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Abstract 

Deep learning has become part of many state-of-the-art systems in multiple disciplines 
(specially in computer vision and speech processing). In this thesis Convolutional Neural 
Networks are used to solve the problem of recognizing people in images, both for 
verification and identification. 

Two different architectures, AlexNet and VGG19, both winners of the ILSVRC, have been 
fine-tuned and tested with four datasets: Labeled Faces in the Wild, FaceScrub, 
YouTubeFaces and Google UPC, a dataset generated at the UPC. 

Finally, with the features extracted from these fine-tuned networks, some verifications 
algorithms have been tested including Support Vector Machines, Joint Bayesian and 
Advanced Joint Bayesian formulation. The results of this work show that an Area Under 
the Receiver Operating Characteristic curve of 99.6% can be obtained, close to the state-
of-the-art performance. 
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Resum 

L’aprenentatge profund s’ha convertit en una part importat de molts sistemes a l’estat de 

l’art de múltiples àmbits (especialment de la visió per computador i el processament de 

veu). A aquesta tesi s’utilitzen les Xarxes Neuronals Convolucionals per a resoldre el 

problema de reconèixer persones a imatges, tant per verificació com per identificatió.  

Dos arquitectures diferents, AlexNet i VGG19, les dues guanyadores del ILSVRC, han 

sigut afinades i provades amb quatre bases de dades: Labeled Faces in the Wild, 

FaceScrub, YouTubeFaces i Google UPC, un conjunt generat a la UPC. 

Finalment, amb les característiques extretes de les xarxes afinades, s’han provat diferents 

algoritmes de verificació, incloent Màquines de Suport Vectorial, Joint Bayesian i Advanced 

Joint Bayesian. Els resultats d’aquest treball mostres que un Àrea Baix la Curva de la 

Característica Operativa del Receptor por arribar a ser del 99.6%, propera al valor de l’estat 

de l’art.   
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Resumen 

El aprendizaje profundo se ha convertido en parte de muchos sistemas en el estado del 

arte de múltiples ámbitos (especialmente en visión por computador y procesamiento de 

voz). En esta tesis se utilizan las Redes Neuronales Convolucionales para resolver el 

problema de reconocer a personas en imágenes, tanto para verificación como para 

identificación. 

Dos arquitecturas diferentes, AlexNet y VGG19, ambas ganadores del ILSVRC, han sido 
afinadas y probadas con cuatro conjuntos de datos: Labeled Faces in the Wild, 
FaceScrub, YouTubeFaces y Google UPC, un conjunto generado en la UPC. 

Finalmente con las características extraídas de las redes afinadas, se han probado 
diferentes algoritmos de verificación, incluyendo Maquinas de Soporte Vectorial, Joint 
Bayesian y Advanced Joint Bayesian. Los resultados de este trabajo muestran que el 
Área Bajo la Curva de la Característica Operativa del Receptor puede llegar a ser del 
99.6%, cercana al valor del estado del arte.  
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1. Introduction 

1.1. Objectives 

This project is carried out at the Signal Theory and Communications department (TSC) 

from the Universitat Politècnica de Catalunya (UPC).  

The purpose of this project is to build a face recognition system for TV broadcast 

programmes, within the framework of a larger project that builds a multi-modal annotation 

system. 

The project is implemented using state of the art techniques in the Machine Learning field 

known as Deep Learning. In particular, Convolutional Neural Networks are implemented 

using a library called Keras. Convolutional Neural Networks are used in computer vision 

applications for searching, understanding images, apps, medicine, self-driving cars and 

many other tasks. These networks will be trained and tested with labelled databases of 

face images. 

The final objective is to implement a verification system, where given a pair of images, the 

system will decide if they belong to the same identity or not.  

The project main goals are:  

1. Learning and understanding the fundaments of Convolutional Neural Networks.  

2. The implementation of a basic face recognition system.  

3. Implementation of a very deep network.  

4. The implementation of the face verification system.  

5. Presenting results of the accuracy of the system. 

1.2. Requirements and specifications 

In order to execute and reproduce all the test and the implementations that are explained 

in this thesis, a computer with enough processing power or a server is required. In the case 

of this project the server used was the Development Platform from the Image Processing 

Group at the UPC. The server needs about 60 GB of accessible RAM to fit the deep neural 

network models and store the databases and a GPU (the newest possible NVidia card) to 

speed up the training stages. 

The software required is Python 2.7 or 3.3+ and Keras with the following libraries NumPy 

which is a mathematics library, the Machine Learning library scikit-learn, Cuda 7.0 or higher 

with cuDNN to accelerate the process with the GPU and matplotlib for plotting the results. 

1.3. Methods and procedures 

This thesis follows the problem addressed in the Master Thesis done by Sergi Delgado in 
September of 2015 which was supervised by Elisa Sayrol and Ramon Morros, and done 
under the framework of the Camomile project, which is a collaborative project done by six 
participants from four European countries in which the UPC takes part. The Camomile 
project develops a collaborative annotation framework for multi-modal, multi-lingual and 
multi-media data. This project will be done under this framework, but will not be a part of 
the Camomile project, and will focus on the person discovery task proposed at the 
MediaEval 2015. 

It is important to mention that despite not continuing the work done by Sergi Delgado, some 

results and interesting approaches from his thesis [1] were taken into account. 
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The project was proposed by the supervisors of the project, Elisa Sayrol, jointly with Ramon 

Morros. 

1.4. Work plan 

Work Packages 

Project: Documentation WP ref: 1 

Major constituent: Document Sheet 1 of 9 

Short description: Study and understand the concepts of 

the Convolutional Neural Networks and the library 

TensorFlow that will be used in the development of the 

project. Also study the different databases that are 

available and prepare a list of features of each 

database.  

