs using the Domain Name System. The success of 

this assessment relies upon the effective selection and adoption of research 

methods to answer specific research questions. 

Providing a resolution system for the URN can be achieved through design 

and implementation of a prototype or ;'proof of concept" resolver. Develop­

ment of such a prototype will prove that such resolution is possible. A sec­

ond, more detailed consideration is required to determine the practicality of 

the resolver system developed. This consideration will be provided through 

implementation of a URN resolver for a specific namespace. 

Several research methods were considered to answer the two research ques­

tions posed by this thesis. These questions, and the methods proposed to an­

swer them, are described below. 

5 



§2.1 Question One 6 

2.1 Question One 

• Does the proposed extension to the DDDS provide an adequate re­

source resolution system for the URN? 

The first question posed by this research intends to determine the suitability 

of the DNS to complete URN resolution. Should an extension of the DDDS 

proposal provide for such URN resolution this question can be answered pos­

itively. 

2.1.1 Research Method 

It is proposed that this question can be addressed through adoption of the 

experimental research method. Experimental research design seeks to prove 

or disprove a hypothesis by completing a series of controlled tests. As the 

hypothesis is concerned with the feasibility of a technical goal the quantitative 

nature of experimental research design is ideal. 

Such tests in this context involve both the adherence of the system devised to a 

series of design goals and the demonstrated technical feasibility of URN reso­

lutiop_. Due to the nature of this work as a "proof of concept", the experiments 

will prove or disprove the potential for DNS based URN resolution. 

2.1.2 Anticipated Outcomes 

While the URN resolver must work for this question to be answered positively, 

the extent to which resolution is possible is of note. By exploring the require­

ments of URN resolution, this thesis will be able to develop clear design goals 

for a resolver to reach. The ability to achieve these goals will determine if this 

hypothesis is proved or disproved. 
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2.2 Question Two 

• Can the URN resolver developed be used to resolve resources for a 

URN namespace? 

While question one should prove the technical feasibility of this work, ques­

tion two seeks to examine its practical application. This question is concerned 

with whether or not the resolver can be used for a particular namespace and if 

so, how it would be used. 

2.2.1 Research Method 

In answering the first research question, this thesis seeks to develop a URN 

resolver which adheres to a set of design goals. Whether the first research 

question is proven is governed by whether the resolver achieves these goals. 

This approach, conducted through use of the experimental research method, 

can also be adopted to answer the second research question. The goals how­

ever will be concerned with how immediately usable the resolver system is for 

the various users involved, as distinct f~om how technically functional it is. 

2.2.2 Anticipated Outcomes 

Should the development of a URN resolver in question one succeed, it is in­

tended that a URN namespace be registered and a resolution network for 

URNs within this namespace be developed. The process by which names 

registered in this namespace can readily be resolved will be assessed in ac­

cordance with predetermined design goals. 



Chapter3 

Internet Identification 

3.1 Overview 

The purpose of this thesis is to enable persistent identification through the 

implementation of a resolver system for the Uniform Resource Name. This 

Chapter offers an examination of the identification systems presently available 

on the Internet and justifies the choice of this class of identifier. 

3.2 Identifier Characteristics 

It is widely understood that the technical feasibility of persistent identification 

is but one of the challenges faced in what is largely a managerial issue. Thus, 

whilst it is important to have an available means of resolving an appropri­

ate identification scheme, it must first be established that the scheme in ques­

tion actively promotes the concept of persistent naming. It is then relevant to 

consider the properties of identifiers which promote long term availability, or 

persistence. 

A general enumeration of desirable characteristics is proposed by (Falstrom 

and Huston, 2004) comprising uniqueness, consistency, persistence, trust, ro­

bustness, withholding, referential consistency and structure. These character­

istics are detailed below: 

8 
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• Uniqueness: identifiers which are not re-used and which are only used 

to refer to one object. 

• Consistency: ensuring the same interpretation of the identifier within a 

particular address space. 

• Persistence: in this context, an identifier which remains constant for a 

period of time as well as remaining accessible. 

• Trust: a form of assurance to users that the identity requested is issued 

by a valid entity. 

• Robustness: the ability for an identifier scheme to resist various security 

threats posed. 

• Withholding: an identifier should only reveal those parts of its structure 

relevant to the operation being performed. 

• Referential Consistency: the goal of consistent interpretation of identi­

fiers when either the resource being represented or the resolution service 

employed changes. 

• Structure: the provision within the identifier for a hierarchy of resolu­

tion, thereby ensuring efficient interpretation and resolution. 
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3.3 The Uniform Resource Identifier 

At a user level, all resource identification on the Internet is achieved through 

use of a Uniform Resource Identifier (URI). The term URI refers to a class of 

Internet identifiers specified in (Berners-Lee, 1998) and developed primarily 

through the work of the World Wide Web Consortium (W3C) and the Internet 

Engineering Task Force (IETF). 

Oddly, there are several views as to what constitutes a URI. The confusion is 

such that a paper was devised from the URI interest group to clarify the situa­

tion. The paper states: "Web-identifier schemes are, in general, URI schemes, 

as a given URI scheme may define subspaces" (Mealling, 2002). This definition 

asserts that all web identifier schemes are URI schemes with the distinction 

based on the characteristics of the individual identifier. 

Forexample,theidentifiers "http: I /www. example. com/","mailto: I /jim® 

jim. net" and "ftp: I /test: 12 3®testing. com" are all instances of the 

URI scheme known as the Uniform Resource Locator (URL). They do, how­

ever, use different name spaces as defined by their name space identifiers 

("http:" the Hypertext Transfer Protocol (HTTP), "ftp:" the File Transfer Pro­

tocol (FTP) and "mailto:" for email addresses). This concept is further clarified 

in Figure 3.1. 

The URI container describes two important subspaces - the Uniform Resource 

Locator (URL) designed to facilitate resource retrieval, and the Uniform Re­

source N arne (URN) designed for naming of resources. The URI standard also 

provides for meta data storage in the form of the Uniform Resource Catalog 

(URC). To date, the URL scheme has achieved almost universal use throughout 

the Internet with very limited implementation of the URN or URC standards. 

The URC locations referred to in this document imply a URL which references 

metadata information. 
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URI 

/ ~ 
URN URL 
e.g. urn:ietf:rfc:2656 e.g. https://www.crg.com/ 

urn:handle:1 0.10001 ftp://user@test.com/ 

Figure 3.1: The Uniform Resource Identifier 

3.3.1 The Uniform Resource Locator 

The URL is a URI scheme which describes resources in terms of their location. 

The W3C (Connolly and Berners-Lee, 1993) states that their purpose is to "re­

duce the tedium of 'log in to this server, then issue this magic command ... ' 

down to a single click". The URL provides a means of encapsulating all the 

instructions required to retrieve a resource into a human readable string. A 

URL can therefore be thought of as an algorithm for resource access. This is 

clearly evident when inspecting the syntax of the URL as shown in Figure 3.2. 

/ (NID): I /(domainname): (port)/(directorypath)/(filename)(arguments) / 

Figure 3.2: Syntax of the Uniform Resource Locator 

Where: 

• NID: a name space identifier (e.g.: http, ftp) 

• Domain Name: an Internet domain name (e.g.: www.foo.com) 

• Port: an optional destination port number. 

• Directory /Filename: a directory path to the resource. 
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The "namespace identifier" (NID) describes the type of service which, when 

queried, will return a resource result. Common NID examples include "http: I I" 

for hypertext documents, "mailto:l I" for email addresses and "ftp:l I" for 

FTP addresses. Applications use namespace identifiers to ascertain which pro­

tocol and port number to use in communicating with destination servers. 

The NID "http", for example, informs applications to attempt to communi­

cate using HTTP on destination port 80- the default for this namespace. The 

mapping of ports to the services identified in the NID is maintained by the In­

ternet Assigned Names Authority (lANA). Operating systems which provide 

Internet access have their own mechanisms for translating service abbrevia­

tions to port numbers. In UNIX this is accomplished by querying the text file 

"I etc I services". 

The "domain name field" represents an Internet domain name from which a 

resource can be retrieved. Domain names are used to provide human read­

able representations of IP addresses. Translation of domain names into the IP 

addresses they represent occurs through querying the DNS. The DNS is a hi­

erarchical resolution system available as a function of most modern operating 

systems. 

Port Ilumbers can be optionally appended to domain names to specify the des­

tination communication port to query. This option is frequently exercised to 

override the default port for a particular namespace, or to differentiate be­

tween several instances of a particular service on the same host. 

The "directory I filename" field of a URL represents the actual location of a 

resource upon the server identified in the URL. In some cases, arguments can 

be passed to the filename to return part of a resource or to specify parameters 

to a program identified by a URL. 

Locating a resource on the Internet requires the interaction of all fields in a 
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URL. Each of the URL namespaces in use define specific means of interpreting 

and processing arguments. 

An example of the process of resource retrieval using URLs can be illustrated 

with the URL "ftp: //luke: testl®example. com/Data_Folder/test. 

dmg". When this URL is entered into a web browser, several steps are com­

pleted before the resource is returned to the user. 

1. The domain name- "example.com" is extracted from the URL and, through 

querying the DNS, translated into the IP address 130.59.23.221. 

2. Given the specification of the "ftp" namespace, the host 130.59.23.221 is 

queried using the FTP protocol on port 21. 

3. Assuming a connection to the host is established, the login name "luke" 

and the password "testl" is sent to the host. 

4. Assuming a successful login, the host is then queried for the resource 

"test.dmg" stored in the directory "Data_Folder". 

5. The resource identified "test.dmg" is returned to the user from the FTP 

service on the host "example.com". 

The persistence of an identifier can be expressed as its resistance to change. 

The URL - an extremely extensible and compact means of expressing the loca­

tion of a resource, is highly susceptible to· change in several respects. 

Our previous example URL, "ftp: I /luke: testl®example. com/Data_Folder/ 

test . dmg", identifies an object named "test" located on a sever "example.com". 

Every component in this URL could be reasonably expected to change. 

The use of the NID "ftp" states that presently this resource is stored on a server 

accessible using the FTP. FTP is currently the most popular means of large­

scale data transfer on the Internet. However, it is quite simplistic in its security 
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and transfer mechanisms. New approaches to file transfer, with corresponding 

new URL namespaces, are highly likely to emerge. Should the administrator 

of this resource choose to adopt such new technology, the identifier for this 

resource would change. 

Likewise, the user and password field - essential to resource access in this in­

stance - are highly susceptible to change given any variation in security policy 

or any addition or removal of users on the server. 

Although domain names are themselves abstractions to IP addresses which 

can change freely, they are by nature of their hierarchy exposed to change in 

structure outside of their control. Users of the "example.com" repository may, 

for example, have administrative control over the "example" domain. How­

ever, the administration of the "com" domain is outside of their control and, 

should the policies of this registrar change, so in turn will the domain name 

and therefore the identifier. 

Changes to the directory and filename structure are extremely common. Con­

sidered design of directory structure can control such change, however it can­

not prevent it altogether. Filenames change for any number of reasons, most 

commonly due to changes in the resource type or changes in the directory 

structure on the server hosting the resource. The filename "test.dmg" for ex­

ample identifies a disk image file. Several storage options are available for 

such resources. File extensions such as ".iso" for mountable disk images and 

".tgz" for compressed UNIX archives could be appropriate. Should the cu­

rators of the "test" resource choose to adopt a new storage technology, the 

filename, and therefore the identifier, would change. 

Should any of the above changes occur the URL used to identify the "test" ob­

ject would change. Given such change, the URL cannot be readily considered 

as an option for persistent identification on the Internet. 
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3.3.2 The Uniform Resource N arne 

Given the brittle nature of the URL and the increasing need for reliable re­

source access the Uniform Resource Name (URN) was developed, "intended 

to serve as a persistent, location-independent, resource identifier" (Moats, 1997). 

URNs provide unique names for resources which can be resolved into the lo­

cation of information about a resource. Such information can include resource 

metadata and the location of the resource itself. A URN assumes the form 

shown in Figure 3.3. 

I urn: (NID): (NSS) I 

Figure 3.3: Uniform Resource Name Syntax 

Where: 

• NID: is a namespace identifier (e.g.: "ietf") 

• NSS: is a namespace specific string (e.g.: "rfc:2404") 

The URN namespace identifier (NID) refers to a URN name space which has 

been assigned by the lANA. Several restrictions are imposed on the structure 

of the NID in the URN syntax standard (Moats, 1997). This document states 

that the NID must be a case insensitive string comprised of alphanumeric char­

acters. Furthermore the NID "urn" is reserved and excluded from use. 

The Namespace Specific String (NSS) serves as the actual resource name and 

can include any hierarchy deemed suitable by the NID authority. It is limited 

to alphanumeric characters with some select additional characters. Overall, 

it is the suggestion of Sollins and Masinter, (1994) that URNs be kept "short, 

use a minimum of special characters and be case insensitive" to aid in human 

transcription. 
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Several requirements are outlined for NIDs before they can be incorporated as 

a URN scheme. These requirements, outlined in (Sollins and Masinter, 1994), 

define both the functional and presentation requirements for NIDs and are 

listed below: 

• Global scope: a URN is a name with global scope which does not imply 

a location. It has the same meaning everywhere. 

• Global uniqueness: the same URN will never be assigned to two different 

resources. 

• Persistence: it is intended that the lifetime of a URN be permanent. That 

is, the URN will be globally unique forever, and may well be used as a 

reference to a resource well beyond the lifetime of the resource it identi­

fies or of any naming authority involved in the assignment of its name. 

• Scalability: URNs can be assigned to any resource that might conceivably 

be available on the network, for hundreds of years. 

• Legacy support: the scheme must permit the support of existing legacy 

naming systems, insofar as they satisfy the other requirements described 

here. For example, ISBN numbers, ISO public identifiers, and UPC prod­

~ct codes seem to satisfy the functional requirements, and allow an em­

bedding that satisfies the syntactic requirements described here. 

• Extensibility: any scheme for URNs must permit future extensions to the 

scheme. 

• Independence: it is solely the responsibility of a name issuing authority 

to determine the conditions under which it will issue a name. 

• Resolution: a URN will not impede resolution (translation into a URL, 

q.v.). To be more specific, for URNs that have corresponding URLs, there 

must be some feasible mechanism to translate a URN to a URL. 
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e Single encoding: the encoding for presentation for people in clear text, 

electronic mail and the like is the same as the encoding in other trans­

missions. 

• Simple comparison: a comparison algorithm for URNs is simple, local, 

and deterministic. That is, there is a single algorithm for comparing two 

URNs that does not require contacting any external server, is well speci­

fied and simple. 

e Human transcribability: for URNs to be easily transcribable by humans 

without error, they should be short, use a minimum of special characters, 

and be case insensitive. (There is no strong requirement that it be easy 

for a human to generate or interpret a URN; explicit human-accessible 

semantics of the names is not a requirement.) For this reason, URN com­

parison is insensitive to case, and probably white space and some punc­

tuation marks. 

• Transport friendliness: a URN can be transported unmodified in the 

common Internet protocols, such as TCP, SMTP, FTP, Telnet, etc. 

• Machine consumption: a URN can be parsed by a computer. 

• ,Text recognition: the encoding of a URN should enhance the ability to 

find and parse URNs in free text. 

Whereas URL NIDs differentiate the various technical mechanisms for locat­

ing resources, URN NIDs provide a means of classifying resource types. Such 

classification can be derived from various means including the type of re­

source being named or the organisation responsible for its curation. 

Once a group registers a URN namespace they are able to dictate various tech­

nical specifications, such as resolution, according to their needs. They are also 
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free to dictate the functionality provided by the NSS and the syntax used to de­

scribe this functionality. The NSS adheres to the needs of the resources being 

named as dictated by those best informed of what those needs are. 

