86,971 research outputs found

    Visual and interactive exploration of point data

    Get PDF
    Point data, such as Unit Postcodes (UPC), can provide very detailed information at fine scales of resolution. For instance, socio-economic attributes are commonly assigned to UPC. Hence, they can be represented as points and observable at the postcode level. Using UPC as a common field allows the concatenation of variables from disparate data sources that can potentially support sophisticated spatial analysis. However, visualising UPC in urban areas has at least three limitations. First, at small scales UPC occurrences can be very dense making their visualisation as points difficult. On the other hand, patterns in the associated attribute values are often hardly recognisable at large scales. Secondly, UPC can be used as a common field to allow the concatenation of highly multivariate data sets with an associated postcode. Finally, socio-economic variables assigned to UPC (such as the ones used here) can be non-Normal in their distributions as a result of a large presence of zero values and high variances which constrain their analysis using traditional statistics. This paper discusses a Point Visualisation Tool (PVT), a proof-of-concept system developed to visually explore point data. Various well-known visualisation techniques were implemented to enable their interactive and dynamic interrogation. PVT provides multiple representations of point data to facilitate the understanding of the relations between attributes or variables as well as their spatial characteristics. Brushing between alternative views is used to link several representations of a single attribute, as well as to simultaneously explore more than one variable. PVT’s functionality shows how the use of visual techniques embedded in an interactive environment enable the exploration of large amounts of multivariate point data

    The UPC Substituted Judgment/Best Interest Standard for Guardian Decisions: A Proposal for Reform

    Get PDF
    The introduction in 1997 of substituted judgment as a guiding principle for guardian decisions was a key contribution of the UPC to guardianship reform. The current UPC section 5-314(a) instructs guardians to consider the expressed desires and personal values of the ward when making decisions and to at all times...act in the ward\u27s best interest. This dual mandate for guardian decisions was intended to promote the self-determination interests of incapacitated adults. This article argues that in practice the standard has failed to achieve this goal. It analyzes the shortcomings of UPC Section 5-314(a) and other statutory decision-making standards and offers an improved decision-making model. Frolik and Whitton propose reform of Section 5-314(a) to provide better guidance for guardians, and to harmonize the standard for guardian decisions with other surrogate decision-making standards within the UPC

    The UPC Substituted Judgment/Best Interest Standard for Guardian Decisions: A Proposal for Reform

    Get PDF
    The introduction in 1997 of substituted judgment as a guiding principle for guardian decisions was a key contribution of the UPC to guardianship reform. The current UPC section 5-314(a) instructs guardians to consider the expressed desires and personal values of the ward when making decisions and to at all times...act in the ward\u27s best interest. This dual mandate for guardian decisions was intended to promote the self-determination interests of incapacitated adults. This article argues that in practice the standard has failed to achieve this goal. It analyzes the shortcomings of UPC Section 5-314(a) and other statutory decision-making standards and offers an improved decision-making model. Frolik and Whitton propose reform of Section 5-314(a) to provide better guidance for guardians, and to harmonize the standard for guardian decisions with other surrogate decision-making standards within the UPC

    Using shared-data localization to reduce the cost of inspector-execution in unified-parallel-C programs

    Get PDF
    Programs written in the Unified Parallel C (UPC) language can access any location of the entire local and remote address space via read/write operations. However, UPC programs that contain fine-grained shared accesses can exhibit performance degradation. One solution is to use the inspector-executor technique to coalesce fine-grained shared accesses to larger remote access operations. A straightforward implementation of the inspector executor transformation results in excessive instrumentation that hinders performance.; This paper addresses this issue and introduces various techniques that aim at reducing the generated instrumentation code: a shared-data localization transformation based on Constant-Stride Linear Memory Descriptors (CSLMADs) [S. Aarseth, Gravitational N-Body Simulations: Tools and Algorithms, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2003.], the inlining of data locality checks and the usage of an index vector to aggregate the data. Finally, the paper introduces a lightweight loop code motion transformation to privatize shared scalars that were propagated through the loop body.; A performance evaluation, using up to 2048 cores of a POWER 775, explores the impact of each optimization and characterizes the overheads of UPC programs. It also shows that the presented optimizations increase performance of UPC programs up to 1.8 x their UPC hand-optimized counterpart for applications with regular accesses and up to 6.3 x for applications with irregular accesses.Peer ReviewedPostprint (author's final draft

    Education in values in engineering. Energy for human development and sustainability

    Get PDF
    nergy is central to achieving th e interrelated econo mic, social, and environmental aims of sustaina ble human development. This pa per relates some UPC efforts to introduce the sustainable energy concept in its engineering curricula. The UPC approach is based on the education in values, the critical analysis of the presen t paradigms, and an overview of the global South real ity under a human rights-basis.Peer ReviewedPostprint (published version

    Deep learning architectures for Computer Vision

    Get PDF
    Deep learning has become part of many state-of-the-art systems in multiple disciplines (specially in computer vision and speech processing). In this thesis Convolutional Neural Networks are used to solve the problem of recognizing people in images, both for verification and identification. Two different architectures, AlexNet and VGG19, both winners of the ILSVRC, have been fine-tuned and tested with four datasets: Labeled Faces in the Wild, FaceScrub, YouTubeFaces and Google UPC, a dataset generated at the UPC. Finally, with the features extracted from these fine-tuned networks, some verifications algorithms have been tested including Support Vector Machines, Joint Bayesian and Advanced Joint Bayesian formulation. The results of this work show that an Area Under the Receiver Operating Characteristic curve of 99.6% can be obtained, close to the state-of-the-art performance.El aprendizaje profundo se ha convertido en parte de muchos sistemas en el estado del arte de múltiples ámbitos (especialmente en visión por computador y procesamiento de voz). En esta tesis se utilizan las Redes Neuronales Convolucionales para resolver el problema de reconocer a personas en imágenes, tanto para verificación como para identificación. Dos arquitecturas diferentes, AlexNet y VGG19, ambas ganadores del ILSVRC, han sido afinadas y probadas con cuatro conjuntos de datos: Labeled Faces in the Wild, FaceScrub, YouTubeFaces y Google UPC, un conjunto generado en la UPC. Finalmente con las características extraídas de las redes afinadas, se han probado diferentes algoritmos de verificación, incluyendo Maquinas de Soporte Vectorial, Joint Bayesian y Advanced Joint Bayesian. Los resultados de este trabajo muestran que el Área Bajo la Curva de la Característica Operativa del Receptor puede llegar a ser del 99.6%, cercana al valor del estado del arte.L’aprenentatge profund s’ha convertit en una part importat de molts sistemes a l’estat de l’art de múltiples àmbits (especialment de la visió per computador i el processament de veu). A aquesta tesi s’utilitzen les Xarxes Neuronals Convolucionals per a resoldre el problema de reconèixer persones a imatges, tant per verificació com per identificatió. Dos arquitectures diferents, AlexNet i VGG19, les dues guanyadores del ILSVRC, han sigut afinades i provades amb quatre bases de dades: Labeled Faces in the Wild, FaceScrub, YouTubeFaces i Google UPC, un conjunt generat a la UPC. Finalment, amb les característiques extretes de les xarxes afinades, s’han provat diferents algoritmes de verificació, incloent Màquines de Suport Vectorial, Joint Bayesian i Advanced Joint Bayesian. Els resultats d’aquest treball mostres que un Àrea Baix la Curva de la Característica Operativa del Receptor por arribar a ser del 99.6%, propera al valor de l’estat de l’art
    corecore