Planned start date:15/02/16 

Planned end date: 09/03/16 

Start event:19/02/16 

End event:16/03/16 

Internal task T1: (1.1) Stanford deep learning course 

CS231n 

Internal task T2: (1.2) TensorFlow Udacity Deep 

Learning course 

Internal task T3: (1.3) Research on face databases 

Databases: CelebFaces+, YouTube Faces, Megaface, 

Labeled Faces in the Wild, MediaEval 2015 test. 

Internal task T4: (1.4) Very deep Convolutional 

Networks (VGG) 

Paper: Very Deep Convolutional Networks for Large-

Scale Image Recognition 

 

Deliverables:  Dates: 

 

Project: Project proposal and Work plan WP ref: 2 

Major constituent: Document Sheet 2 of 9 

Short description: First document to be delivered 

consisting on a project plan proposal and a work 

schedule that will be evaluated by the supervisors of the 

project. 

 

Planned start date: 27/02/16 

Planned end date: 01/03/16 

Start event: 27/02/16 

End event: 01/03/16 

 Deliverables: 

Work plan 

Dates: 

01/03/16 
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Project: Basic verification system WP ref: 3 

Major constituent: Algorithmic implementation Sheet 3 of 9 

Short description: Basic implementation of a verification 

system, consisting in the usage of a pre-trained neural 

network, extracting the 4096 vector of features from the 

last fully connected layer, and compare the two images 

using different types of classifiers to decide if the 

identities are the same or not. 

Planned start date: 10/03/16 

Planned end date: 01/04/16 

Start event:11/03/16 

End event: 30/03/16 

Internal task T1: (3.1) Implementation 

Internal task T2: (3.2) Test with a threshold classifier 

Internal task T3: (3.3) Test with a naive Bayesian 

classifier 

Internal task T4: (3.4) Results 

Deliverables: 

 

Dates: 

 

Project: Deeper network WP ref: 4 

Major constituent: Algorithmic implementation Sheet 4 of 9 

Short description: Implementation of a deeper network 

using an existing Very Deep Architecture, train and test 

it and finally present results. 

 

Planned start date: 02/04/16 

Planned end date: 12/05/16 

Start event: 01/04/16 

End event: 14/05/16 

Internal task T1: (4.1) Implementation 

Internal task T2: (4.2) Test and train 

Internal task T3: (4.3) Results 

Deliverables: Dates: 

 

Project: Project critical review WP ref: 5 

Major constituent: Document Sheet 5 of 9 

Short description: Write the project critical review 

 

Planned start date: 02/05/16 

Planned end date: 09/05/16 

Start event: 05/05/16 

End event: 09/05/16 
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  Deliverables: 

Project critical 

review 

Dates: 

09/05/16 

 

Project: Face recognition architecture WP ref: 6 

Major constituent: Algorithmic implementation Sheet 6 of 9 

Short description: Adapt and propose an architecture of 

the network to improve performance and implement the 

deeper network into the face recognition system. 

Planned start date: 25/04/16 

Planned end date: 08/08/16 

Start event: 10/05/16 

End event: 15/08/16 

Internal task T1: (6.1) Implementation 

Internal task T2: (6.2) Test 

Deliverables: Dates: 

 

Project: Results and analysis WP ref: 7 

Major constituent: Algorithmic implementation Sheet 7 of 9 

Short description: Test with databases and adjust the 

parameters of the network. Review the system 

implementation and check the performance of the 

system (Number of computations and parameters of the 

network). 

Comparison with the ImageNet basic system will be 

carried out. 

 

Planned start date: 01/08/16 

Planned end date: 31/08/16 

Start event: 16/08/16 

End event: 15/09/16 

Internal task T1: (7.1) Results and analysis Deliverables: Dates: 

 

Project: Final report drafting WP ref: 8 

Major constituent: Document Sheet 8 of 9 

Short description: Prepare the final report of the project 

and review it. 

 

Planned start date: 01/09/16 

Planned end date: 27/09/16 

Start event: 01/09/16 
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End event: 25/09/16 

Internal task T1: (8.1) Draft 

Internal task T2: (8.2) Revision 

Deliverables: Dates: 

 

 

Project: Final report WP ref: 9 

Major constituent: Document Sheet 9 of 9 

Short description: Deliver the final report done in the 

WP8. 

 

Planned start date: 27/09/16 

Planned end date: 27/09/16 

Start event: 27/09/16 

End event: 27/09/16 

 Deliverables: 

Final report 

Dates: 

27/08/16 

Table 1. Work packages. 

Milestones 

 

WP# Task# Short title Milestone / deliverable Date (week) 

2 5 Project Work plan Milestone 3 

5 14 Critical design review Milestone 13 

9 23 Final review Milestone 18 

Table 2. Milestones. 

GANTT Diagram 

 

Figure 1. GANTT Diagram. 
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1.5. Deviations 

One of the principal requirements was to use the library TensorFlow that was released to 

the public a few months before the start of this project. By the start of the project there were 

many different problems with this library and another system was chosen. 

The other problem that caused the delay of the thesis was implementing the face 

verification algorithms Joint Bayesian and Advanced Joint Bayesian, these 

implementations were not working by different reasons such as errors in code, bad 

selection of images from the databases and other problems that ended in not being able to 

finish the project in the initially proposed schedule.  
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2. State of the art: 

2.1. Deep Learning 

Deep Learning is a branch of Machine Learning, concretely on the subfield of Artificial 

Neural Networks (ANN), based on a set of algorithms that attempt to model high-level 

abstractions in data by using a deep graph with multiple processing layers, composed of 

multiple linear and non-linear transformations. The first architectures were conceived in the 

nineties, but the computational cost was too high for the time and other techniques took 

the spotlight.  

As stated in [2], Artificial Neural Networks were inspired by biological neural networks. An 

ANN consists on a structured organization of multiple artificial neurons. These neurons 

receive one or multiple inputs and emit an output based on the weighted sum of the inputs 

and a function. The function applied to the weighted sum is called the activation function. 

 

Figure 2. Representation of an artificial neuron compared to a biological neuron. 