An example of a URN NID is the "ISBN" URN namespace for International 

Standard Book Numbers (ISBNs) (Hakala and Walravens, 2001), a numbering 

system intended to provide a unique means of identifying books. The NSS 

for this purpose takes an ISBN such as "188098508X" and separates the vari­

ous components which comprise an ISBN. This forms the URN "URN: ISBN: 

1- 8 8 0- 9 8 50 8- X". 

ISBN URNs could be used for various purposes. Take for example the URL 

"http://www.amazon.com/exec/obidos/tg/detail/-/188098508X~ 

which represents the location of information required to purchase a book. The 

various means in which a URL can change have been explored previously. By 

replacing this URL with a URN such as "URN : ISBN : 1- 8 8 0- 9 8 50 8 -X" we 

provide flexibility for such change through abstraction of locating a resource 

from naming a resource. 

It would be naive to seek a means of controlling the various manners in which 

resource locations, and therefore the URLs which describe these locations, can 

chan~e. The URN, through abstraction "of the location of a resource, provides 

means for a URL to change freely leaving the URN persistent. 

While the URN provides for persistent naming, its usability relies on an ability 

to resolve URNs into the URLs they represent. The widespread adoption of 

URNs is being hindered by the lack of such resolution technology. 



§3.4 Summary 19 

3.4 Summary 

This Chapter outlined requirements for persistent identifiers and introduced 

the URI. The two URI subspaces used for resource location and naming, URL 

and URN, were also introduced. 

Through examination of the structure and purpose of the URL and the URN, it 

has been concluded that the the URN identifier is suitable for persistent iden­

tification. A means of resolution is required, however, before URNs can be 

considered for widespread implementation. 

Given this conclusion, Chapter 4 examines the requirements for URN resolvers 

and details the current URN systems available. 



Chapter4 

Uniform Resource N arne 

Implementations 

4.1 Overview 

Given the choice of the URN as a suitable means of persistent identification in 

Chapter 3, Chapter 4 outlines the requirements of an effective URN resolution 

system. A list of desirable URN resolver requirements is presented and these 

requirements form the basis upon which the presently available means of URN 

implementation are assessed. 

4.2 URN Resolution Requirements 

The maturity of the URN standard, and the imminent need for its implemen­

tation, would be reasonably expected to result in an available means of reso­

lution. Unfortunately, despite several proposals, this is not the case. 

Several challenges are present in URN resolution most notably concerning the 

flexibility by which the names can be resolved by different users with vastly 

different requirements. Whereas URL namespaces propose a technical goal, 

achievable when the community agrees upon a standard command syntax, 

20 
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URN namespaces are designed to provide identification that meets the various 

needs of a particular group. 

URN resolvers exist to provide a means of resolving the name of a resource 

(URN) to its location (URL) or its description (URC). This resolution function­

ality has largely been discussed in terms of a set of "hints" or "rules" which 

are interpreted by the resolver. Rules provide a means for interpreting URNs 

without consideration of location by matching all or part of a URN and return­

ing a location which can provide further information on the URN. 

URN resolvers can only function if the URNs they resolve abide by the syn­

tax prescribed by both the URN specification (Sollins and Masinter, 1994) and 

their own name space definition. Whilst there exists potential for a resolver to 

check for adherence this is largely within the responsibility of publisher and 

administrators. Of paramount importance is the requirement of URN unique­

ness- a feature completely necessary for reliable resolution. 

Fortunately, for those seeking to implement URN systems, resolution is a topic 

much discussed. As several documents exist outlining community consensus 

on requirements for this procedure. The overall requirements for URN resolu­

tion are summarized in the three headings offered by Sollins, (1998) "Usability, 

Security and Evolution". The requirements outlined in this document are de­

scribed below from the perspective of the different groups who will be using 

the system: the clients resolving URNs, the publishers distributing URNs and 

the administrators responsible for the name server infrastructure. 
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4.2.1 Usability 

The first requirement for URN resolution comprises those considerations which 

affect the ease with which users can resolve URNs, publishers can submit 

URNs and administrators can manage URNs. It is the most important re­

quirement in the immediate sense as without usability sufficient to encourage 

adoption none of the other requirements bear consideration. The primary goal 

of ensuring a usable URN system is to promote persistence through simplicity. 

The requirements Sollins, (1998) state "it is not sufficient for a URN resolution 

system merely to make it possible for URNs to have long lifespans", insisting 

that URN resolution systems should actively encourage persistence through 

their design. 

Client 

From a user or client perspective usability is judged by the simplicity and 

speed by which URN queries can be resolved into a corresponding resource 

locator. Furthermore, requirements state that users should be armed with 

enough functionality to "specify preferences and priorities" Sollins, (1998). 

This functionality should be mutable in the instance that users wish to leave 

suchcselection up to the resolver. Overall it is the performance that users will 

notice first. As such, the process of URN resolution - only the first in poten­

tially several steps in resource delivery- should be as fast as possible. 

The exact requirements are reproduced from (Sollins, 1998) below: 

• The interface to the resolver must be simple, effective, and efficient 

• The client and client applications must be able to understand the infor­

mation stored in and provided by the resolver easily, in order to be able 

to make informed choices. 
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Publisher 

Publishers are, in most cases, unlikely to be computer scientists, more often 

curators. More often, they will be curators, research scientists and individuals. 

As such URN resolution systems should be simple enough to provide these 

groups with means to assign and distribute resource names. The names allo­

cated should be verifiable, easily published and once installed, "correctly and 

efficiently resolvable by potential clients" Sollins, (1998). Given the vastly dif­

ferent requirements of the groups using URNs, and the various URN solutions 

available, it is essential that publishers are able to choose between resolvers 

and - should the need arise - change resolvers in a relatively simple fashion. 

The exact requirements are reproduced from (Sollins, 1998) below: 

• URN to Hint Resolution must be correct and efficient. 

• Publishers must be able to select and move among resolver services to 

locate their resources. 

• Publishers must be able to arrange. for multiple access points for their 

location information. 

• Publishers should be able to provide hints with varying lifetimes. 

• It must be relatively easy for publishers to specify to the management 

and observe their hint information as well as any security constraints 

they need for their hints. 

Administration 

URN administrators are likely to be those people responsible for the current 

DNS infrastructure that enables the use of the URL. As such, the use of URNs 



§4.2 URN Resolution Requirements 24 

should pose as few new constraints upon their resources as possible. These 

constraints extend to the simple insertion and management of hint informa­

tion, realistic network overheads and the flexibility to manage URN use. 

The exact requirements are reproduced from (Sollins, 1998) below: 

• The management of hints must be as unobtrusive as possible, avoiding 

using too many network resources. 

• The management of hints must allow for administrative controls that 

encourage certain sorts of behavior deemed necessary to meet other re­

quirements. 

• The configuration and verification of configuration of individual resolver 

servers must be simple enough not to discourage configuration and ver­

ification. 
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4.2.2 Security 

The issue of security in the scope of URN resolution is almost entirely within 

the responsibility of the administrators. Several threats are posed to naming 

systems. The three most notable cited in (Sollins, 1998) are unauthorised inser­

tion of records, unauthorised replication of databases to servers masquerad­

ing as slaves and the potential for denial of service (DoS) style attacks. These 

threats are addressed further in (Sollins, 1998) in the form of three security 

goals: Access Control, Server Authenticity and Server Availability. 

The three security goals are essentially quite simple and common to most com­

puter systems, though the application to this system is still important. Access 

control, enacted upon the database of URN mappings, implies both a single 

"authoritative" version of the rule set and a reliable means of privilege con­

trol to this authoritative server. Authenticity demands a means of ensuring 

that the slave servers which request updates are in fact the servers to which 

authorisation has been given to act as slaves. Through replication of author­

itative servers the potential for denial of service style attacks, can be isolated 

by providing several redundant instances of the database. 

The privacy of those using URN system~ is an important consideration. Usage 

scenarios exist where the requests sent to URN servers should not be world 

viewable. Furthermore, publishers and administrators of URN information 

may wish to prevent access to all of the resolution information they provide. 

In the case of the URL, such privacy is largely handled as a function of resource 

delivery, not resolution. Developments upon such privacy will pose a large 

problem for URN implementors. 

The exact requirements are reproduced from (Sollins, 1998) below: 

• It must be possible to create authoritative versions of a hint with access-



§4.2 URN Resolution Requirements 26 

to-modification privileges controlled. 

• It must be possible to determine the identity of servers or avoid contact 

with unauthenticated servers. 

• It must be possible to reduce the threat of denial of service by broad 

distribution of information across servers. 

• It must be possible within the bounds of organizational policy criteria to 

provide at least some degree of privacy for traffic. 

• It must be possible for publishers to keep private certain information 

such as an overall picture of the resources they are publishing and the 

identity of their clients. 

• It must be possible for publishers to be able to restrict access to the reso­

lution of the URNs for the resources they publish, if they wish. 
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4.2.3 Evolution 

Any URN resolution system derived from current requirements needs to be 

flexible enough to change when new technologies present themselves or when 

other requirements change. Though it is not possible to predict the future, 

we can build some reasoned assumptions into our software to enable change. 

Such reasoned assumptions, in the context of URNs, are primarily concerned 

with changes in the syntax, new resource endpoints and threats to security. 

Adapting to changes in the syntax and interpretation of URNs is an evolu­

tionary goal which will be immediately relevant. Each name space adopting 

URNs has their own syntactical requirements and as such, the resolver needs 

to be generic enough to cope with varied interpretations of syntax and further 

changes to this interpretation. 

Changes in the resources named by URNs are highly predictable. Whilst at 

present the popular means of resource location is the URL there is no guaran­

tee that in the future such locator's will be relevant. Similarly, there needs to 

be extensibility within the resolver to handle queries for metadata and other 

resource pointers. 

Evolutionary considerations with regar~ to users of URN resolvers are impor­

tant, but it is also relevant to consider the trend of continuing sophisticated 

security threats to computer systems. It is unwise to assume that such threats 

against URN resolvers, will never transpire, and as such, patches and updates 

to fix security problems need to be guaranteed. 

The exact requirements are reproduced from (Sollins, 1998) below: 

• A resolver must be able to support scaling in at least three dimensions: 

the number of resources for which URNs will be required, the number of 

publishers and users of those resources, and the complexity of the dele-
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gation, as authority for resolution grows and possibly reflects delegation 

in naming authority. 

• A hint resolution environment must support evolution of mechanisms -

specifically for a growing set of URN schemes, new kinds of local URN 

resolver services, new authentication schemes and alternative resolver 

schemes acting simultaneously. 

• A resolver must allow the development and deployment of administra­

tive control mechanisms to manage human behavior with respect to lim­

ited resources. 
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4.3 URN Schemes 

The following section presents four of the approaches to persistent naming. 

Each of these approaches specifies syntax and resolution semantics which en­

ables users to deploy identifiers with some or all of the URN characteristics. 

Specification of syntax and resolution processes can, however, restrict users 

and does not allow for the diversity of requirements that is likely. 

As most of the requirements outlined in (Sollins, 1998) are not addressed by 

these systems, they are presented in terms of their history, syntax and reso­

lution. Some consideration is also given to their adherence to the evaluation 

criteria for URN resolvers. 

4.3.1 Handle 

Developed by the US based Corporation for National Research Initiatives (CNRI), 

the handle system provides "an efficient, extensible and secured global name 

service for use on networks such as the Internet". The Handle system has been 

implemented by several groups such as Hewlett Packard (HP) and the massa­

chusetts Institute of Technology (MIT)~. with their DSpace repository project 

(Hewlett Packard, 2003), the International Digital Object Identifier group (IDF), 

with their Digital Object Identifier (DOl) system (Paskin, 2004) and various 

American defense agencies working on the Defense Virtual Library (DVL) 

(Markheim, 2004). 

Major outcomes of the Handle project have been the development of a URN 

name space for Handle documents and an open protocol for the resolution 

of these names. By defining their own name space, as all other implementa­

tions discussed here have, handle implementers are able to control resolution 

architecture much more effectively. The Handle system is comprised of multi-
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ple local resolvers which, when registered with an appropriate Global Handle 

Registry (GHR), become part of a global set of unique identifiers. 

Syntax 

Each "handle" takes the syntactical form shown in Figure 4.1: 

urn: (handle): (HandleNamingAuthority) I (HandleLocalName) 

Figure 4.1: Handle Identifier Syntax 

Where: 

• Handle Naming Authority: is the unique name of a delegated resolution 

authority. 

• Handle Local Name: is the locally unique resource name being refer­

enced. 

There are two important fields in the handle URN - the naming authority and 

the local name. Naming authority strings are delegated by a GHR to a Local 

Handle Service (LHS). The LHS assumes responsibility for mappings between 

handle local names and resource locations within its name space. Delegating 

resolution authority in such a fashion renders the GHR solely responsible for 

uniqueness of its delegated name spaces and the LHS solely responsible for 

uniqueness of the resources in its database. 

The assigned naming authority string provides a point of resolver delegation 

and, as such, is tightly controlled. However, it is left to the local authorities to 

determine the syntax of the local name. This leaves publishers free to devise 

their own structures to ensure uniqueness and usability. 
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Resolution 

Resolution of handles into uniform resource locations (URLs) occurs in a four 

stage process as shown in Figure 4.2. 

I 
Client with global 
service information 

------------------------. 
4. Result of client request 

<-------------------------------. 
3. Request to responsible 

Local Handle Service 
1. Client 
query for 
naming 
authority 
"10.1045" 

2. Service information 
for "10.1045' v 

v 

I 
Globa~ Handle I 

Reg1.stry 

Local Handle Service 
responsible for the 
naming authority 
"10.1045" 

Figure 4.2: Handle resolution procedure (Sun et al, 2003) 

The resolution process starts with a client querying the GHS for the LHS re­

sponsible for the naming authority the handle cites. Once determined, this 

information is returned by the GHS to the client with specific service informa­

tion necessary to contact the LHS. This service information is used to build a 

query against the LHS which in tum responds with a URL for the resource. 

Handle resolvers are presently implemented as a Java service which can run 

on either a single server per name space or can be distributed across several 

servers for performance and reliability. Performance can be further enhanced 

through use of the caching functionality within the handle framework. Handle 

caching servers can also be used to reduce bandwidth requirements and speed 

up requests. 

As mentioned, the handle service relies on its own resolution system, which 

means conventional web clients wishing to access handle services will presently 

need to either have a browser plug in or make use of a proxy server in order to 

resolve handles to URLs. A further and more pressing problem is the lack of 
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interoperability between handle servers. Rather than providing a global reso­

lution space, handle resolvers provide resolution only for the resources known 

to its database. 

Evaluation 

Handle's resolution framework offers strong security features. However, its 

evolutionary and usability features are open to criticism. 

The Handle System requires new client and server software to be installed on 

every node seeking to participate in resolution. Although this software ap­

pears quite simple to install and configure, many organisations will require 

strict security and performance validation before installing new software on 

production servers, thereby limiting the adoption and usability of the system. 

Furthermore, the choice of the Java language for servers (for portability rea­

sons) leads to serious questions about server performance should the handle 

server be faced with numerous queries. 

The DOl project has shown that the Handle can be implemented to incorpo­

rate economic incentives. This project requires payment of registration fees in 

return for allocation of identifiers and has, to date, been quite successful. 

Security concerns in Handle are well addressed with various technologies. The 

issue of Access Control has been met with per-resource controls on data with 

a Challenge-Response style authentication system. The issue of privacy has 

been addressed with optional cryptography of all client and server data inter­

change. 