These neurons are grouped creating layers, by stacking these layers the networks are 

configured. The first layer of the network is known as the input layer, the intermediate are 

known as hidden layers and the last one is the output layer. The number of hidden layers 

will denote the depth of the network. The more layers the network has, the deeper the 

network will be.  

 

Figure 3. Example of a Neural Network with 3 layers. 

The layers of the network perform different tasks based on the number of connections and 

their activation functions. Some of these types of layers are: the fully connected layers, 

which take into account all the neurons from the previous layer; the pooling layers, that 

perform a downsampling operation, for example, max pooling takes the maximum value 

from the inputs; or the convolutional layers that compute the output of neurons that are 

connected to a local region of the input. The networks based in this last kind of layers are 

known as Convolutional Neural Networks (CNN) or ConvNets. 
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The Convolutional Layers were created to deal with the amount of information in images. 

A 3 channel image contains lots of pixels that have some kind of information. But images 

are quite redundant regarding its content so using layers that connect every single pixel to 

many neurons were impossible to implement in terms of computation, that is why the 

convolutional layers were introduced, as mentioned before, these layers are connected to 

portions of the input and perform a convolution-like operation. The portions, called filters of 

kernels, usually have the shape of a square of size 3x3, 5x5 or 7x7 pixels, this shape is 

called the receptive field of the filter. These filters are passed by steps of 1, 2 or 3 pixels, 

this step is called the stride of the filters and by using a value higher than 1 the 

dimensionality of the output will be reduced. Finally if the input images does not fit with the 

filter’s size and stride, a padding operation has to be performed. This padding is usually 

zero padding, which consist in adding zeros to the borders of the images to fit the required 

size, or a mirror padding that consist in mirroring the pixel values to the border.  

 

Figure 4. Example of a sequence of convolutional 3x3 filters with a stride of 2 and 

padding. 

In 1998, the LeNet-5 architecture was proposed in [3], this structure was used to recognise 

handwritten and machine-printed characters and was one of the first architectures that 

used convolutional layers. 

Some years later, in 2005, in [4] is explained the value of GPUs for machine learning to 

compute high volumes of operations faster than with a CPU. The usage of GPUs was 

refined the following years [5] and in 2012 deep neural networks significantly improved the 

best results of classification from many image databases, including the MNIST database, 

the CIFAR10 dataset and the ImageNet dataset. 

The network that improved the results in the ImageNet dataset and also won de ILSVRC-

2012 is known as AlexNet [6] [Figure 5]. This network takes as its input an image of 

224x224 pixels with 3 colour channels. The number of layers is 8 (5 convolutional and 3 

fully connected layers). The first convolutional layer filters the input image with 96 kernels 

of size 11x11x3 with a stride of 4 pixels. The second convolutional layer takes as input the 

response-normalized and max pooled output of the first convolutional layer and filters it 

with 256 kernels of size 5x5x48. The third convolutional layer has 384 kernels of size 

3x3x256 connected to the normalized and max pooled outputs of the second layer. The 

fourth has 384 kernels of size 3x3x192, and the fifth has 256 kernels of size 3x3x192. The 

output of the fifth layer is connected to the first fully connected layer, with 4096 neurons. 

Then the first fully connected is connected to the second which also has 4096 neurons and 

the second is connected to the third, which has 1000 neurons corresponding to the 

ImageNet classes. Finally a softmax function is applied to last fully connected layer in order 

to get the class scores. The softmax function follows the equation: 

𝜎(𝒛)𝑗 = 
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 𝑓𝑜𝑟 𝑗 = 1,… , 𝐾,                                              (1) 
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where 𝐾 is the dimensionality of the vector 𝒛 and 𝝈(𝒛) is a vector in the range (0,1) that 

add up to 1.  

 
Figure 5. AlexNet network architecture. 

The following years other architectures have been proposed with better results in the 

challenge, concretely 2014 VGG [7] won the challenge with a network that is widely used 

in many different applications, for example in [8]. Another architecture known as 

GoogLeNet [9] was proposed in the same year challenge, which implemented a new kind 

of layer named inception module. 

The VGG architectures changed the receptive fields of the filters of all the layers to 3x3 

filters with a stride of 1. VGG proposed in [7] six different architectures. The two deepest 

networks [Table 3. Columns D and E] are the ones with the best results. These 

architectures have 16 and 19 layers respectively being the last 3 layers, of each 

architecture, fully connected layers and the rest convolutional ones. The depth of the filters 

starts at 64 for the first two convolutional layers, then 128 for the next two, after that, the 

next 3[D]/4[E] layers have 256 kernels and the rest of the layers have 512 kernels. The 

fully connected layers have the same configuration as the ones in the AlexNet architecture 

two fully connected layers of 4096 neurons followed by a 1000 neuron layer. 

All these architectures part from the idea of LeNet [3], where the input passes through 

some convolutional layers with a ReLU activation, which returns the maximum value 

between the input and 0. After the stack of convolutional layers, the output is flattened and 

it is connected to the fully connected layers that will compute the output of the network and 

with the classification layer a class will finally be selected.  
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Table 3. Different VGG models architectures. 

2.2. Training 

As stated in [10], training deep neural networks is known a hard task. In order to tune the 

weights of each neuron and its biases to achieve the best possible performance in the 

network, a careful training stage has to be executed.  

There are some ways to do the training. Supervised learning consists in the task of inferring 

a function from labelled training data. This data consists of a set of training examples where 

the class of each example is known, so the training set will consist of a number of different 

input objects and the desired output value for each of these inputs. The training set, many 

times is divided into two subsets, one for the actual training, and another to control how the 

training is going, this subset is called the validation set. 

Unsupervised learning is another way of training sets, but in this case, the classes of the 

data are not known beforehand. The objective of these methods is to form groups or 

clusters of data that are similar regarding some features, and assign to each cluster a label 

or class, which may not correspond with previously established classes. A good example 

is the K-Means Clustering algorithm [11], a method of vector quantization that makes a 

partition of n observations into k clusters, and assigns one cluster to each of the n 

observations. 