In terms of evolutionary considerations, Handle does not specifically address 

issues of change in its design. However, the availability of source code for the 

platform means that implementers will be able to implement any changes they 

consider appropriate so long as they have the technical expertise. However, 
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the issue of URN growth is of some concern. Despite provisions for caching 

and distribution of resolution it remains to be seen how the Handle server will 

perform under a heavy load. 
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4.3.2 Persistent URLs 

The Persistent Uniform Resource Locator (PURL) system is a means of embed­

ding persistence into the current URL standard through the maintenance of a 

database of redirection addresses. This framework relies on the HTTP redi­

rection functionality which has been available since the release of HTTP 1.0 

(Fielding et al, 1999). Whilst not technically a URN system, its rate of adoption 

amongst Digital Library groups warrants consideration of its value. 

Syntax 

The PURL syntax is the same as that of a URL as shown in Figure 4.3. 

http://(ResolverAddress)/(directoryfield)/(resourcenarne) 

Figure 4.3: Persistent URL Syntax 

Where: 

• Resolver Address: is an Internet domain name that represents a resolver 

for this resource. 

• Directory Field: represents further hierarchical classification of the re­

source. 

• Resource Name: represents the name of the resource sought. 

Whilst the PURL does appear as a standard URL, the domain name field has 

an important difference as it is used to identify the address of a resolver from 

which the name specified as a resource location can be redirected into its actual 

URL. This URL is not at all necessarily linked to the PURL. 
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Resolution 

Lacking a global structure, the PURL system essentially creates identification 

islands whereby one resolver cannot be used to gain information further up 

the resolution chain. Within the domains themselves there is some provision 

for hierarchy as the name field can be used as a delegation point. This provides 

for two varieties of domains- "top level domains and sub domains" (Shafer 

et al, NA)- which are differentiated based upon whether they appear in the 

resolver address field (top level domain) or the directory field (sub domain). 

This hierarchy does not provide the benefits which it might should it extend 

over several resolvers. However, it does provide an administrative hierar­

chy which aids PURL database administrators greatly when considering user 

rights management for database updates. The clear delegation of resolvers has 

resulted in simple web based registration and rights assignment to the resolver 

itself. 

Users can point a browser at a PURL server and apply on line to be a reg­

istered administrator for a top level or sub level domain. PURL resolution 

can also be managed by means of access group or on a per user basis which 

restricts unregistered users from being able to view pages at all should the 

access permissions on the pages not be specified public. 

Though the PURL system enjoys widespread use, its applications are some­

what limited to institutions that do not require any form of interaction between 

their resources and the resources resolvable through other PURL servers. Fur­

thermore the isolation of resolvers means the benefits of efficiency and inter­

operability that distributed resolution systems such as the Handle system and 

the DNS enjoy are not available. 
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Evaluation 

The PURL system is not technically a URN resolution system and does not 

warrant evaluation as such. However, the approaches taken to usability by 

this project are valuable. 

PURLs are manageable through a series of web interfaces which are accessi­

ble when a user directs their browser at a PURL resolver. If the user is an 

authorised administrator, all mappings of PURL to resource can be managed 

on line. These mappings are stored on the PURL server and form the basis of 

HTTP redirects which are executed when a user requests the given PURL. This 

simplicity of administration and deployment is the PURLs strongest feature. 
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4.3.3 Archival Resource Key 

Another proposed solution to the problem of persistent identification is the 

Archival Resource Key (ARK) devised by John Kunze from the University of 

California for first release in 1992. The ARK system emphasizes several ne­

glected points with regard to persistent identifiers - most importantly, "per­

sistent actionable identifiers, where an actionable identifier is one that widely 

available tools such as web browsers can use" (Kunze, 2003). Its specification 

further stresses the "importance of the association between a string and an 

information object" (Kunze, 2003). 

Syntax 

The ARK syntax is designed to be encapsulated within a standard URL, how­

ever its structure expands well beyond and, similarly to Handle, is purposely 

resemblant of a URN identifier as shown in Figure 4.4. The purpose of this 

design is to enable users to extract that ARK component of a URL string to 

ensure ongoing usefulness "when the web no longer exists" (Kunze, 2003). 

I http: II (NMAH) I ark: I (NAAN) I (ResourceName) I 

Figure 4.4: Archival Resource Key Syntax 

Where: 

• NMAH: is the Name Mapping Authority Host port. 

• ARK: is the ARK label. 

• NAAN: is the Name Assigning Authority Number. 

• Name: is a identifying string issued by the NAAN. 
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In a URN context this identifier would be changed such that the NMAH, es­

sentially the location of a proxy server for URN resolution, would be "dis­

covered" and therefore not tied into the identifier. The NAAN number is a 

globally unique assigned number that directs the resolver to the organisations 

that originally assigned the Name to the object in question. NAANs are num­

bers in the form of 5 or 9 digits. This scheme will allow for up to a 100,000 

NAANs in 5 digit form and up to a billion in 9 digit form.The name com­

ponent is a NAAN-assigned alphanumeric string which can also include six 

characters (11=", 11
@", 

11$", 11 
_

11
, 

11*", 11+", 11#"). The 110/o" character is used to 

present encoded representations of characters not in the allowed list. Object 

hierarchy in naming is permissible through the inclusion of further/'s in the 

naming of the ARK. 

Resolution 

ARKs can be resolved into either a resource location, a location for meta data 

information or a statement outlining the guarantees of persistence the identi­

fier implies. 

In its present form ARK requires the use of proxy resolution services and the 

NMAH points to the location of such a service. It is anticipated that this will 

not be the case for long as means by which to resolve URNs become available. 

ARKs identified by the NMAH are global - that is 11 ARKs that differ only in 

the optional NMAH part identify the same object" (Kunze, 2003). This is sim­

ilar in functionality to the Handle system and an important difference when 

compared to the PURL system as there is a implicit guarantee of uniqueness. 

Once resolvers are located however the local resolution of ARKs is conducted 

through a four step process very similar to the Handle process outlined above. 

The technical implementation of this process is unclear from the initial pro-
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posal documents. However, suggestions exist for protocol development specif­

ically for this purpose. 

Evaluation 

ARKs have potential for success given the strong importance placed upon 

their persistence throughout their design. However, they have yet to address 

security in their specification and some questions remain about their usability. 

Using the ARK system involves editing flat-file databases of resource to identi­

fier mappings. Although these can be laid out in a simple format, the issues of 

access and editing procedures need to be addressed. Furthermore, the issue of 

economic incentives has not been introduced or suggested in the ARK context. 

According to the ARK specification, the system is designed with evolution in 

mind - "ARK mechanisms are first defined in high level, protocol indepen­

dent terms so that mechanisms may evolve and be replaced over time without 

compromising fundamental service objectives" (Kunze, 2003). This philoso­

phy is present throughout the documentation as the technologies involved in 

the implementation of the ARK system are described in general terms with 

their purpose clearly defined. 
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4.3.4 Life Sciences Identifier 

The Life Sciences Identifier (LSID) is a namespace of URN identifiers which 

"are persistent, location-independent resource identifiers for uniquely nam­

ing biologically significant resources including but not limited to individual 

genes or proteins, or data objects that encode information about them". De­

veloped in cooperation with International Business Machines (IBM) the LSID 

scheme has a well developed means of resolution, making use of emerging 

Web Services technology for describing and resolving resources. 

Syntax 

The LSID has a well defined identifier structure which aids in its efficient res­

olution. This structure is displayed in Figure 4.5. 

urn: lsid: (AuthorityiD): (NamespaceiD): (Obj ectiD) (: (RevisioniD)) 

Figure 4.5: Life Science Identifier Syntax 

Where: 

• ,AuthorityiD: is an Internet domain name representing the URN owner 

and resolver. 

• NamespaceiD: represents the collection the identifier belongs to. 

• ObjectiD: is an uniquely assigned number for a resource inside this col­

lection. 

• Revision ID: is an optional version iterator. 

Being a domain specific namespace there is little to be gained from an exam­

ination of this syntax. Of notable importance, however, is the authority ID 
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field, an Internet domain name representing an authoritative server for this 

resource. While dynamic resolution is discussed in the LSID proposal, this 

means of retrieval presents a "shortcut" which effectively rears the head of 

location dependence. 

Resolution 

Resolution in the LFID system is achieved through use of Web Services tech­

nology. Simply put, Web Services provide an application interface for the 

World Wide Web (WWW). Through use of the WWW, communication between 

applications and the platform neutral standards used throughout is greatly 

simplified, making Web Services a very useful distributed systems technology. 

The first step in the resolution of an LFID is the discovery of a resolver for 

the identifier cited. In most cases, the resolver is expressed as an Internet do­

main name in the AuthorityiD field. Work has been completed on providing 

a location independent means of resolver discovery using the Dynamic Dele­

gation Discovery System (DDDS). However, the use of this system is optional 

for LFID at present. The DDDS is discussed at length in Chapter 5. 

Once a suitable resolver has been found, the client sends a Simple Object Ac­

cess Protocol (SOAP) message to the authoritative resolver asking for the avail­

able services for this resource. This process is completed using the "getAvail­

ableServices()" method and, if successful, will return a list of services available 

along with the protocols required to access them. 

Finally the user is able to query any of the services available using the "get­

Data()" method. 
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Evaluation 

LSID systems are targeted toward a very specific subset of the scientific com­

munity- consequently, assessment of their usability has to take into considera­

tion the types of users that can be expected. In light of this the simple method 

calls required to retrieve LSID resources are quite reasonable. Furthermore, 

the various client utilities developed for the purpose of LSID retrieval provide 

an alternative and highly user friendly means of resource access. 

In terms of evolutionary considerations the extensive use of Web Services tech­

nologies can be seen as both a strength and a potential weakness. On one hand, 

the method implementation for resource retrieval is abstracted from the user 

and therefore free to change almost completely. However, the use of Web Ser­

vice protocols such as SOAP leaves the resolver open to failure as standards 

evolve. 

Though largely ignored throughout the specifications security issues in the 

LSID system could be comprehensively addressed through use of the various 

standards present in the field. Such standards could be extended to provide 

privacy to users and publishers. However, it remains to see how this will be 

achieved. 
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4.4 Summary 

This Chapter introduced four systems which aim to solve the problem of per­

sistent identification through URN deployment. Each system was found to be 

deficient in its means of resolution due to the inability for actionable identifi­

cation without proxy resolution. 

Chapter 5 introduces the DDDS - a globally actionable means of URN resolver 

discovery which could potentially remove the need for proxy resolution. 



Chapter 5 

The Dynamic Delegation Discovery 

System 

5.1 Overview 

Chapter 4 outlined the various URN implementations available presently. This 

Chapter explores the Dynamic Delegation Discovery System (DDDS), a pro­

posed mechanism for the location of URN resolvers. This system is described 

and assessed according to the requirements of usability, security and evolution 

introduced in Chapter 3. 

5.2, Design 

Perhaps the most significant move toward wide scale URN resolution has been 

the DDDS, developed as a generic application to "implement lazy bindings of 

strings to data, in order to support dynamically configured delegation sys­

tems" (Mealling, (2002). The DDDS is outlined in a set of five "request for 

comment" papers and although it remains generic enough for a variety of po­

tential applications it provides a potential means for URN resolver discovery. 

Unlike the URN systems discussed previously, the DDDS does not specify syn-
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tax for identifiers, nor does it actually provide functionality for resource reso­

lution. Instead the DDDS aims to partially solve the URN resolution problem 

by accepting a URN string input and traversing a database of "rules" toward 

the goal of locating a resolver server which is able to further dissect the URN 

into a resource location. This process is known as resolver discovery. By re­

solving a URN into the location of a responsible server the DDDS achieves the 

valuable goal of connecting the disparate URN resolution schemes available 

into an interoperable network of identifiers. This provides implementors with 

the flexibility to develop their own name semantics and their own algorithms 

for URN resolution. 

5.2.1 Rules 

The DDDS concept is based upon the notion of a "rule" which is the product 

of querying a database given a certain "key". The key required is itself the 

product of processing an "Application Unique String", a string input by the 

user, against a "First Well Known Rule", a default rule which is specific to the 

particular DDDS application at hand. It is common for one query to return 

several rules for the given key. There are six fields which comprise a rule; 

orde:r, preference, service, flag, regular expression and replacement. 

The order and preference components dictate the schedule of processing for 

the numerous rules returned. The order field is usually sufficient for this task. 

In the case that several records have been assigned the same order the prefer­

ence field is consulted to determine which rule is to be processed first. This 

flexibility can be used in several situations - for example, when distinguishing 

between the different resolution services offered on the one destination server. 

The service field is used to ascertain which of the prescribed application ser­

vices available are sought. The services available will differ depending on the 
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DDDS application. Likely examples in the URN context include "return URLs 

for given URN" and "return metadata for given URN". 

The flag component of a rule is responsible for "steering" the application ac­

cording to the types of rules it is receiving. Flags are responsible for declaring 

whether the rule processed is to be deemed "terminal" -in which case the 

application returns the processed key back to the user. Flags also tell the ap­

plication what type of information has been stored in the key. 

The regular expression field stores a POSIX regular expression rule, used to 

describe or match a string. When regular expression rules find a match they 

can replace the matching string component with a replacement - as present in 

the replacement field of the DDDS rule. These fields are used in conjunction to 

test if the application unique string is of the format described by the rule and, 

to produce a new string in the case of a match. The string produced forms the 

new key either used in the next lookup procedure or returned to the user. 

5.2.2 Resolution Process 

The exact manner in which rules are processed is documented in the DDDS 

specification (Mealling, 2002) and can be summarised in the following steps: 

1. The first well known key is applied to the application specific string to 

produce a key. 

2. The database identified by the key is queried for an ordered set of rules. 

3. The regular expression in each rule is processed in order until a non­

empty string is produced. 

4. The service field is checked against user requirements, return to step 3 if 

incompatible. 
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5. If terminal flags are present return key to the user. Otherwise, return to 

step 2 with new key. 

6. When a terminal lookup is found, return the key, services and flags to 

the user. 

This process is shown in Figure 5.1 

+--------- Application Unique String 
+-----+ input! 

·---------+ .First Hell Known Rule I 
+--------+ !output! 

··------+ Firat Key 
I 
+----<--------------<--------------+ 

k!y (a ooos databaoo always I +-----+ takes a key and returns 
!input! a rule) h 

+---------+ +------------+ I Lookup key in DDDS Database! 
+---------+ +-----------· !output[ 

+------+ rule set 

I (the input to a rule 
rule oct io the rule and the AUS. 
+-----+ The output is always 

+---------------->linputl either a key or the result) 
·---------------+ +------------------+ 

I Apply Rules to Application Unique String! 
until non-ettpty result are obtained 
that moot the applications requirements 

+---------------+ +-----------------+ !output! 
>!-------+ . ______________ :r _____________________ . 1 

I Was the last matching rule terminal? I No >------+ 
>!---------------------------------------+ Yes (if the rule isn't terminal then 

I its output is the new key which 
is used to find a new rule set) 

+------------------------------------+ 
I. The output of the last rule is the I 

result desired by the application 
+------------------------------------+ 

Figure 5.1: DDDS resolution process. (Mealling, 2002) 

In applying the DDDS algorithm to the resolution of the URN we are required 

to determine the values relevant to the fields comprising a rule. Consideration, 

must also be given toward the exact semantics of processing rules. 
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The Application Unique String, the URN specified by the user, will be gov­

erned by the syntax conventions outlined in the URN specification (Moats, 

1997). These requirements state that a URN should assume the basic structure 

of a "urn:" prefix, a Namespace Identifier (NID) and a Namespace Specific 

String (NSS). The further restrictions based on case and allowable characters 

stated in this document provide a well defined URN specification and, there­

fore, a well defined Application Unique String. 

The first well known rule, in the URN case, will be responsible for ensuring the 

input provided is a valid URN and returning a key which represents the root 

server responsible for URN resolution. The regular expression required to vali­

date a URN as conforming to the specifications outlined in (Moats, 1997) is rep­

resented in Figure 5.2. This rule matches the URN prefix and the namespace 

identifier syntax, as well as the explicitly disallowed characters. It does not fur­

ther restrict the namespace specific string, as this is variable on a namespace 

basis. 