There are other methods like [12] that combines both supervised and unsupervised 

learning methods, these are called semi-supervised methods. These methods consider 

some part of the unlabelled training set as labelled and starts generating clusters based on 

the made up labels. 

In the process of training a network with supervised learning, the objective is to minimize a 

function that is called the loss or objective function. The network will be trained by updating 
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the weights of its layers after passing images through it and comparing the results with the 

desired output value, if both values match, the loss will decrement and, if the values do not 

match, the loss will increment. The number of times the whole training dataset is passed 

through the network, is determined by a parameter called epoch. 

To retrain from scratch a deep neural network like VGG, the amount of images used [7] is 

above one million. In many different cases the dataset used is not big enough to meet this 

requirement, so two new techniques are proposed. 

The first one is to fine-tune an already pre-trained network. By doing this, the network is 

adapted to solve a particular problem different from the original purpose of the network. 

The authors of [13] explain the benefits of using fine-tuning against other methods. The 

methodology to adapt a model consists in freezing the weights of some part of the network, 

typically the layers that are near the input layer, so when the training process starts, these 

layers are not updated and only the weights and biases from the desired layers are modified.   

The other technique, which is also used in other application fields of ML, is called data 

augmentation, which consist in enlarging the size of the training dataset by performing 

different transformations over the data. The transformations that can be done are rotations, 

horizontal or vertical reflections, add white noise to the set, change of brightness, and many 

more. The transformations may vary from the dataset that is being used, for example, a 

hand-written dataset like MNIST would accept transformations like rotations or changing 

the brightness but reflecting horizontally or vertically the images would break the logic of 

the set. In [6] two types of data augmentation are implemented, the first one consisted in 

image translations and reflections that augmented the size of the set by 2048, and the 

second transformation consisted in the manipulation of the RGB colour channels. 

 

Figure 6. Example of Overfitting with the train loss in blue and validation loss in red. 

Using data augmentation is also a method that could solve one of the main problems of 

the training stage which is overfitting. Overfitting is produced when the model overadapts 

to the training dataset. The loss produced by the network will keep decreasing as far the 

train stage goes, but the loss of the verification or test subsets will start to increment at 

some point [Figure 6]. This point where the verification loss is at the minimum is where the 

training should stop, but this point may not be the best possible solution for the addressed 

problem. By using data augmentation, the number of samples is increased so the point 

where the model starts to overfit is closer to the best possible verification loss result. 

2.3. Classification and Verification 

One of the typical tasks inside the field of Computer Vision (CV) is the task of recognition. 

In the field of recognition there are many different sub-tasks. In this thesis two of these 
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tasks are addressed, the first sub-tasks is known as classification (or identification) and the 

second is the task of verification. 

The classification task, also called recognition (or identification) task, consist in giving one 

class or label from a previously defined set to an object. The set of labels that will be used 

in this thesis is a list of celebrities and the objects will be images of faces from the set. On 

the other hand, the verification task consists on deciding if two objects belong to the same 

class or not. 

The classification is performed in the training stages of the process, where the network is 

fine-tuned to the new dataset and the weights of the last fully connected layers are adapted 

to maximize the difference between the different classes.  

The verification task is performed using the outputs extracted from passing the images of 

the dataset through the model and extracting the values in the last layer before the 

classification layer. This layer is the layer that was fine-tuned in the training step and has 

adapted to the new dataset. With these outputs, many different techniques can be executed 

in order to achieve the best possible verification results.  

Some of these are a threshold classifier based in the norm of the features, Support Vector 

Machines (SVM), or more recent techniques like Joint Bayesian [12] or the Advanced Joint 

Bayesian [13]. These advanced methods achieve better results in the task but have higher 

computational costs.  
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3. Methodology / project development:  

3.1. System: Keras 

The system that was initially chosen for this thesis was TensorFlow [14], which is an open 

source software library for machine learning written in Python and developed by the Google 

Brain Team. TensorFlow was recently released to the public and by the start of the thesis 

there were some compatibility issues on the UPC servers. So in order to proceed with the 

project a new system was selected. 

Keras [14] is the system used in this thesis. It is a modular neural network library written in 

Python capable of running on top of either TensorFlow or Theano. The library was 

conceived to let the users start experimenting as fast as they could, being able to go from 

idea to result with the least possible delay.  

The reasons why TF was selected and therefore Keras were that both systems are 

optimized to perform deep learning tasks. Both systems are implemented in Python which 

allow the user to work with them in a compact way without having to use multiple files. Both 

systems can run on top of both CPU and GPU which makes them very fast. And there is a 

huge community working with both of them and it is easy to find trained models or, for 

example, in the case of Keras, there is a library to convert trained models from Caffe, which 

is a deep learning framework developed by the Berkeley Vision and Learning Center [23] 

to Keras [15]. 

With Keras, the user first defines a model, which can be selected between a Sequential 

model or a Graph model. In a Sequential model, the layers are stacked and the output from 

a layer feeds the input of next layer until it reaches the output layer. In the other hand, the 

Graph model allows the users to get the output from a desired layer and feed that output 

to a desired layer, permitting the generation of multiple output networks or getting the 

output in an intermediate layer of the model. 

Once the model is defined, it has to be compiled in order to start the training. The Keras 

“compile” function requires two parameters that need to be tweaked. These parameters 

are: 

 Optimizer: This parameter will determine the learning and convergence of the 

model. There a lot of predefined optimizers in Keras, some of them are Stochastic 

Gradient Descend (SGD), Adam, RMSprop and Adagrad. 

All the optimizers have parameters that can also be modified, each optimizers has 

its own parameters, but there is one that is shared between all of them, the Learning 

Rate. This parameter will define how much the weights are updated after each 

epoch. For a high Learning Rate, the weight change will be higher than for a small 

Learning Rate, after each epoch. Also, another important parameter is the weight 

decay which is an additional term in the weight update rule that causes the weights 

to exponentially decay to zero, if no other update is scheduled. 