[uU][rR][nN]:[.[A \"&<>[]\A'{\!}~]]+:[.[ A \"&<>[]\A '{\IJ~ ]]+ 

Figure 5.2: First well known rule for URN validation 

The issue of services in the URN context is open to interpretation at present. A 

document exists outlining service specifications (Mealling, 1999), however the 

services outlined are for resolution of URis (i.e. URLs or URNs of any form) 

and make no consideration of the functionality offered by the DDDS. A subset 

of these services can be considered relevant - those being the services which 

provide resolution of URNs to URis and URNs to metadata information. In 

the DDDS implementation presented these services are represented as "N2L" 

and "N2C". As the DDDS is not actually a complete resolution system, no 

immediate consideration of the mechanics of these services is required. 
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Finally, the flags component of the rules will need to inform the application 

when to leave the query process and, furthermore, what action to take upon 

completion. The four flags specified by (Mealling, 1999), "S", "A", "U", and 

"P" are case insensitive and mutually exclusive. "S" informs the application 

that the key returned provides a location of service records, "A" denotes a 

DNS A record has been returned, "U" denotes a URI for a resolver service and 

"P" states that the rest of the algorithm is application specific and should be 

handled outside the DDDS algorithm. 

Though not dictated by the specifications, an obvious and practical choice for 

the database which provides rule storage in the DDDS is the DNS. The DNS 

is practically universally available on modern operating systems and is there­

fore well placed to facilitate widespread URN adoption. In order to represent 

the DDDS rule structure in the DNS, a new Resource Record (RR) was de­

vised, known as the Name Authority Pointer (NAPTR). This record provides 

for storage of all six rule fields in the standard manner by which other Internet 

resources are represented. An example NAPTR record is shown in Figure 5.3. 

www .. foo.-corn. 
;; order pref flags service rcqoxp 

IN NAPTR 100 100 "s" "http+I2R" "" 
IN NAPTR 100 100 ''s" "£tp+I2R" "'' 

replacement 
_http._tcp.foo.com. 
_ftp._tep.foo.com. 

Figure 5.3: NAPTR format 

The NAPTR record represents the rule structure previously discussed. Its in­

clusion in the DNS specification allows theoretical access to the caching and 

security functionality that is critical within the context of a distributed resolu­

tion network. 

The DNS currently does not provide a simple method for inserting rules into 

the rule database. Several graphical user interfaces and web portals exist for 

this purpose, however the common means of inserting rules is editing config-
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uration files directly. 
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5.3 Evaluation 

5.3.1 Usability 

The DDDS offers several extensions to the usability of current URN systems 

and closely adheres to the requirements suggested in (Sollins, 1998). 

Users 

From the perspective of a user or client, the DDDS provides a simple and effi­

cient method of resolving URNs which requires minimal user interaction. As 

the DDDS algorithm and rule storage mimics that of the URL quite closely, 

the interfaces with which clients interact should not pose a significant learn­

ing curve. The DDDS resolution procedure should pose quite a small time 

overhead to the user within the larger goal of resource access. It is impor­

tant to note however that the interactions between the DDDS and the resolver 

which is discovered may in fact result in increased time to resource access and 

increased complexity. 

Publishers 

The DDDS offers publishers several advantages not present in other resolvers 

- most notably the option to change between resolver frameworks without is­

suing new identifiers and freedom regarding the identifiers they issue. The 

DDDS does not however solve the problem of presenting varying resource 

"lifetimes" and introduces complexity with the use of regular expression rules. 

The DDDS also does not suggest an obvious means of publisher managed 

rules. 

Administrators 

The largest unsolved problem regarding usability exists within the scope of 

administering and managing rules. This is simply because of the complexities 
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posed by the use of regular expressions. Although issue should not require 

frequent expert assistance, deriving rules to efficiently setup a namespace is 

a non-trivial task. Where publishers are left with minimal regular expression 

interaction by the DDDS, managers and administrators will need to be well 

versed in the creation of rules. 

The DDDS offers managers and administrators several concessions. The net­

work traffic overhead posed by the DDDS is quite minimal and the use of the 

DNS as a rule database should alleviate any new security concerns that may 

be posed by other URN systems such as Handle, which developed their own 

network protocols. Finally, the issue of configuring new resolvers should be 

quite simple given the DNSs ability to create slave servers securely and simply. 
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5.3.2 Evolution 

A primary concern with evolution is managing the ability to scale within a 

system which is likely to experience growth. Fortunately, the adoption of the 

URL has reached such colossal figures that many of the problems likely to be 

faced can be solved by incorporating the same solutions that worked for the 

URL. Employing the DNS as a database for rule storage effectively solves these 

problems immediately. 

The DNS has several features that ensure its scalability- most notably replica­

tion functionality, caching and a well structured name hierarchy. These func­

tions are available without any consideration required on the part of URN ad­

ministrators. The use of NAPTR preference and order values further ensures 

that URN managers can control the traffic that reaches both the resolvers it 

operates and the resources to which they refer. 

Along with the rule database, DDDS resolvers themselves need to expect changes 

in the mechanics of URN resolution. These changes will not necessarily affect 

the persistence of the resources identified, but may affect their accessibility if 

DDDS resolvers cannot cope with such changes. The present DDDS algorithm 

is generic enough to incorporate new s.ervices and flags. Major changes will, 

however, require updates to resolver software. It is quite probable that such 

changes would extend functionality of resolvers, and that the functionality of­

fered presently will be persistent throughout change. 

Finally, the DDDS needs to be able to delegate resolution to new resolver sys­

tems as they emerge. This should not pose an immediate problem for the 

DNS based approach so long as the resolvers devised can be accessed through 

one of the three access methods previously discussed. The DNS "SRV" record 

approach to resource access provides perhaps the most evolvable means of 

delegating resource resolution. 
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The more general issue of evolving to a need for economic frameworks for 

URN issuing and maintenance should be quite trivial given the hierarchy of 

resolution the DNS employs. This hierarchy is already home to an economic 

model through the current management of Internet domain names by Internet 

service providers. Extension of this system, or the development of new URN 

based providers using similar business models, should be relatively simple 

and will be necessary as demand for resources identified by URNs continues. 
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5.3.3 Security 

The DDDS inherits the security flaws present in the DNS along with the mea­

sures made to address these flaws. Privacy in the DDDS, however, is unfortu­

nately non existent- no functionality exists to protect the privacy of users or 

publishers. Several steps can be considered to improve this situation, although 

the solutions would require quite substantial improvements to the DNS as a 

whole. 

Access control, as it relates to the hint databases, is reliant on the credentials 

of the operating system hosting the DNS server. Whilst this does expose the 

database to potential corruption through the use of an insecure operating sys­

tem, the DNS database is somewhat protected as long as the administrative 

accounts on the systems are secure. 

Authenticity is a major problem with DNS servers, consequently users have to 

implicitly trust remote servers. Resolution requests can be intercepted and, if 

returned in time, answered by malicious hosts to redirect users to false hosts. 

Similarly, DNS "Cache Poisoning" can occur, involving malicious information 

being entered into valid DNS servers via cache. These security problems are 

partially addressed in the DNS Security .Extensions (DNSSEC) proposed by the 

DNSSEC IETF working group (Arends et al, 2005), however no widespread 

implementation has been achieved as yet. 

The threat of denial of service attacks can be addressed through replication of 

the database both by the means provided in the DNS software and by pro­

viding multiple records for each resource. Such multiple records and servers 

can be further protected by sheer number, geographic location and Internet 

connectivity as appropriate. 
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5.4 Summary 

The DDDS presents a way to join the currently disparate URN resolution sys­

tems into a URN system capable of global resolution. Although the interac­

tions between the DDDS and the resolvers it joins are not as yet defined, the 

ability to return various resource access methods should ensure these interac­

tions are possible. 

While the DDDS does not provide a means to resolve resource locations, it 

does manage to achieve several of the goals outlined in the URN resolver spec­

ifications. The DDDS provides efficient resource access to users with sufficient 

prospects for evolution in its structure even though it faces several challenges 

in relation to security and privacy. 

Given the adherence to resolver requirements demonstrated in this Chapter, 

Chapter 6 seeks to outline extensions to the DDDS which would provide for 

complete resource resolution. 



Chapter 6 

The Extended Dynamic Delegation 

Discovery System 

6.1 Overview 

Chapter 5 introduced the DDDS, a means of discovering resolvers for URNs. 

This Chapter introduces the Extended DDDS (EDDDS)- a system for the dis­

covery of URN resolvers and the subsequent resolution of URNs into resource 

locations. This system is described, prototyped and assessed according to the 

requirements of usability, security and evolution used throughout this thesis. 

6.2. Design 

The EDDDS presents a three phase approach to resolving URN identifiers: re­

solver discovery, resource resolution and service execution. While the discov­

ery process is essential to globally actionable URNs, it is possible- depending 

upon the other URN systems in place - for the resolver to delegate resource 

resolution and service execution to another system, such as Handle. 

Resolver discovery involves locating an authoritative resolver - capable of 

translating a URN supplied into the location of the resource it identifies. This 
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phase of the ED DDS is completed in a very similar fashion to that of the DDDS 

and, should the implementer wish, the EDDDS resolver can be used to point 

to alternative URN systems, as the DDDS does. The primary difference is the 

ability for the EDDDS to continue resolution of the URN once an authoritative 

server has been located. 

Resource resolution in the EDDDS involves the translation of a URN into the 

location of information about the resource it identifies. This information can 

be its location (URL), metadata about the resource (URC), the location of in­

formation to ensure data integrity, or the location of information regarding 

resource persistence. 

The first two phases: discovery and resolution - provide the functionality re­

quired of a resolver. These two phases, likely to be implemented as an operat­

ing system library, provide application programmers with the ability to build 

applications which use URNs. The final phase- service execution- dictates 

how the data the URN refers to is processed and presented to the user and 

would therefore be part of a resolution application for a specific namespace. 

While resolution of the URN is completed before the service execution phase, 

a resolver application will need to implement the services offered in order to 

be useful. The service execution phase involves the retrieval and processing 

of the information stored by a URN. In several cases, this procedure can be 

quite simple. User requirements can vary greatly depending on namespace, 

however, and these requirements are best met with variations in service execu­

tion. A detailed explanation of the plethora of ways URNs could be processed 

is clearly outside the scope of this thesis. However, an example of how a 

namespace could implement services is discussed in Chapter 7. 
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IN NAPTR "<ORDER>" "<PREFERENCE>" "<FLAGS>Q "<SERVICES>""<REGEX>""<REPLACE>" 

IN NAPTR "1 00~ "1 0" "RES:FTP" "N2l:audio/mpg""urn:paradlsec:AB1 :001 :A2~"ftp://ftp.paradisec.org.au/AB1/001/A2" 

Figure 6.1: ED DDS NAPTR standard format and example 

6.2.1 Rules 

EDDDS uses a DNS based database of NAPTR records as rules to guide the 

resolution process. The rules used by the EDDDS are required to be flexible 

to provide both partial resolution (resolver discovery) and complete resource 

resolution (location information). 

The overall NAPTR structure as a six field resource record (order, preference, 

flag, service, rewrite and replacement) has been retained. The NAPTR record 

appears as shown in Figure 6.1. 

The interpretation of the order and preference values will remain the same in 

the EDDDS. These fields will assume new capabilities in two respects: guid­

ing resolution of replicated resources to cater for demand, and distinguishing 

between various access methods for identical resources. These capabilities are 

inherent in the nature of a resource resolver and do not require further under­

standing of the operation of these fields. 

The representation of regular expressions in the EDDDS will remain the same 

as before- however, their interpretation and capabilities have been extended 

greatly. Where before simple matching expressions proved adequate resource 

curators with thousands of identifiers to manage may choose to use more elab­

orate expressions to reduce the amount of records required for a resource. It 

will be up to publishers and administrators to provide guidelines for expres­

sion use, simple expressions must be encouraged for non-technical users, the 

power of more complex expressions may be attractive to administrators. 

The contents of the flag and service fields have been changed significantly to 
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provide the extra functionality demanded by a resource resolver. 

Flags 

The flags field, only returned to the user in the final step of resolution, is 

responsible for notifying resolvers as to the type of server which has been 

reached. This extension is essential to inform applications on whether are­

solver server has been discovered, or if a resource has already been resolved. 

The presence of any flags in a rule represents a terminal lookup if the rule 

matches. This means the resolution process stops querying the database and 

either returns a discovered server address or a resolved location to the user. 

The flag syntax consists of two strings separated by a":" character. The first 

string represents server type and is either "DIS"- to represent the resolver dis­

covery phase of resource resolution or "RES" -to inform the client application 

the entire resolution process has been completed. 

While the process of resolver discovery is a matter of locating a server, reso­

lution involves returning a locator to a service. The important distinction is 

the difference in the communications protocols required between servers and 

services. Another important distinction exists between the notion of Internet 

serviCes discussed in the context of the flag NAPTR field, and services as dis­

cussed in the context of the URN resolution service represented in the NAPTR. 

In the discovery case valid entries for the flag field are "A" to represent a DNS 

A record, "AAA'' to represent the IPv6 variant of the A record, "SRV" to rep­

resent a DNS service record and "URL" to represent a Uniform Resource Lo­

cator. In the case that the resolver located is actually an ED DDS server capable 

of resource resolution, the application is returned a "NAPTR" - representing 

the location of further NAPTR rules. These strings have been changed subtly 

from the format they took in the DDDS in order to follow, where applicable, 



§6.2 Design 61 

the naming conventions for DNS resource records. The use of these IETF man­

aged conventions will ensure both a consistent interpretation by implementors 

and the simple addition of new standards as they become available. 

In the resolver case, the services being used are represented through their 

Internet service abbreviations, as maintained by the lANA. These abbrevia­

tions define the access methods for the service in question. The abbreviation 

"HTTP", for example, is maintained by the lANA to represent the Hypertext 

Transfer Protocol, a service which commonly operates on destination port 80. 

Services 

With the addition of resolution capabilities the importance of services in the 

EDDDS will increase dramatically. The service field syntax accepts any of the 

following URN resolution services: "N2L" for URN to URL resolution, "N2C" 

for URN to URC resolution, "N2S" for the resolution of data integrity informa­

tion and "N2P" to resolve a URN into an assertion of the persistence offered 

by its authoritative resolver. Other service requirements can be reasonably ex­

pected to arise and should follow a similar three character structure. Multiple 

service capability can be asserted by separating service identifiers with "+" 

characters. A server capable of fulfilling N2S and N2L services, for example, 

would have the service string "N2L+N2S". 

In addition to the new services offered in the EDDDS, users are now able to 

specify a preferred means of resource delivery where available. These service 

identifiers vary according to the service specified and, should the user wish, 

can be muted altogether. Where possible, the descriptions used adhere to rel­

evant standards. 

The N2L and N2C services both identify a type of content which is described 

by the lANA in its Multipart Internet Mail Extensions (MIME) standard. By 
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using MIME identifiers to describe content being requested, the user and pub­

lisher have a clear idea of the resource being published and requested. A ser­

vice field such as "N2L:audio/mpeg" would be an appropriate means of re­

questing audio in a mpeg format. A more general service request of "N2L:audio" 

would simply request the audio resources identified by a given URN. 

The N2S service describes a means of asserting digital integrity of the resource 

identified. There are several means by which implementors may choose to 

offer this service. The RSA and DSA algorithms provide similar functionality 

to assert digital identity. Therefore, a service field such as "N2S:RSA" requests 

an RSA encoded digital signature assertion of the integrity of this resource. 