 Loss: The second parameter, will define the objective of the training that the model 

has to optimize. There are many different objectives defined, for example: mean 

square error (MSE), mean squared logarithmic error (MSLE), categorical 

crossentropy that computes de logarithmic difference of the output with all the 

classes, and many more. 

 Metrics: This parameter is optional and allows the user to see the accuracy of the 

model after each training step. 
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With the model compiled, the training can be started. The Keras function to train a model 

is called “fit” and has a lot of parameters that can be modified as well, some of them are 

the following: 

 X: A Numpy array of the training data. 

 Y: A Numpy array of the target data. 

 Batch Size: The number of samples per gradient update. 

 Number of epochs: The number of times to iterate over the training data. 

 Callbacks: This parameter allows the user to save the weights of the network after 

each epoch if the loss is lower than any previous value. 

 Validation Data: Is the sub-set that will validate how the model is performing. 

 Shuffle: Allows the user to automatically shuffle the training data after each epoch. 

3.2. Datasets 

In this thesis, some of the most relevant datasets for face identification and verification 

where used alongside with some sets from the GPI server. 

The first datasets that were tested are CelebA [24], MSRA-CFW [25] and YouTubeFaces 

(YTF) [17]. These datasets contain images from celebrities and were generated by getting 

images from the net, specially, YTF was generated with images from different frames of 

YouTube Videos. YTF is the only database with indications to crop the face of each frame 

from the previously mentioned datasets, so CelebA and MSRA-CFW were set aside.  

The problem with YTF is that about a third of the different identities only have images from 

frames of the same video, and many of the videos are from interviews or TV shows where 

there is not a lot of movement, so the images are really similar. 

Two databases that were in the GPI server were used to solve this similarity problem, which 

are Labelled Faces in the Wild (LFW) [18] and FaceScrub [19]. Like the sets mentioned 

before, these databases were generated from celebrity images collected from the internet. 

These sets have a problem with the image balance for some identities, in the case of LFW 

about a third of the identities only have one image available. Also mention that the images 

from LFW have the entire head of the identity and some background and the FaceScrub 

identities only have the face. 

The last dataset that was used is called Google UPC, it was generated at the UPC by 

grabbing images of celebrities from Google. 

Database Number of identities Number of images 

LFW 5.749 13.233 

FaceScrub 695 141.130 

YTF 1.595 620.953 

CelebA 10.177 202.599 

MSRA-CFW 1583 202.792 

Google UPC 293 19.708 

Table 4. Comparison of all the datasets used in this thesis. 

For this thesis some sub-sets based on the previously mentioned were generated, the 

exact sets used were the following three:  

 Merged dataset: A merge of LFW and FaceScrub containing 546 identities and 21 

images of each identity.  
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 YTF subset: This was generated using only images from YTF, the number of 

identities is 1595, as the original set, but the number of images for each identity 

was reduced to 15 and picked randomly for every identity. 

 Google UPC: This set was used without modifying the number of images or 

identities, so it has 293 identities and a total of 19708 images. 

3.3. Retraining of VGG and AlexNet 

Performing a full training of the networks would have been too slow, an enormous database 

is needed and probably would ended with a worse result than fine-tuning, so performing a 

full training was discarded [1]. 

To fine-tune a model in Keras there is a parameter in every layer that needs to be adjusted, 

the parameter, called trainable, has to be set to false in the layers that the user does not 

want to update the weights in the training stage. By doing so the layers with the trainable 

parameter equal to false will be “frozen” (they will not change their value).  

In both VGG19 and AlexNet models, the only layers that were not frozen were the last fully 

connected and the classification layers. The classification layer needs to be changed for 

every database since it has to classify the different identities of the set. 

There is another important step that has to be performed before the training starts, it is the 

pre-processing of the images. The images that will fine-tune the network have to be 

adapted to the images that trained the model in the first place. For example, the first 

modification is subtracting the mean of the dataset that generated the weights that are 

being tuned. The other modification is changing the colour scheme to the one of the initial 

dataset (RGB or BGR).  

With the pre-processing finished, the fine-tuning can start. The function “fit”, mentioned 

before, is called and the training start with the parameters decided. The parameters 

selected for this thesis are the following: 

 Optimizer: SGD was the optimizer used because of its convergence rate and the 

different parameters that could be adjusted, this being the learning rate that was 

set up to 1𝑒−4 and the weight decay to 1𝑒−6. 

 Loss: The objective decided for this task has to be the categorical crossentropy 

since is the most accurate parameter for performing a classification with multiple 

classes. Mathematically, this function computes 𝐻(𝑝, 𝑞) =  −∑ 𝑝(𝑥) log(𝑞(𝑥))𝑥 , 

where 𝐻(𝑝, 𝑞) is the crossentropy between 𝑝 and 𝑞 and 𝑝 and 𝑞 are two probability 

distributions. 

 Regarding the training parameters, the data and objectives were images and labels 

of the dataset to which the network was being tuned, the batch size was set to 

16(VGG19) and 32(AlexNet) since a bigger one could not fit in the available GPUs, 

in some tests by increasing the batch size the training sped up or even improved 

the accuracy of the network. The number of epochs that was selected was 200, but 

by using a callback to save the weights after each epoch, the training could 

manually be stopped when a point of convergence was reached. Finally the sets 

were splitted in train and validation according to [Table 5]. 

Finally data augmentation was tested in some network configurations and datasets to test 

its viability. Keras’s data augmentation generates images with small changes based on the 

parameters desired by the user. These modified images are generated and changed 

randomly after each epoch. The different parameters that can be added with Keras are 
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subtracting the mean of the dataset or the mean of the sample, normalize with the standard 

deviation of the dataset or the current image, applying ZCA whitening, randomly rotate 

images for a maximum amount of degrees, shifting the images vertically or horizontally, 

zooming into the images and many other options. 