6.2.2 Resolution Process 

Resolution in the EDDDS occurs in a two phase process incorporating resolver 

discovery and resource resolution. The resolver discovery function, similar 

to that provided by the DDDS, is essential to providing globally resolvable 

URNs- whether they be eventually resolved by EDDDS servers or other URN 

systems. Users are able to specify the contents of the flag and service fields 

completely or partially. The service type is the only field which must match 

for the a rule to be considered as appropriate. 

The discovery process occurs in a 6 step process: 

1. The First Well Known Key is applied to the Application Specific String 

to Produce a Key. 

2. The Database represented by the Key is queried for an ordered set of 

rules. 

3. The regular expression in each rule is processed in order until a non­

empty string is produced. 
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4. Check service and flags fields against user requirement, return to step 3 

if incompatible. 

5. If terminal flags are present return key to the user, otherwise return to 

step 2 with new key. 

6. When terminal lookup found return the key, services and flags to the 

user or proceed with resolution. 

The discovery process is shown in Figure 6.2 

Application Unique String 
Applied to First Well 

Known Rule 

Lookup records for key 
sort according to 
order/preference 

No: Loop with new key 

Figure 6.2: The ED DDS discovery algorithm represented as a flow chart 

In the discovery process, records are processed until a "DIS" flag is found in 

a record which satisfies the users service requirements and, where possible, 

provides the access methods which the user has requested. If the server is a 

EDDDS resolver server it will have a "NAPTR" flag which informs the client 
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application that NAPTR records are to be found at the location represented by 

the key. These records are then processed in a very similar fashion to those 

above: 

1. Query the database represented by the key for ordered NAPTR records 

(rules). 

2. Apply the regular expression rules in order until a non empty key is 

found which matches user service type requirements. 

3. Add the rule which produced the key to a new array and continue process­

ing rules until completed. 

4. Sort rule set according to those which best represent user requirements. 

5. If selected key is terminal return results to the user otherwise return to 

step 2 with new key. 

6. Upon terminal lookup return key services and flags to the user. 

The resolver process is shown in Figure 6.3 



§6.2 Design 65 

Retrieve rules 
for current key 

I 
Lookup records for key 

sort according to 
order/preference 

I 
Process keys in order until 
non empty string returned 

Add matching key to list, 
Loop until all matching 

keys expired Loop with current key 

Sort matching keys by 
adherance to user 

service requirements 

Is the best 
match terminal? 

Loop with new key 

Return Key, flags and Services 
to client application 

Figure 6.3: The ED DDS resolution algorithm represented as a flow chart 
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6.3 Evaluation 

6.3.1 Usability 

Due to the inheritance of functionality from the DDDS, the EDDDS inherits 

several usability characteristics of the DDDS. The predominant characteristics 

are the efficiency and security benefits of using the DNS and the challenges of 

using regular expressions. These characteristics, and the new usability charac­

teristics introduced by the EDDDS, are discussed below from the perspective 

of the users, publishers and administrators of the resolver. 

Users 

Were an EDDDS implementation to be introduced at the operating system 

level, present users of the Internet would notice little difference between the 

use of URLs and URNs- excepting the persistent availability of the resources 

they retrieve. Client applications which interact with an operating system ED­

DDS library, would operate in very similar means to applications which cur­

rently use URLs. Examples of such interaction from a user perspective could 

be the execution of programs which retrieve data files, input as URNs by the 

user, and the access of resources identified by URNs with tools such as web 

browsers. 

Although the notion of simple resource access is promising, the EDDDS of­

fers client applications and users the potential to specifically address the re­

quirements for the resource they require. Requesting resource information in 

a specific format, with the optional extended service string, empowers users 

to select the access method and data format that best suits their needs. 

The DDDS, with its simple structure and use of the DNS, proposed a quick 

means of resolver discovery with the total resolution time reliant on the server 
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discovered. Although this remains true of the EDDDS in the case of discovery 

of a non-EDDDS server, complete resolution through the EDDDS never leaves 

the DNS proving for resource access times comparable to the URL, which also 

uses the DNS. 

Publishers 

The EDDDS introduces an opportunity for users to specify much greater detail 

with regards to the services they require. This consequently allows publishers 

to tailor their data to the requests of users. Consider, for example, the case of 

an audio file "xyl" which is available in a smaller sized ".mp3" format and a 

higher quality, higher sized format ".wav". The use of complex services allows 

publishers to advertise both formats according to the requirements of the user 

and order their rules according to their own requirements. 

The EDDDS makes extensive use of regular expressions in order to guide res­

olution. Despite the complications of using regular expressions in the DDDS, 

the separation of discovery and resolution in the EDDDS introduces an oppor­

tunity for the simplification of regular expressions. 

Resolver discovery, usually the source of more complex expressions, could 

quite easily be delegated to the admini.strators of authoritative URN servers, 

with lhe resolution expressions remaining the responsibility of publishers. The 

advantages of such delegation would be the opportunities for interfaces to be 

created which accept user input, through means such as forms, and translate 

their intentions into regular expressions. Such opportunities are increasingly 

possible as resolver discovery is completed and the size of the potential ex­

pression decreases. 

Separation of discovery and resolution also leads to a clearer environment for 

the creation of economic models of URN control. It can be reasoned that pub­

lishers buy namespaces, or segments thereof, from administrators. The intra-
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duction of the "N2P" service, for the assertion of persistence, would allow 

publishers to guarantee their resources according to the agreements they have 

with namespace providers. 

Administrators 

Other than the scope for the creation of economic models of resolver discov­

ery and/ or resource resolution, administrators of URN namespaces are largely 

unaffected by the changes in the EDDDS. The features of the DNS which al­

lowed them to control server load and improve redundancy in the case of the 

DDDS still apply and have been furthered with new flexibility in the provision 

of services. High bandwidth resource applications, such as streaming audio, 

could be distinguished from lower bandwidth applications by use of the ser­

vice field and subsequently directed to more appropriate servers. 

The notion of complete resource resolution through the EDDDS, instead of 

discovery and delegation to another system, does provide administrators with 

both a more predictable idea of traffic requirements, as well as a probable de­

crease in the bandwidth overheads of URN resolution. 
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6.3.2 Evolution 

Evolution of the EDDDS, as with the DDDS, benefits greatly from the DNS. 

Scalability and accessibility are helped immensely by the ubiquity and invest­

ment made in the DNS by the Internet community. 

Scalability has also been revised with the EDDDS. Resource publishers are 

now able to specify the characteristics of their resources in terms of both their 

access mechanisms and the content format. This allows for the segmentation 

of high bandwidth or high demand items to avoid network saturation. 

Where the EDDDS differs from the DDDS in terms of design, evolution has 

been carefully considered. As with all distributed systems, the Internet relies 

upon standards to ensure interoperability. The new flag and service syntax in­

troduction by the EDDDS mimics that issued by the relevant standards bodies, 

in this case the lANA and IETF. 

The introduction of new resolution services in the EDDDS is very likely. As 

such the service execution phase of resource retrieval has been separated from 

the discovery and resolution phases. Implementation of new services simply 

requires an abbreviated identifier and the population of NAPTR rules. 
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6.3.3 Security 

Given the continued use of the DNS as a database for rule storage, the EDDDS 

shares the same security considerations as the DDDS. The introduction of data 

integrity initiatives provides some respite from the challenges discussed pre­

viously. However, the security of the EDDDS remains closely reliant on the 

security of the DNS. 

Data integrity in the EDDDS is asserted using the "N2S" service. This service 

returns the location of digital signature information for the resource being re­

trieved. "A digital signature of a message is a number dependent on some 

secret known only to the signer, and, additionally, on the content of the mes­

sage being signed." (Menezes et al, 1996). 

The use of digital signatures relies on the existence of a Public Key Infrastruc­

ture (PKI) to enable public key authentication. Public key authentication is 

an asymmetric authentication process which consists of public and private 

keys. "The public key defines an encryption transformation Ee, while the pri­

vate key defines the associated decryption transformation Dd" (Menezes et 

al, 1996). PKI systems consist of a means to distribute public keys and issue 

private keys through a "Certificate Aut~ority". 

Given a means to distribute public keys to users of a particular namespace, 

that namespace can begin to assert integrity of its data using digital signa­

tures. Several algorithms for asserting integrity with digital signatures exist, 

the most common of which are the "RSA" and "DSA" algorithms. 

Signing a message requires "transforming the message and some secret infor­

mation held by the entity into a tag called a signature", according to Menezes 

et al, (1996). Commonly, a compressed version of the message called a "mes­

sage digest" is created and signed. This digest is distributed as the digital 

signature of the original message. 
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The process of authorisation of a digital signature involves three steps. First, 

the user computes a message digest of the data they have received. Secondly, 

the signature is decrypted using the public key of the namespace. Finally, 

the two message digests are compared. If the digests are the same, the data 

retrieved is valid and intact. 

Providing privacy remains a major challenge in the EDDDS. Namespaces which 

choose to adopt PKI could in theory use some of the encryption functionality 

to scramble data transferred between DNS servers and EDDDS clients. Such 

a system would affect the public and global resolution of URNs, although in 

some application areas it could be deemed appropriate. 
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6.4 Summary 

This Chapter presented a novel approach to the problem of URN system through 

extending functionality offered by the DDDS, a mechanism for the discovery 

of URN resolvers. 

Both the EDDDS and DDDDS designs have been evaluated according to their 

adherence to the URN resolver requirements of usability, security and evolu­

tion. However, proof is required that these designs are functional. 

Such proof of concept is presented in Chapter 6 with a series of resolution 

experiments presented for a namespace of language identifiers. The results 

returned to the user in both the DDDS and EDDDS cases are presented and 

discussed. 



Chapter 7 

Experiments and Results 

7.1 Overview 

The previous two Chapters in this thesis outlined the DDDS, an algorithm for 

discovering URN resolvers, and the ED DDS, a series of proposed extensions to 

this algorithm to enable resource resolution. This Chapter presents an example 

implementation of both the DDDS and the EDDDS for a URN namespace of 

language identifiers in order to provide proof of concept for these designs. 

7.2 The PARADISEC URN namespace 

The PARADISEC URN namespace seeks to provide the Pacific and Regional 

Archive for Digital Sources In Endangered Cultures (PARADISEC) organisa­

tion with a persistent means of identifying resources stored within its archives. 

By applying for an lANA registered URN namespace, this thesis has been able 

to prescribe the syntax and resolution mechanisms that are required to access 

data identified with PARADISEC URN identifiers. URN namespaces are is­

sued upon submission of a namespace application document to the IETF. Pro­

posed namespaces are published as Internet-Drafts while accepted namespaces 

are issued as Internet-Standards, or RFCs. 

73 
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PARADISEC is a partnership between four major Australian universities which 

exists to ensure the long term survival of languages and cultures that may have 

otherwise been forgotten by history. "Over 2000 of the world's 6000 different 

languages are spoken in Australia, the South Pacific Islands (including around 

900 languages in New Guinea alone) and Southeast Asia" (N I A, 2005). It is 

claimed that "within the next century this number is likely to drop to a few 

hundred" (N I A, 2005). 

Due to the increasing number of research papers being produced citing infor­

mation within the PARADISEC archive, it is important to develop an identifier 

scheme which encourages the persistence of these citations and, therefore, the 

communities ability to access them. 

The PARADISEC URN syntax is comprised of three important fields- the col­

lection, item and name. Each of these fields are assigned unique identifiers by 

PARADISEC curators when a resource is submitted to the archive. The collec­

tion is represented by the initials of the contributor, the item is an incrementing 

number for each item submitted and the name is the filename of the resource. 

These result in a URN in the form shown by Figure 7.1 

urn :paradisec: (collection): (item): (name) 

Figure 7.1: PARADISEC identifier syntax 

7.2.1 urn:paradisec:AB1:001:A 

To illustrate the process by which the DDDS and EDDDS can be applied to 

PARADISEC URNs, the resolution of URN urn: paradisec :ABl: 001 :A will 

be described. In both cases, the user is required to submit two pieces of in­

formation to the URN resolver- the URN to be resolved and the services re­

quired. In this case, an "N2L'' URN to URL service will be illustrated for both 
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the DDDS and EDDDS, with extra parameters incorporated into the EDDDS 

service specification. 

The testbed environment used is outlined in Figure 7.2. This environment con­

sists of a network of Berkley Internet Names Database (BIND) DNS servers 

referring to two resource repositories, located at the University of Sydney and 

the Australian Partnership for Advanced Computing. This design was in­

tended to show the potential for delegation between resource locations and 

the institutions that host them. Whilst these location names were chosen for 

illustrative purposes, the implementation was conducted on DNS servers at 

the ANU aliased with these domain names. 

Top level URN E] 
ONS server 
"urn.arpa" •••• 

/I DNSservers 1 ~!J PARADISEC 

§ :~:~:~:~:~:::~:~~~::~: a "ns3.paradisec.org.au" 

Resolvers fa • 
other URN '''' .. _ .. , ~ 

PARADISEC 
. "collections.paradisec.org.au" • • • • ~~~;·.~... li II 

Resource ~ ~ Storage Facilites 

"da::::,::~~::::::au• ~ jfil :IJ -"'"' 

~ 
Authoratativeserver 
fortheABl Collection 
"torres.unisyd.edu.au" 

Figure 7.2: An example environment for PARADISEC URN identifiers 

In the POSIX regular expression library, case insensitivity is expressed by pro­

viding both the lower and upper case values for each character. For example, 

matching "urn:paradisec" would involve separating each character into its up-
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per and lower case values. An expression such as 

"[uU][rR][nN]:[pP][aA][rR][ii][dD][sS][eE][cC]" results. Therefore, although 

the PARADISEC namespace is specified as case-insensitive, all examples in 

this thesis are assuming user input in lower case for the purpose of readabil­

ity. 
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7.3 DDDS Implementation 

This section outlines the discovery of an authoritative server for the PAR­

ADISEC URN "urn: paradisec :ABl: 001 :A". Thematchingrulesprocessed 

by the application at each stage of the process are displayed and discussed. 

In order to enable resolver discovery, the DDDS algorithm was implemented 

in a "ddds" Java application. The sequence diagram shown in 7.3 shows the 

interactions between this application, the "resolverClient" client application 

and the DNS. 
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7.3.1 Discovery 

The first query to the DNS seeks all records at the root level of the URN tree. 

It is envisaged that this would be directed toward a root server at the lANA, 

as is the case with Internet domain names at present. There exists a urn.arpa 

domain, administered by the lANA, which could be used for this purpose. 

The resolver will process each of the rules until it finds a match of service and 

rule. In the paradisec case, the successful match would be the rule shown in 

Figure 7.4. 

IN NAPTR "1 00" "10" "A" "N2L""[urn:paradisec:[.[A\"&<>[J\A'{\IHJ+:[.[A\"&<>[)\A '!\IHJ""ns1.paradisec.org.au" 

Figure 7.4: PARADISEC namespace NAPTR record 

The second query to the DNS is for a resolver for the ABl collection, now that 

the authoritative PARADISEC namespace resolver has been located. The rule 

which matches this requirement is shown in Figure 7.5. Although continued 

matching of rules for this type of resolver could be expected, it is assumed 

that the resolver for this collection is authoritative for all items in the ABl col­

lection. Therefore, the final query, which should be expected to be a terminal 

query, will result in the specification of an access method for the resolver of 

this collection. The flag which prescribes this access method, one of either S, 

A or U, will require different actions from the user. 

IN NAPTR "1 00" "10" "" "N2L''"urn:paradisec:ab1 :[.[A\"&<>[J\A '{\IJ-J+]:[.[A\"&<>0\A'{\IH+J"ab1.collections.paradisec.org" 

Figure 7.5: PARADISEC ABl collection record 
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7.3.2 Results 

Now that an appropriate resolver for this URN has been located, the DDDS 

returns one of several types of rules to the user as a successful result. These 

rules, their format and usage are presented below. 