Dataset Train images Validation images 

Merged dataset 10466 1000 

YTF subset 18925 5000 

Google UPC 15708 4000 

Table 5. Train/Validation images splits for the selected databases. 

3.4. Verification implementations 

With the networks fine-tuned, the last task of this project is addressed. In this thesis many 

different verification techniques have been tested. In order to perform the task of verification, 

the output of the classifying layer is not enough and more values are needed. To have 

more information than the one obtained from the classification layer, this last layer is 

removed. The resulting is an array of 4096 parameters that will be called the feature array 

or features. 

The first and most simple test to implement was a threshold classifier, which consisted in 

getting a pair of features, subtract one vector from the other and compute its norm. This 

was done for 20000 pairs and finally with a partition of these, the threshold was trained and 

tested with the other partition. 

The following was to train a Support Vector Machine (SVM), which are a set of supervised 

learning methods that consist in generating a multidimensional partition of the space of the 

features by feeding a subset of them to train the SVM. The threshold between classes can 

be modelled by tweaking the kernel of the SVM, for example, with a linear kernel the 

threshold between classes will be a line and with a RBF kernel the threshold between 

classes will follow a quadratic function. In the thesis the linear SVM was the first to be 

implemented and then the RBF was tested which parameters where tuned for the best 

possible performance. The parameters of the RBF are gamma and C, gamma defines how 

far the influence of a single training examples reaches and C trades off misclassification of 

training examples against simplicity of the decision surface. 

Once these more classic methods were working properly, some state-of-the-art methods 

were tested. The first one was the Joint Bayesian (JB) classifier [12]. This method parts 

from the naive formulation where the faces {𝑥1, 𝑥2} are modelled as Gaussians. These 

probabilities are computed based on the hypothesis that the faces are from the same 

identity Eqn. (2) or from different identities Eqn. (3).  

𝑃(𝑥1, 𝑥2| 𝐻𝐼) = 𝑁(0, Σ𝐼)                                                (2) 

𝑃(𝑥1, 𝑥2| 𝐻𝐸) = 𝑁(0, Σ𝐸)                                               (3) 

where Σ𝐼 and Σ𝐸 are two covariance matrices that can be estimated from the intra-personal 

pairs and extra-personal pairs respectively. 

JB introduces a prior on the face representation which consist in the sum of two 

independent Gaussian variables that follow the equation: 

𝑥 =  𝜇 + 𝜀,                                                           (4) 
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where 𝑥 is the observed face with the mean of all the faces subtracted, 𝜇 represents its 

identity, 𝜀 is the face variation within the same identity. The distribution of these variables 

follows: 

𝜇 ~ 𝑁(0, 𝑆𝜇) 

and 

𝜀 ~ 𝑁(0, 𝑆𝜀), 

where 𝑆𝜇 and 𝑆𝜀 are two unknown covariance matrices. Given the linear form of Eqn. (4) 

and the independent assumption between 𝜇 and 𝜀, the covariance of two faces is: 

𝒄𝒐𝒗(𝑥1, 𝑥2) =  𝒄𝒐𝒗(𝜇1, 𝜇2) +  𝒄𝒐𝒗(𝜀1, 𝜀2).                                  (5) 

The covariance matrix of the probability distributions 𝑃(𝑥1, 𝑥2| 𝐻𝐼) and 𝑃(𝑥1, 𝑥2| 𝐻𝐸) can 

be derived as: 

Σ𝐼 = [
𝑆𝜇 + 𝑆𝜀 𝑆𝜇

𝑆𝜇 𝑆𝜇 + 𝑆𝜀
],  Σ𝐸 = [

𝑆𝜇 + 𝑆𝜀 0

0 𝑆𝜇 + 𝑆𝜀
].                            (6) 

With the above conditional joint probabilities, a ratio of log likelihood can be obtained: 

𝑟(𝑥1, 𝑥2) = log
𝑃(𝑥1, 𝑥2| 𝐻𝐼)

𝑃(𝑥1, 𝑥2| 𝐻𝐸)
=  𝑥1

𝑇𝐴𝑥1 + 𝑥2
𝑇𝐴𝑥2 − 2𝑥1

𝑇𝐺𝑥2                             (7) 

where 

𝐴 = (𝑆𝜇 + 𝑆𝜀)
−1 − (𝐹 + 𝐺)                                              (8) 

(
𝐹 + 𝐺 𝐺

𝐺 𝐹 + 𝐺
) =  (

𝑆𝜇 + 𝑆𝜀 𝑆𝜇

𝑆𝜇 𝑆𝜇 + 𝑆𝜀
)
−1

                                 (9) 

Since 𝑆𝜇 and 𝑆𝜀 are two unknown covariance matrices that need to be learned from the 

data, an EM-like algorithm to jointly estimate them is developed. 

In the E-step, for each subject with n images, the relationship between the variables 𝒉 =

[𝜇; 𝜀1; … ; 𝜀𝑛] and the observations 𝒙 = [𝑥1;… ; 𝑥𝑛] is 𝒙 = 𝑷𝒉, where 𝑷 = [𝑰 | 𝑑𝑖𝑎𝑔(𝑰)]. The 

covariance matrix of 𝒉  is Σℎ = 𝑑𝑖𝑎𝑔(𝑆𝜇 , 𝑆𝜀 , … , 𝑆𝜀) , being its distribution  𝒉 ~ 𝑁(0, 𝑆𝜇) . 

Therefore, the distribution of x is 𝑁(0, Σ𝑥) with Σ𝑥 = 

[
 
 
 
𝑆𝜇 + 𝑆𝜀 𝑆𝜇

𝑆𝜇 𝑆𝜇 + 𝑆𝜀

… 𝑆𝜇  

…    𝑆𝜇    

⋮         ⋮
𝑆𝜇           𝑆𝜇

  ⋱ ⋮
  … 𝑆𝜇 + 𝑆𝜀]

 
 
 

.  