SRV resolution 

In the case of a SRV record being returned, the user must be able to further 

resolve DNS SRV records, as specified in (Esibov et al, 2000). These records 

provide users with a domain name and a port number on which to access 

resources. An example rule which would return a SRV record is shown in 

Figure 7.6. 

IN NAPTR "1 00" "1 0" "S""N2L""urn:paradisec:ab1 :001 :a"" _http._tcp.paradisec.org.au" 

Figure 7.6: PARADISEC example SRV resolution 

SRV records provide a further level of abstraction to the user as they prescribe 

the service provided to the user according to its definition as managed by the 

lANA, not according to a port number ·as in the case of a URL. Although the 

use of port numbers in URLs give a user a reasonable idea of the service to ex­

pect, the use of SRV records assures the users understanding and subsequent 

use of the correct access protocol. SRV records afford the user the clearest idea 

of what step to take next in resource resolution however they do not specify 

syntax for resolution to continue. Therefore, the user or client application can 

reliably access the server specified, but the query process to resolve the cited 

URN is unclear and not suggested by the rule returned. 
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URL resolution 

AU flag returned to the user indicates a URL has been returned. This provides 

information for accessing the resolver cited but, as mentioned, no guarantees 

on protocol conformity. Such a URL record returned would appear as shown 

in the replacement field of Figure 7.7. In this instance, the user has been re­

turned what appears to be a website, however, there is no means of specifying 

the resource access methods required. 

IN NAPTR "100" "10" "U""N2L" "urn:paradisec:ab1:001:a" "http://www.paradlsec.org.au/resolver/" 

Figure 7.7: PARADISEC example URL resolution 

One solution to this is to incorporate a complete or partial substring of the 

first well known rule into the result through use of a back reference. A back 

reference is a regular expression concept which involves taking part of the 

matched string p-ortion and incorporating it into the replacement expression. 

Incorporated in this manner, the URL resolution approach is of some use to the 

user, provided the URL scheme returned is actionable by the client application. 

A resolution 

The most simplistic return value, an A record, simply provides the user with 

an IP address of a host, which should be responsible for resource resolution. A 

rule which would produce such a record is shown in Figure 7.8. The domain 

name represented in the replacement field would be returned as a key and 

queried by the client resolver for an IP address. 

This is the least useful of the various return values as the user is left to guess 

what the next point of interaction with the resolution process should be. No 

access protocol or port number are provided. 
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IN NAPTR "1 00" "1 0" "A""N2L" "urn:paradisec:ab 1 :001 :a" "resolver.paradisec.org.au" 

Figure 7.8: PARADISEC example A record resolution 

7.4 EDDDS Implementation 

As with the DDDDS resolver, the ED DDS resolver developed was implemented 

as a Java object which can be instantiated with a URN string and a user defined 

service flag. This implementation is modelled in Figure 7.9. 
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In this example, the user has specified the urn "urn :paradisec :ABl: 001: 

A" and the flags "N2L:audio/mpeg". The resolution of this identifier follows 

the discovery and resolution of this resource and presents the various service 

results that the user can expect. 

7.4.1 Discovery 

The first rule processed by the ED DDS accepts the URN entered by the user as 

input and returns a key upon finding a match. As the example URN meets 

the syntax requirements, the key produced will be the location of the root 

DNS server for URN records. Traditionally, root servers are managed by the 

lANA and in this example the server address "urn.arpa" is used. This server is 

queried for NAPTR records and produces rules for each of the urn namespaces 

registered. The records shown in Figure 7.10 represent a match for the par­

adisec namespace. 

IN NAPTR "100' "10" "'"N2L+N2P+N2C+N2S""urn:paradisec:[.[A\"&<>0\II'I\IHI+:[.(A\"&<>0\II'{\IHJ+" nsl.paradisec.org.au 

IN NAPTR "1 00" "1 0" """N2L+N2P+N2C+N2S""urn:paradisec:[.[ A\"&<>0\A '1\1)-Jl+:[.[ A\"&<>0\A '1\1)-JJ+" ns2.paradisec.org.au 

IN NAPTR "100" "10' """N2L+N2P+N2C+N2S""urn:paradisec:[.[A\"&<>0\~~'I\IHI+:[.[A\'&<>0\A'{\IHI+" ns3.paradisec.org.au 

Figure 7.10: The top level or root PARADISEC resolver records 

As there are three records which match the paradisec namespace, all iden­

tically ordered and offering identical services, the EDDDS will use the first 

record it finds. This record will be different for each resolution attempt. This 

"round robin" approach to DNS server location is commonly used for high de­

mand servers such as web servers and has the effect of load balancing queries. 

Assuming the use of "ns1.paradisec.org.au", the EDDDS algorithm loops and 

queries this key for a set of rules. Once ordered, the rules appear as shown 

in Figure 7.11. In this case, given the request for the collection "AB1" the 
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"abl.paradisec.org.au" record will match. 

IN NAPTR "1 00" "1 0" "" "N2L+N2P+N2C +N25" "urn:paradisec:ab 1 :[.[A\ "&<>0\A' !\ll-ll+" ab 1.collections.paradisec.org.au 

IN NAPTR "200" "1 0" "" "N2L+N2P+N2C +N25" "urn:paradisec:tk 1 :[.[A\ "&<>0\A' !\IHJ+:[.[ A \"&<>0\A' !\ll-ll+" tk 1.collections.paradisec.org.au 

IN NAPTR "300" "1 0" "" "N2L +N2P+N2C+N25" "urn:paradisec:jc1 :[.[A\"&<> 0\A' !\ll-ll+" jc1.collections.paradisec.org.au 

Figure 7.11: Ordered rules for a subset of PARADISEC collections 

85 

In the final EDDDS loop, the server responsible for the ABl collection is queried 

for rules. The rules returned will appear as shown in 7.12. Despite all rules 

matching the requirements for this query, the lowest ordered rule is terminal 

and as such, is returned to the user. This record specifies the location of more 

NAPTR records and therefore can continue to be processed inside the ED DDS. 

IN NAPTR "1 00" "1 0" "DIS:NAPTR""N2L+N2P+N2C+N2S""urn:paradisec:ab1 :[.[A\'&<>[J\A '1\IJ-J]+" ab1.arts.unisyd.edu.au 

IN NAPTR '200" "1 0" "DIS:A""N2L+N2P+N2C+N2S"urn:paradisec:ab 1 :[.[ A\'&<>[J\A '!\1}-]]+:[.[A\"&<>[J\A '!IIHJ+" 150.203.0.178 

IN NAPTR "300" "1 0" "DIS:SRV" "N2L +N2P+N2C+N2S"''urn: paradisec:ab 1 :[.[A \"&<>[]\A' !IIHJ+" _tcp._http.handle-srv.unisyd.edu.au 

Figure 7.12: Discovered resolvers for the ABl collection 

Had the AAA, A, SRV or URL records been ordered higher the user would re­

ceive a rule specifying the location of an authoritative server to pursue outside 

of the EDDDS, as is common in the traditional DDDS. At present, it is not pos­

sible to provide further guidance to the user after this value is returned. With 

some consideration to the way in which records are resolved with systems 

such as Handle and Purl this would be feasible. 
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7.4.2 Resolution 

Given the key "ab1-res.paradisec.org.au" returned in the final step of the dis­

covery phase had a NAPTR flag, it is now possible to attempt resource res­

olution using the EDDDS. The client service requirements specified for this 

process were "N2L:audio/mpeg" and the discovered rule states that N2L is 

an available service. The following steps involve finding the best fit for these 

service requirements. 

The PARADISEC namespace organises data in a hierarchical fashion accord­

ing to collection, item and name. The PARADISEC collection AB1 represents 

several items. This hierarchical structure introduces potential for resolver del­

egation, as shown in Figure 7.13. 

IN NAPTR "1 00" "1 0" '"'"N2L""urn:paradisec:ab1 :001 :[.*]"torres.unisyd.edu.au" 

IN NAPTR "200" "10" "'"'N2L""urn:paradisec:ab1 :012:[.*]"torres-data.paradisec.org.au" 

IN NAPTR "300" "1 0" "'"'N2L""urn:paradisec:ab1 :002:[.*]"torres.store.anu.edu.au 

Figure 7.13: Resolver servers available for the 001 item 

The "001" item, and the torres.unisyd.edu.au server responsible for its data 

storage have several records which match the resource name" A". These records, 

shown in Figure 7.14, present various different resources identically ordered 

with preferences used to reflect the more common requests expected by the 

curators. 

IN NAPTR 100 10 "RES:http" "N2L:text/html" "urn:paradisec:ab1 :001 :a" http://dataserv.unisyd.edu.au/ab1/001/a.html 
IN NAPTR 100 10 "RES:http" "N2L:audio/wav" "urn:paradisec:ab1:001:a" http://store.anu.edu.au/ab1/001/a.wav 
IN NAPTR 10010 "RES:ftp" "N2L:audio/mpeg" "urn:paradisec:ab1:001:a" http://store.anu.edu.au/ab1/001/a.xml 

Figure 7.14: Resolution options for the urn:paradisec:AB1:001:A resource 

Although all of these records match the key, and are subsequently stored for 
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service proce.ssing, the service request is not matched completely by any of 

them. Therefore, each of the records are sorted by their adherence to the ser­

vice "audio I mpeg". The best match is found by performing a regular expres­

sion match between the string presented in the service field of the rule and the 

service specified by the user. 

In this case, the best service match is the "N2L:audio/wav" service offered by 

a resource stored at the ANUSF. As the flag field of this record, "RES:http" is 

terminal, the EDDDS returns with this rule. 
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7.4.3 Results 

Whereas in the DDDS the address of a discovered server is offered, successful 

resolution of ED DDS identifiers provides the user with a location address and 

a statement of the services offered at that location. It is important to note that 

the execution of services will vary greatly between namespaces - therefore, 

inclusion of service execution in an EDDDS resolver would greatly restrict us­

ability. 

In this example discussed the most simple example of resource resolution, 

N2L. The record set presented in Figure 7.15 shows an example of the other 

services which might be offered by a server responsible for this URN. The 

process of service execution for each of these services is described below. 

IN NAPTR 100 10 "RES:http" "N2C" "urn:paradisec:ab1 :001 :a" http://dataserv.unisyd.edu.au/ab1/001/a.xml 
IN NAPTR 100 10 "RES:http" "N2S:RSA" 'urn:paradisec:ab1:001:a' http://store.anu.edu.au/ab1/001/a 
IN NAPTR 100 10 "RES:ftp" "N2L:audio/mpeg' "urn:paradisec:ab1:001 :a" http://store.anu.edu.au/ab1/001/a.mpeg 
IN NAPTR 100 10 "RES:http" 'N2P" "urn:paradisec:ab1 :001 :a" http://policies.paradisec.org/ 

Figure 7.15: Alternative service options for the urn:paradisec:ABl:OOl:A resource 

N2L 

In the N2L case, a URL is returned which represents the resource which was 

queried. In the PARADISEC example, this resource is held by a server which 

runs a HTTP, FTP or RTSP service. 

As all of these resources are actionable, there are several methods by which 

information can be returned to the user. The most simple method, as used in 

this example, would be to return the URL only -leaving the task of gathering 

the resource up to the user. Alternatively, the service could use a platform 

specific tool, such as GNU "wget" for UNIX systems, to retrieve the resource. 

Ideally, URN resolution could be implemented as a native or "plugin" function 
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for web browsers. This would enable users to very simply access resources 

identified by URNs in a similar fashion to the way web resources are accessed. 

In other namespaces such simple resolution might not be appropriate. Loca­

tion addresses returned may be a subset of an image which is to be retrieved 

and processed according to further guidelines. Alternatively, they could be 

email addresses which are to be transparently used by a Message Transfer 

Agent (MTA) to send a clients email and could even be the location of a web 

service to be invoked by a client application. 

N2C 

In the simplest example, metadata associated with a resource could be re­

trieved in one of the three methods mentioned above. As metadata in the 

PARADISEC namespace is actionable via HTTP, the process of returning are­

source location is sufficient. 

URC information can be stored in several formats from informal means such 

as plain text files, through to established standards, such as the Dublin Core 

Metadata Initiative (DCMI). Although these formats are all representable through 

a URL, applications may retrieve, interpret and process metadata quite differ­

entlY: 

N2S 

Digital signatures in the EDDDS provide a means for users to ensure that the 

data they retrieve is valid. Digital signatures were discussed in Chapter 6. 

The PARADISEC implementation returns only a URL location of a digital sig­

nature for the record listed. Matching and processing this signature against a 

hash of the resource retrieved is achievable through various libraries for vari-
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ous programming languages. 

Distinguishing between signatures encrypted with the DSA or RSA encryption 

algorithms is done through use of the service flag. Implementation of a public 

key encryption system, necessary for the distribution of public and private 

keys to perform signature checks, is outside of the scope of the EDDDS. 

N2P 

There are several ways in which persistence can be asserted by a resource. In 

the case where a user is simply using the persistence value as a guide to the 

longevity of their resource, a textual representation may be appropriate. In 

other examples, the date format may need to follow a machine consumable 

format such as the Julian date format. 

Furthermore, functionality exists to use the Time To Live (TTL) value in the 

DNS. This value, commonly used for caching purposes, could be interpreted 

as a guaranteed time frame for the resource information to remain static by 

either the user or the client application. 

In the PARADISEC example, users would use the persistence value as a guide 

to estimate the longevity of their citations. Given this direct user interaction, 

dates are displayed in a simple "DDMMYYYY" format. 

In the PARADISEC namespace example, persistence is stated as a best effort 

estimation of the life of the identifier. In other examples, this assertion may 

be guaranteed by various administrators and enforced by way of economic 

agreements with publishers. 
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7.5 Summary 

The implementation of the DDDS and EDDDS systems proves that the algo­

rithms suggested in Chapters 5 and 6 can solve the problem of URN discovery 

and resolution. Furthermore, the successful processing of rules toward resolu­

tion justifies the selection of the DNS as a database. 

The demonstrated resolution of the PARADISEC identifier urn: paradi sec: 

AB 1 : 0 0 1 :A illustrates the various strengths of the DDDS and ED DDS sys­

tems, most notably concerning the opportunities for providing for and assert­

ing the persistence of resources via flexible NAPTR records. Any of the rules 

traversed in this example could be extensively restructured, and the resource 

locations subsequently moved, without any changes to the structure of the 

URN identifier. This would not have been possible with the URL without em­

ploying specific technologies such as web-server redirection. 

Implementation of the DDDS provides the user with a very simple set of re­

sults, as specified by the DDDS design. Whilst in theory the goal of resolver 

discovery has been reached, a major obstacle exists regarding the clear defini­

tion of the interactions between the DDDS and the resolvers discovered. This 

problem is not solved in the design or implementation of the EDDDS as it re­

quires consensus between all other URN systems on a standard for querying 

their resolvers. The availability of a global discovery system does, however, 

provide these groups with a means for implementing their own EDDDS sys­

tems which incorporate a namespace and resolver specific means of dealing 

with the resolver servers discovered. 

The EDDDS implementation discussed in this Chapter provides a means for 

users to access a variety of services identified by URNs. Although simple dis­

covery is an option in this implementation, complete resolution is available 

with various options for delegation and delivery of user requirements. 
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The various features of the DDDS and the EDDDS have previously been cri­

tiqued in accordance with the aims of usability, security and evolution. This 

implementation provides proof of functionality for these algorithms. 



Chapter 8 

Conclusion 

This work sought a means of persistent identification which, unlike the sys­

tems currently available, was accessible and "actionable" in a uniform and 

global manner. 

Resources are presently identified on the Internet through use of a URL. This 

work proved the unsuitability of the URL for persistent resource access. Re­

solving URLs on the Internet is made possible through use of the DNS. This 

work sought to explore current approaches to partial URN resolution with the 

DNS and suggest extensions which would provide for complete URN resolu­

tion. 