The expectation of the variable 𝒉 is computed as: 

𝐸(𝒉|𝒙) = Σℎ𝑷𝑇Σ𝑥
−1𝒙.                                               (10) 

With the new estimated values of 𝜇 and 𝜀 from 𝒉. The M-step updates the covariance 

matrices 𝑆𝜇 = 𝑐𝑜𝑣(𝜇) and 𝑆𝜀 = 𝑐𝑜𝑣(𝜀) with the estimated variables in the E-step. 

Finally, with the covariance matrices, the log likelihood ratio is computed for pairs of images, 

with this ratio, a threshold can be trained and it will decide if the pair of images belong to 

the same subject or not.  

When the 4096 features array was tested with Joint Bayesian, the time to perform a full 

convergence of the algorithm took more than three days. This time had to be reduced in 
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order to perform other tests. The approach taken to reduce this time was to reduce the 

dimensionality of the features. 

In order to reduce the dimensionality two methods were tested, first a Principal Component 

Analysis (PCA) was performed, this procedure uses an orthogonal transformation to 

convert a set of observations of possibly correlated variables into a set of linearly 

uncorrelated variables, the principal components. Then the number of components is 

selected based on user specifications. 

The other method used is based in deep neural networks and is called autoencoder [20]. 

An autoencoder is a stack of layers that decreases the dimensionality of the input vector 

progressively. In this thesis three different autoencoders were used: 

 

Figure 7. Autoencoder networks used in this thesis. 

Using Autoencoders is better than just adding a fully connected layer before the 

classification layer in the network because they allow the user to extract the features in 

many different dimensions and the computational cost of training these autoencoders is 

way less than fine-tuning a network like VGG with an additional fully connected layer. 

Finally, the last method tested for face verification was the Advance Joint Bayesian [13], 

the authors of the paper state that the Joint Bayesian method is imperfect and propose a 

corrected formulation. 

The first correction that is proposed is to estimate the parameter 𝜇 in an iterative way rather 

than being fixed a priori. The second and more important change is that the JB computes 

the expectation of the variables directly, while a standard EM algorithm would compute the 

expectation from the log-likelihood of the variables. 

Under the Gaussian assumption, AJB defines 𝑥 = ℎ + 𝜖 with its probability distributions 

𝑃(ℎ) =  𝑁𝜇,Σ𝑏
(ℎ) and 𝑃(𝜖) =  𝑁0,Σ𝜔

(𝜖), where 𝜇, Σ𝑏 and Σ𝜔 are model parameters. 

In a standard EM algorithm the parameters of the model should be: 

[ 𝜇(𝑡), Σ𝑏
(𝑡), Σ𝜔

(𝑡)] = argmax
𝜇,Σ𝑏,Σ𝜔

𝐸
𝒉|𝒙,𝜇(𝑡−1),Σ𝑏

(𝑡−1),Σ𝜔
(𝑡−1) × ln𝑃(𝒙, 𝒉 | 𝜇, Σ𝑏 , Σ𝜔)  
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      = argmax
𝜇,Σ𝑏,Σ𝜔

𝐸
𝒉|𝒙,𝜇(𝑡−1),Σ𝑏

(𝑡−1),Σ𝜔
(𝑡−1) × ln(𝑃(𝒉 | 𝜇, Σ𝑏 , Σ𝜔)𝑃(𝒙 | 𝒉, 𝜇, Σ𝑏 , Σ𝜔)) (11) 

      = argmax
𝜇,Σ𝑏,Σ𝜔

𝐸
𝒉|𝒙,𝜇(𝑡−1),Σ𝑏

(𝑡−1),Σ𝜔
(𝑡−1) × ln𝑃(𝒉 | 𝜇, Σ𝑏)𝑃(𝝐 | Σ𝜔)  

where (𝑡) is the (𝑡)th iteration of the algorithm. By expanding the term in the first equation 

of (10): 

                       𝐸 (ln (∏𝑁𝜇,Σ𝑏
(ℎ𝑖)

𝑐

𝑖=1

)) = ∑𝐸(ln𝑁𝜇,Σ𝑏
(ℎ𝑖)) 

𝑐

𝑖=1

= −
𝑐

2
 ln|Σ𝑏| −                            (12) 

 −
1

2
∑𝐸 ((ℎ𝑖 − 𝜇)𝑇Σ𝑏

−1(ℎ𝑖 − 𝜇))

𝑐

𝑖=1

+ 𝑐𝑜𝑛𝑠𝑡. 

where c is the number of subjects. Then, maximizing (11) with respect to 𝜇 and Σ𝑏: 

𝜇(𝑡) = 
1

𝑐
∑𝐸

𝑐

𝑖=1

ℎ𝑖 = 
1

𝑐
∑ℎ̂𝑖

(𝑡)
,

𝑐

𝑖=1

                                                      (13) 

Σ𝑏
(𝑡) = 

1

𝑐
∑𝐸 ((ℎ𝑖 − 𝜇(𝑡))(ℎ𝑖 − 𝜇(𝑡))

𝑇
)

𝑐

𝑖=1

= 
1

𝑐
∑(𝑐𝑜𝑣(ℎ𝑖) + (𝐸ℎ𝑖 − 𝜇(𝑡))(𝐸ℎ𝑖 − 𝜇(𝑡))

𝑇
)

𝑐

𝑖=1

 

= 
1

𝑐
∑((ℎ̂𝑖

(𝑡)
− 𝜇(𝑡))

2
+ 𝑆𝑖

(𝑡)
)

𝑐

𝑖=1

,                                                    (14) 

where ℎ̂𝑖
(𝑡)

 = 𝜇(𝑡−1) +  Σ𝑏
(𝑡−1) (Σ𝑏

(𝑡−1) +
Σ𝜔

(𝑡−1)

𝑛𝑖
) (𝑥̅𝑖 − 𝜇(𝑡−1))  and 𝑆𝑖

(𝑡)
= 𝑐𝑜𝑣(ℎ𝑖) =

 Σ𝑏
(𝑡−1)(𝑛𝑖Σ𝑏

(𝑡−1) + Σ𝜔
(𝑡−1))

−1
Σ𝜔

(𝑡−1)  with 𝑛𝑖  equal to the number of samples for the 

subject 𝑖. 