8.1 . Contributions 

• Does the proposed extension to the DDDS provide an adequate resource 

resolution system for the URN? 

The resolution system proposed in this work, the EDDDS, achieves both tar­

gets of being actionable and persistent while conforming to many of there­

quirements outlined in (Arends et al, 2005). 

The use of the URN for persistent identification has always seemed optimal. 

A comparison of the current approaches to Internet identification against a list 
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of desirable characteristics justifies this assumption. 

Given the use of such an established identifier, the current attempts at resolu­

tion were examined and found to be lacking in several areas. Most notable was 

the inability of any of the current URN systems to provide globally actionable 

identifiers without the use of a proxy resolution service. Proxy resolution - a 

process usually as simple as encapsulating a URN into a URL- undermines 

the goal of persistence by making identifiers reliant on the proxy and the tech­

nology the proxy implements. 

The DDDS, a URN system capable of partial URN resolution, was found to 

be quite useful in a number of respects. Its design, once implemented and 

evaluated, was found to be suited to the goals of this work. The DDDS did 

not, however, completely satisfy the goal of actionable identification. 

In order to satisfy this goal, a number of extensions to the structure of the 

DDDS were proposed and named the EDDDS. These extensions were imple­

mented and proved to provide an actionable identifier in the form of the URN. 

• Can the URN resolver developed be used to resolve resources for a URN 

namespace. 

The proof of concept implementations of both the DDDS and ED DDS achieved 

several outcomes. First, technical feasibility of the algorithms proposed was 

demonstrated. This demonstration included proof of successful interactions 

with the NAPTR DNS record and successful results in varied resolution sce­

narios. Secondly, this work demonstrated the ease by which a group can de­

ploy persistent means of identification. The PARADISEC namespace imple­

ments its own naming hierarchy to meet the goals of identification in the lan­

guage community. 

It has been understood throughout this research that an actionable identifier 
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is just one of the many factors that affect the persistence of a resource on the 

Internet. That said, the flexibility introduced by the EDDDS encourages per­

sistence by virtue of its design. Requiring only suitable management by pub­

lishers and administrators of URN identifiers to ensure persistence. 

Whilst there are several questions to be answered and policies to be developed 

before the EDDDS could be implemented on a wide scale, the design proposed 

provides a strong foundation upon which the URN identifier can reach its po­

tential on the Internet. 
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8.2 Future Work 

Although the EDDDS provides a means for groups to start resolving their own 

URNs now, there are several considerations for future work to ensure its suc­

cessful implementation on a wider scale. 

Usability 

At present, the EDDDS provides an efficient means of retrieving resource in­

formation, but no means of efficient publishing. The use of regular expressions 

requires unrealistic technical proficiency on the part of the user. One possible 

solution is a system of forms where most expressions could be simplified on a 

per-namespace basis and incorporated into a web interface to the DNS for use 

by publishers. 

Although the various EDDDS implementations will be subject to their own 

performance requirements, the ability of the DNS to rapidly return queries af­

fects all Internet users. Incorrect use of the NAPTR record, being either the use 

of exceedingly long fields or simply too many records, could adversely affect 

DNS servers -especially the root servers. This problem may be addressed with 

either replication of servers or controls on NAPTR format, however, modelling 

will be necessary to devise acceptable use. 

Security and Privacy 

Despite proven and reliable means of integrity assertion within EDDDS, the 

DNS remains flawed in relation to both security and privacy. Future work 

in this field will remain hampered by the need to maintain interoperability 

between DNS servers across the world. 

Evolution 

It is unreasonable to expect that universal adoption of the ED DDS for resource 
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resolution will occur. Therefore, interaction with other resolvers, such as those 

discussed in this work, will need to be improved. At present, authoritative 

resolvers can be located regardless of type - however, there is no means for 

these servers to assert their capabilities or the means by which they can be 

accessed. 

Policy 

Given the amount of administrative control used by governments and indus­

try bodies over assigned Internet domain names and URL namespace iden­

tifiers, it is naive to imagine URNs, whose namespace identifiers represent 

similar interests as domain names, will be without such control. 

It remains to be seen what level of control will be required in order to maintain 

operation of a global network of URNs. At the very least restriction of the IETF 

policy on assigning URN namespace identifiers can be anticipated. 

In line with this development in policy, an economic model for the issuing 

of URN namespace identifiers, maintenance of authoritative servers and is­

suance of individual resource identifiers may be deemed necessary. 



Appendix A 

Java Implementation 

A.l Client Application- "resolverclient.java" 

I• 
* Application creates aud iuvokes au DDDS resolver object. 

* @author Luke Brown luke@bur. st 

* ®version 0.1 

•I 
public class resolverClient { 

public static void main( String args []) { 

String application Unique = "urn: paradisec: abl :001: a"; 

String serviceRequired = "N2L"; 

/* Attempt resolution using the DDDS */ 
try { 

I* Create DDDS Resolver object */ 
d?.ds d = new ddds( applicationUnique, serviceRequired); 

I• Set Debug Flag •I 

d. se!Debug (); 

/* Fill storage object *I 

ruleStorage dddsResults =d. resolve(); 

/* Print retrieved rule aud generate Jiual key */ 
System. out. println ("Rule ... returned: ... \n" 

+ "Order .. = ... " 

+ dddsResults. order 

+ "\n" 

+ "Preferences ... = .. " 

+ dddsResu1ts. preference 

+ "\n" 
+ "Flags-=-" 

+ dddsResults. flags 

+ "\n" 

+ "Services ... = ... " 

+ dddsReaults. service 

+ "\n" 

+ "Expression ... = ... " 
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+ dddsResults. regexp 

+ "\n" 
+ "Replacement ... = ... " 

+ dddsResults. replacement 

+ "\n\n" 
+ "Final ... key ... -= .. " 

+ application Unique. replaceA11 ( dddsResults. regexp, 

dddsResults. replacement)); 

catch (Exception e) { 

System. err. prin tin (e. get~essage ()); 

System. out. println ("Error ... resolving~!" ); 

I* Attempt resolution using tile EDDDS */ 

try { 

/* Service requirements exte11ded *I 
serviceRequired = "N2L: audio/mpeg"; 

I• Create EDDDS Resolver object •I 

eddds e =new eddds(applicationUnique, serviceRequired ); 

I• Set debug flag to true •I 

e. set Debug(); 

f* Fill ruleStorage object test with resolved ruleset *f 

rulcStorage edddsResults = e. resolve (); 

/* Priut retrieved rule */ 

System. out. println ("Rule ... returned: ... \n" 

+ "Order .. = ... " 

+ edddsRcsults. order 

+ "\n" 

+ "Preferences ... = ... " 

+ edddsResults. preference 

+ "\n" 

+ "Flags ... = ... " 

+ edddsResults. flags 

+ "\n" 

+ "Services ... = ... " 

+ cdddsResults, service 

+ "\n" 

+ "Expression ... = ... " 

+ edddsResults. regexp 

+ "\n" 

+ "Replacement...= ... " 

+ edddsResults. replacement 

+ "\n"); 

catch (Exception e) { 

System. err. println (e. getMessage ()); 

System, out. println (" Error ... resolving JJRN!") i 
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A.2 Storage Class- "rulestorage.java" 

I• 
* This class provides a rule storage structure for NAPTR records 

* ®aut/tor Luke Brown luke@bur. st 

* ®versiou 0.1 

public class rulcStorage { 

int order; 

in t preference; 

String flags; 

String service; 

String regexp; 

String replacement; 

I• 
* ruleStorage coustructor, builds a ruleStorage object to represent 

* the given values of a NAPTR record. 

•I 
public ruleStorage(int o, int p, String f, Strings, String reg, String rep) { 

order = o; 

preference = p; 

flags = f; 

service = s; 

regexp = reg; 

replacement = rep; 
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A.3 DDDDS object- "ddds.java" 

mport javax.naming.*; 

import javax .naming. directory.*; 

import java.util.*; 

import java. util.regex.*; 

import java. util. Enumeration. *i 

I• 
* This class provides au implementation of tlze DDDS URN resolutiou algoritltm. 

* ®alltltor Luke Browu, fuke@bur, st 

* ®version 0.1 

•I 
public class ddds { 

final String firstKnown "urn:[\ \w&&["#%/11+:.*"; 

String userService = ""; 

String appUnique = 

String key = ""; 

Vector v =new Vector(); 

boolean debug = false; 

I* Class Constructor 

* ®param Accepts a String URN and a String of tlte required Services 

•I 
public ddds (String aUni, String usrSvc) 

I• 

/* Check for valid arguments */ 

if (Pattern .matches(firstKnown, aUni)) { 

this, userService = usrSvc; 

this .appUnique = aUni; 

key = aUni. replaceAll ( firstKnown, "urn. arpa"); 

else { 

I• Notifies Clieut app •I 
System. err. println ("Error: .. MalformedJJRN" ); 

System. exit (0); 

* ®param Method takes URN supplied through constructor aud attempts resolutiou 

* ®return A string array of results is returued 

•I 
public ruleStorage resolve() { 

ruleStorage result =new ruleStorage(O, 0, ""); 

boolean rewrite = true; 

boolean terminal false; 

f* we have a key, we have a aus, loop commences here: *I 

main"while: 

/* Continue tv/tile rewrite rules are present and no terminal flags are fouud *f 

while (rewrite && ! terminal) 

I• if key is 1111ique add to list •I 
if (keyUnique(v, key)) { 
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v. addElement(key ); 

/* else exit witl1 loop couditiou *I 
else { 

System. err. println ("Error: ... Key ... Unchanged, ... Loop ... Detected"); 

rewrite = false; 

break main_while; 

I* Get sorted record set for current Key *I 

if (debug) { 

System. out. println ("Debug: -Looking-up-key:-" + key); 

ruleStorage [] ruleSet = getSortedRecords (key); 

/* Process keys returned iu order */ 
for ( int i 0; i < ruleSet.length; i ++) 

if (debug) { 

System. out. println ("Debug: ... Record: ... " + + " ... Expression: ... " 

+ ru1eSet [ i f. regexp + " ... Replacement: ... " 

+ ruleSet [ i]. replacement + " ... Flags: ... " 

+ ruleSct[ i ]. flags); 

/* A successful rule Must: match, produce a 11011 

empty stri11g and l~t~ue valid (or no) flags */ 

if (Pattern, matches( ruleSet [ i]. regexp, appUnique) 

&& (appUnique. replaceAll (ruleSet [ i ]. regexp, 

ruleSet [ i ]. replacement) I= "") 

&& ruleSet [ i ] . service. equalslgnoreCase ( userService)) 

/* Rule acceptable, generate new key *I 

key = appUnique. replaccAll ( ruleSct [ i ]. regexp, 

ruleSet [ i ] . replacement); 

if (debug) { 

System. out. println ("Debug: ... Gcnerated....l'Jew ... Key!: .... " + key); 

I* Clteck if this rule is termiual *I 

String flag = ruleSet[ i ]. flags. substring (0 ,1); 

if (flag. equalslgnoreCase ("A") II flag. equalslgnorcCase ( "U") 

II flag. equalslgnoreCase("S") II flag. equalslgnoreCase ("P" )) 

terminal = true; 

I* Terminal records are returned to the user *I 

if (terminal) { 

if (debug) 

System. out. println ("Debug: ... Terminal ... Fiags ... Found: ... " 

+ ruleSet [ i ]. flags); 

result= ruJeSet[i ]; 

I* Eud Loop, Termiual Flags located *I 

break; 

I* Returu successful rule to user *I 
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return resu1t; 

private ruleStorage [] getSortedRecords ( St~ing key) { 

int numNaptrs = 0; 

ruleStorage [] ruleSet = new ru]eStorage [ 100]; 

try { 

//defiue DNS server euvironmeut 

Hash table env = new Hash table(); 

env. put("java .naming. provider. uri", "dns: I I 127.0.0.1 I"); 

env. put("java .naming. factory. initial", 

"corn. sun. jndi. dns. DnsContextFactory"); 

DirContext DnsRes =new InitialDirContext(env); 

//perform lookup 

if (debug) { 

System. out. println ("Debug: ... Performing ... Lookup ... with .. key: .. " + key); 

Attributes a ttr = DnsRes. get Attributes (key, 

new String [] { "NAPIR" } ); 

NamingEnumeration attrl = attr. getA11 (); 

if (attrl.hasMore()) { 

//grab csv string of records 

String nextKey = (( attrl, next()). toString () ); 

II break records into iudividunl strings 

String[] nextArr = nextKey. split(" ,w"); 

ruleStorage [] temp = new ruleStorage [ ( nextArr .length) - 1 ]; 

1/foreach striug build a ruleStorage object 

for ( int i = 0; i < nextArr .length; i ++) { 

//split em with regex 

String[] tempArr = nextArr[i].split("w"); 

int buffer = 0; 

//if the first element is tl1e label 

if ( tempArr [ 0 ]. equals ( "NAPIR:")) 

buffer = 1; 

ruleStorage napStruct = new ruleStorage (Integer 

. parselnt (tempArr[O + buffer]), Integer 

.parselnt(tempArr[l +buffer]), 

tempArr[2 + buffer] 1 tempArr[3 + buffer] 1 

tempArr[4 + buffer], tempArr[5 + buffer]); 

ruleSet [ i J = napStruct; 

numNaptrs++; 

else { 

System. err. prin tln ("Error: J'JoJJNS ... Records ... Returned"); 

System. exit (I); 

catch (Exception e) 

System.err.println("Error!: ... " +e); 

System. exit ( 1 ); 

I* sort rules by order tlteu preference ... *I 

for (int z = (numNaptrs- I); z >= 0; z--) { 

for (int j =I; j <=z; j++) { 
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/* If we're more important than the next up, transfer *I 
if ( ruleSet [ j - 1]. order > ruleSet I j]. order) 

ruleStorage ternpOrder; 

tempOrder = ruleSet I j - 1 ]; 

ruleSetij- 1] = ruleSetij ]; 

ruleSet [ j] = tempOrder; 

/* If we're more important AND a higher preference, transfer *I 

else if (ruleSetij- !].order== ruleSetij ].order 

&k ruleSet I j - I]. preference > ruleSet I j]. preference) { 

ru leStorage tempPref; 

tempPref = ruleSet[ j - I]; 

ruleSetij- I]= ruleSet[j]; 

ruleSet[ j] = tempPref; 

ru leStorage {] ruleSetTidy = new ru leStoragc [numNaptrs]; 

System. array copy ( ruleSet, 0, ruleSetTidy, 0, numNaptrs ); 

return ruleSetTidy; 

* Method checks keys are unique 

* ®param Vector of seen keys and current key 

@returu Returns True is key is unique, false if key has beeu seen. 

•I 
private boolean keyUnique(Vector v, String key) { 

I• 

boolean found = true; 

Iterator vi = v. iterator (); 

while (vi. hasNext ()) { 

if (vl.next() ==key) 

found = false; 

retarn found; 

* Method sets debug flag for verbose output 

•I 
public void setDebug () 

debug = true; 
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A.4 EDDDS object- "eddds.java" 

import javax.naming.*; 

import javax .naming. directory.*; 

import java. util.*; 

import java. u til. regcx. *; 

import java.util,Enumeration.*; 

I• 
* This class provides a11 implementatiou of the DDDS URN resolution algorit1tm. 

* ®author Luke Brown, luke®bur. st 

* ®version 0.1 

•I 
public class eddds { 

final String firstKnown "urn:[\ \w&&["#%/]]+:.*"; 

boolean debug = false; 

String userService 

String key = ""; 
String appUnique 

/* Class Constructor checks URN syntax conformance aud generates first key 

* ®param String representations of the application uuique string (URN entered) 

* and the firstKnowu rule 

•I 
public eddds(String aUni, String usrSvc) 

I• 

I* Check for valid arguments */ 
if (Pattern. matches( first Known, aUni)) 

this . userService = usrSvc; 

this. appUnique = aUni; 

this .key = appUnique. replace All ("urn:([\ \w&&['#%1]]+):.•", "urn. arpa" ); 

else { 

I• Invalid URN rejected •I 
System. err. println (''Error: .. Malformed..l.JRN"); 

* Method resolve calls the discovery aud resolution 

* phase methods to guide resource resolution 

•I 
public ruleStorage resolve() { 

I• 

ruleStorage result = discoverResolver (); 

if (result. flags. equalslgnoreCase ("DIS :NAPrn." )) 

result= resolveResource(result); 

return result; 

* Resolver Discovery metTwd, implemeuts a11 

* extended DDDS URN resOlver discovery algorithm. 

•I 
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private ruleStorage discoverResolver () { 

ruleStorage resultDis =new ruleStorage(O, 0, 

Vector vDis =new Vector(); 

boolean rewrite = true i 

boolean terminal = false; 

f* we have a key, we 1wve a a us, loop commeuces here: *I 

main_ while: 

""); 

/* Coutiuue while rewrite rules are present aud 110 terminal flags are fouud *I 

while (rewrite && ! terminal) 

/* if key is unique add to list */ 

if (keyUnique(vDis, key)) { 

v Dis . addElement (key); 

/* else exit wit11 loop coudition */ 
else { 

System. err. println ("Error: ... Key ... Unchanged, ... Loop ... Detected"); 

rewrite = false; 

break main-while; 

/* Get sorted record set for current Key *I 

if (debug) { 

System. out. println ("Debug: -Looking"up"key: "" + key); 

ruleStorage [] ruleSet = getSortedRecords (key); 

/* Process keys returned in order */ 
for (int i = 0; i < ruleSet.length; i++) 

if (debug) { 

System. out. println (''Debug: ... Record: ... " + i + " ... Expression: ... " 

+ rulcSet [ i I. reg~xp + '' ... Replacement: ... " 

+ ruleSet [ i }. replacement + " ... Flags: ... " 

+ ruleSet [ i [.flags); 

f* A successful rule Must: match, produce a 11011 ~mpty string aud have valid service type*/ 

if (Pattern. matches( ruleSet [ i [. regexp, appUnique) && 

(appUnique. replaceAII ( ruleSet [ i ]. regexp, ruleSet [ i ]. replacement) I= "") && 

ruleSet [ i J. service. substring (0 ,3). equalslgnoreCase ( userService. substring ( 0 ,3))) 

/* Rule acceptable, generate new key */ 
key = appUnique. replaceA11 ( rulcSet [ i J. regexp, ruleSet [ i }. replacement); 

if (debug) { 

System. out, println ("Debug: ... Generated..Ne\-v ... Kcy l: ... " + key); 

/* Check if tllis rule is terminal, 

* 11011 empty striugs (literal '"' excepted) are termiual 

•I 
terminal = ( ruleSet ( i }. flags. equalslgnoreCase ("") 

II ruleSet [ i ]. flags . equalslgnoreCase ( "\"\"")) ? false: true; 

I* Terminal records are returued to t11e user */ 

if (terminal) { 

if (debug) { 

System. out. print In ("Debug: ... Terminal ... Flags ... Found: ... " 
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+ ruleSet(i].flags); 

result Dis ruleSct [ i]; 

return resultDis; 

I* End Loop, Terminal Flags located */ 

break; 

/* Return successful rule to user */ 
return resultDis; 

* Metlwd accepts a termiual resolver discovery rule, finds the resolver 

* a11d queries it for resource information. 

* ®parm11 a ruleStorage object which describes the discovered resolver. 

•I 
private ruleStorage resolveResource ( ruleStorage disRule) 

ruleStorage result = new rulcStorage (0, 0, "", 

ruleStorage [I matched = new ruleStorage (100]; 

int matchedKeys = 0; 

Vector vRes = new Vector (); 

boolean rewrite = true; 

boolean terminal = false; 

""); 

key = appUnique. replaceAll ( disRule. regexp, dis Rule. replacement); 

/* we have a key, we l1ave a a us, loop commences It ere: *I 

main_ while: 

/* Coutiuue while rewrite rules are present aud no terminal flags are found */ 

while (rewrite && ! terminal) 

/* if key is unique add to list */ 

if (keyUnique(vRes, key)) { 

vRes. addE!ement(key); 

/* else exit with loop condition */ 
·} else { 

System. err. println ("Error: ... Key ... Unchanged, ... Loop ... Detected" ); 

rewrite = false; 

break main_ while; 

/* Get sorted record set for current Key */ 

if (debug) { 

System. out. prin tin ("Debug: -Looking-up-key:-" + key); 

ruleStorage [] ruleSet = getSortedRecords (key); 

System. out. println (" ru leset ... length ... is ... " + ruleSet .length); 

/* Process keys returued in order *I 

matchedKeys = 0; 

for ( int i = 0; i < ruleSet .length; i ++) 

if (debug) 

System. out. prin.tln ("Debug: .. Record: ... " + i + " ... Expression: ... " 

+ ruleSet[i ].regexp +'' .. Replacement: ... " 
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+ ruleSet ( i]. replacement + " ... Flags: ... " 

+ ruleSet[i].flags); 

/* A successful rule Must: match, produce a 11011 

empty string and have valid (or no) flags *I 

if (Pattern. matches ( ruleSet [ i ]. regcxp, appUnique) 

&& (appUnique. replaceAll (ruleSct[ i]. regexp, 

ruleSet[i [.replacement) I= "") 

&& ruleSet [ i ] . service. substring ( 0 ,3). equalslgnoreCase ( userService. substring ( 0 ,3))) 

matched[i] = ruleSet[i ]; 

matchedKeys++; 

if (matchedKeys == 0) { 

System. err. println ( "No .... rnatching .. records .... for ... Key: ... " + key); 

break main~ while; 

ruleStorage [] matched Tidy = new ruleStorage [matchedKeys]; 

System. arraycopy (matched, 0, matched Tidy, 0, matched Keys); 

matched Tidy = sortService ( userService, matched Tidy); 

/* Rule acceptable, geuerate uew key *f 

key = appUnique. replaceAll (matchedTidy [0]. regexp, 

matched Tidy [0]. replacement); 

if (debug) { 

System. out. println ("Debug: ... Generated.Ne\v ... Key!: ... " + key); 

/* Clieck if this rule is terminal */ 

terminal = (matchedTidy [Oj. flags. equalslgnoreCase ("") II 
matched Tidy [ 0 j. flags. equa!slgnoreCase ("\"\"" )) 

? false: true; 

/* Termiual records are returned to the user */ 

if (terminal) { 

if (debug) 

System. out. println ("Debug: ... Terminal ... Flags ... Found: ... " 

+ matchedTidy[Oj.flags); 

result = matchedTidy !01; 

I* End Loop, Terminal Flags located */ 
break; 

I* Return successful rule to user *I 

return result; 

* Method orders services by best effort matcl1 

* ®param service flags and unordered array 

* ®return ordered array of ruleStorage objects 

•I 
private ruleStorage (J sortService (String services, ruleStorage [ J rules) { 
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String userContent = ""; 
String user Delivery = ""; 

I* Ascertain User requirements */ 

String [ 1 userServices = services . s p 1i t (": "); 

if ( userServices .length == 2) { 

String[] userScrviccContent = userServices [1]. split("/"); 

userContent = userServiceContent (OJ; 

user Delivery = userServiceContent.length == 2 ? userServiceContent [11:"''; 

System.out.println("Debug: ... Sorting ... Array: ... User ... values:\n" + userContent + ", ... 

for (int z = (rules.length- 1); z >= 0; z--) { 

for (int j = 1; j <= z; j++) { 

+ userDe1ivery ); 

I* Get Content aud Delivery striugs for botlt current and next record up *I 

String tempLowerContent, tempUpperContent, tempLowerDelivery, tempUpperDelivery; 

String(] tempLowerServices = rules[j].service.split(":"); 

tempLowerServices = tempLowerServices [ 1]. split("/"); 

tcmpLowerContent = tempLowcrServices [0]; 

tempLowerDelivery = tempLowerServices .length == 2 ? tempLowerServices [ 1]: ""; 

String[] tempUpperServices = rules[j-1].service.split(":"); 

tempUpperServices = tempUpperServices [ 1]. split("/"); 

tempUpperContent = tempUpperServices [OJ; 

temp Upper Delivery = tempUpperServices .length == 2 ? tempUpperServices [ 1 I:""; 

System. out. println ("Debug: .. Sorting .. Array: ... \nUpper ... Values : .. '' 

+ tempUpperContent + ", ... 

+ tempUppcrDelivery 

+ "\nLower .. Values:" 

+ tcmpLowerContent + ", ... 
+ tempLowerDclivery); 

/* if this rule meets service CONTENT and DELIVERY 

* (aud above doesnt) trausfer 

•I 
if ( tempLowerContent. equalsignoreCase ( userContent) && 

tempLowerDelivery. equalslgnoreCase (userDelivery) && 

I tempUpperContent. equalslgnoreCase ( userContent) && 

! tempUpperDelivery. equalsignoreCase (user Delivery) II 
/* if this rule meets service CONTENT a11d DELIVERY 

* (aud above only meets content) transfer 

•I 
tempLowerContent. cqualslgnorcCase ( userContent) && 

tempLowerDelivery. equalslgnoreCase ( userDelivery) && 

tempUpperContent. equalsignoreCase ( userContent) && 

I tcmpUpperDelivery. equalslgnoreCase (user Delivery) II 
I• 
*OR this rule meets service CONTENT (a11d above doesut) 

* transfer 

•I 
tempLowerContent. equalsignoreCase ( userContent) && 

! tempUpperContent. equalsignoreCase ( userContent) II 
I• 
* OR this rule meets service CONTENT 

* and DELIVERY (and above DOES) and we 
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* lwve a lower order, trausjer 

•I 
tempLowerContent. equalslgnoreCase (userContent) && 

ternpLowerDelivery. equalslgnoreCase (user Delivery) && 

tempUpperContent. equalslgnoreCasc ( userContent) && 

tempUppcrDelivery. equalslgnoreCase (user Delivery) && 

rules [ j J. order < rules [j -1]. order II 
I• 
* OR this rule meets service CONIENT 

* (and above DOES) and we have a lower 

* order, transfer 

•I 
tempLowerContent. equalsignoreCase (userContent) && 

! tempLowerDelivery. equalslgnoreCase (user Delivery) && 

tempUpperContent. equalslgnoreCase ( uscrContent) && 

I tempUpperDelivery. equalslgnoreCase (user Delivery) && 

rules[j ].order< rules[j-1].order II 
I• 
* OR this rule meets service CONTENT 

• and DELIVERY (and above DOES) and we 

* have a lower preference, trausfer 

•I 
tempLowerContent. equalslgnoreCase ( userContent) && 

tempLowerDelivery. equalslgnoreCasc (user Delivery) && 

tempUpperContent. equalslgnoreCase ( userContent) && 

temp Upper Delivery. equalslgnoreCase (user Delivery) && 

rules [ j]. preference < rules [ j -1]. preference II 
I• 
* OR tflis rule meets service CONTENT 

* ( aud above DOES) aud we have a lower 

* prefereuce, trausfer 

•I 
tempLowerContent. equalslgnoreCasc ( userContent) && 

! tempLowerDelivery. equalslgnoreCase ( userDelivery) && 

tempUpperContent. equalslgnoreCase ( userContent) && 

I tempUpperDelivery. equalslgnoreCase (user Delivery) && 

rules [ j]. preference < rules [j ~ 1]. preference 

) { 

/* debug message */ 
System. out. println ("Debug: ... attempting ... transfer"); 

f* perform trausfer operation */ 
ruleStorage tempTransfer = rules [j -1]; 

rules[j -1] = rules[j ]; 

rules [ j] = temp Transfer; 

return rules; 

I• 
* Metl10d retrieves records for a given key 

* ®parm11 key to form the next eddds database query 

* @retun! ordered array of ruleStorage objects 

•I 
private ruleStorage [] getSortedRecords (String key) { 
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int numNaptrs == 0; 

ruleStorage {J ruleSet =new ruleStorage [100]; 

try { 

I* Configure DNS parameters *f 
Hashtable env = new Hash table(); 

env. put ("java. naming. provider. uri", "dns: I I 127.0.0 .1 I"); 

env. put ("java. naming. factory. in i ti a 1", 

"com. sun. jndi. dns. DnsContextFactory"); 

DirContext DnsRes =new InitialDirContext(env); 

I• Query DNS witlt supplied key •I 

if (debug) { 

System. out. println ("Debug: ... Performing-Lookup ... with ... key: ... " + key); 

Attributes attr = DnsRes.getAttributes(key, 

new String[] { "NAPIR" } ); 

NamingEnumeration attrl = attr, get All(); 

I* If we got results process them */ 
if (attrl.hasMore()) { 

/* csv string of records *I 

String nextKey = ( (a ttrl . next()). toString ()); 

f* break records into iudividual strings */ 

String[) nextArr = nextKey. split(",-"); 

ruleStorage[] temp= new ruleStorage[(nextArr.length)- I]; 

II Joreach striug build a ruleStorage object 

for ( int i = 0; i < nextArr .length; i++) { 

//split em with regex 

String[) tempArr = nextArr[i ]. split("-"); 

int buffer = 0; 

II if the first element is the label 

if ( tempArr [ 0 ]. equals ( "NAPIR:")) 

buffer = I; 

ruleStorage napStruct = new ruleStoragc (Integer 

. parselnt (tempArr[O + buffer]), Integer 

. parselnt ( tempArr[l + buffer]), 

tempArr[2 + buffer], tempArr[3 + buffer], 

tempArr[ 4 + buffer L tempArr [5 + buffer ] ) ; 

ruleSet [ i] = napStruct; 

numNaptrs++; 

I* We didu 't get any records, returu Jailed */ 
else { 

System. err. prin tin ("Error: ...No..DNS ... Records ... Returned"); 

System. exit (I); 

catch (Exception e) 

System.err.println("Errorl: ... '' +e); 

System.exit(l); 

I* sort array of result:; by order tfteu prefereuce */ 

for ( int z = (numNaptrs - I); z >= 0; z--) { 
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for (int j =I; j <= z; j++) 

/* If we're more importaut than t11e next up, transfer */ 
if ( ruleSet[ j - I J. order > ruleSet ( j]. order) 

ruleStorage tempOrder; 

tempOrder = ruleSet(j- I]; 

ruleSet(j- I( = ruleSet[j ]; 

ruleSet I j] = tempOrder; 

I* If we're more important AND a higher prefereuce, transfer *I 

else if ( ruleSet ( j - I]. order == ruleSet I j]. order 

&& ruleSet ( j - I J. preference > ruleSet I j J. preference) { 

rulcStorage tempPref; 

temp Pre! = ruleSet[j - I]; 

ruleSet[j - I] = ruleSet[j ]; 

ruleSet ( j] = tempPref; 

/* Copy working array to correct length array of ruleStorage items */ 

ruleStorage [] ruleSetTidy =new ruleStorage [numNaptrs]; 

System.arraycopy(ruleSet, 0, ruleSetTidy, 0, numNaptrs); 

/* Return ruleStorage array */ 

return ruleSetTidy; 

Method checks keys are unique 

* @param Vector of seen keys aud current key 

* ®return Returus True is key is uuique, false if key has been seen. 

•I 
private static boolean keyUnique(Vector v, String key) { 

boolean found = true; 

Iterator vi = v. iterator (); 

while (vl.hasNext()) { 

il (vl.next() ==key) 

,.found= false; 

return found; 

* Method sets debug flag for verbose output 

•I 
public void setDebug () 

debug = true; 
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