The last model parameter follows the equation: 

Σ𝜔
(𝑡) = 

1

∑ 𝑛𝑖
𝑐
𝑖=1

∑∑((𝜖𝑖̂𝑗
(𝑡))

2
+ 𝑆𝑖

(𝑡)) ,

𝑛𝑖

𝑗=1

𝑐

𝑖=1

                                            (15) 

where 𝜖𝑖̂𝑗
(𝑡) = 𝑥𝑖𝑗 − ℎ̂𝑖

(𝑡)
 with 𝑖 ∈ (1, 𝑐) and j ∈ (1, 𝑛𝑖). 

AJB adds the 𝑆𝑖
(𝑡)

 parameter during the update of Σ𝑏 and Σ𝜔, which is the main difference 

from the JB method and guarantees that the AJB will converge to the local maximum of 

the likelihood function. Which is defined as: 

𝐿(𝑥1, 𝑥2) ~ 𝑠𝑇Σ1s − ∆𝑇Σ2∆,                                                        (16) 

where 

𝑠 =  𝑥1 + 𝑥2 − 2𝜇, 

∆ =  𝑥1 − 𝑥2, 

Σ1 = (Σ𝜔 + Σ𝑏)
−1 − (Σ𝜔 + 2Σ𝑏)

−1, 

Σ2 = Σ𝜔
−1 − (Σ𝜔 + Σ𝑏)

−1. 

In this thesis the formulation above is implemented in Python and tested against the other 

classifiers. 
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4. Results 

4.1. Fine-tuning of VGG19 and AlexNet 

 VGG19 and AlexNet comparison 

VGG19 and AlexNet were compared using the merged dataset. Also data augmentation 

(DA) was tested with both networks. It can be observed in [Figure 11] that AlexNet 

converges faster than VGG, which is because AlexNet is shallower, but the best result is 

obtained with VGG19. 

 

Figure 8. Validation Accuracy comparing AlexNet and VGG19 with the merged dataset. 

From now on, the only network used was VGG19. 

 YTF dataset with VGG19 

The network was trained for 30 epochs and the accuracy value obtained is above 90%. 

 

Figure 9. Validation Accuracy with VGG19 for the YTF subset. 

The YTF dataset, as stated in 3.2, is composed of images from frames of YouTube videos 

which almost have no movement so the images of the faces are really similar. To the point 

that could be considered the same image with some kind of data augmentation. Also 

mention that for this dataset using data augmentation did not improve the accuracy of the 

network. 

 Merged dataset with VGG19 

The results for the merged dataset show that using DA in the last fully connected layer 

make improve the accuracy of the network by 10%, while fine-tuning the last two fully 

connected layers results in only an improvement of 5%. 
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Fine-tuning tests Accuracy 

Last fully connected layer no DA 70% 

Last fully connected layer with DA 80% 

Last 2 fully connected layers with DA 75% 

Table 6. Accuracy comparison for VGG19 with the merged dataset. 

The images from this dataset, that are being labelled incorrectly, have a pattern that can 

be easily seen, almost every incorrect image has the face sided. Which is known to be one 

difficult problem for the task of face classification.  

 Google UPC with VGG19 

The same result that has been seen in the merged dataset is found here. The Google UPC 

dataset has 293 identities and more than 19000 images that were extracted from Google 

and do not have a pattern like YouTubeFaces, so when data augmentation is applied, the 

results improve slightly.  

Fine-tuning tests Accuracy 

Last fully connected layer no DA 82% 

Last fully connected layer with DA 88% 

Table 7 Accuracy comparison for VGG19 with Google UPC. 

4.2. Classical classifiers for verification and dimensionality reduction 

The performance of the verification is measured by the parameter AUC (Area Under the 

Curve) from the ROC (Receiver Operating Characteristic) curve.  

Given a threshold parameter 𝑇, the pair of images is classified as “positive” if 𝑋 > 𝑇, and 

“negative” otherwise. 𝑋 follows a probability density 𝑓1(𝑥) if the pair actually belongs to the 

class “positive”, and 𝑓0(𝑥) if not. Therefore, the True Positive Rate is given by 𝑇𝑃𝑅(𝑇) =

∫ 𝑓1(𝑥)𝑑𝑥
∞

𝑇
 and the False Positive Rate is given by 𝐹𝑃𝑅(𝑇) = ∫ 𝑓0(𝑥)𝑑𝑥

∞

𝑇
. The ROC curve 

plots parametrically 𝑇𝑃𝑅(𝑇) versus 𝐹𝑃𝑅(𝑇) with T as the varying parameter. 

The AUC follows the equation: 

𝐴 = ∫ 𝑇𝑃𝑅(𝑇)𝐹𝑃𝑅′(𝑇)𝑑𝑇.

−∞

∞

                                                         (17) 

It is important to mention that all the verification methods have been tested with the merged 

dataset. Extracting the features from the VGG19 network with the weights obtained by 

retraining the last fully connected layer with data augmentation. 

 Threshold classifier 

The results obtained with the threshold classifier are better than what was expected. The 

AUC is almost 99%, being 100% the best possible that would correspond to a perfect 

system. The results also show that the number of dimensional features do not make a big 

difference for this classifier. 
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Figures 10 & 11. ROC of the threshold classifier with PCA of the merged dataset (left) 

and with zoom (right). 

The Autoencoders were also tested with the threshold classifier, giving the results shown 

in [Table 8]. 

Method AUC 

PCA 512 features 0.988 

Autoencoder 1 0.858 

Autoencoder 2 0.807 

Autoencoder 3 0.869 

Table 8. AUC comparison between autoencoders and PCA. 

The autoencoder that gives the best result is the number 3 which is the one that converged 

slower in the training stage. But the results of the PCA are much better. In the next 

experiments the features used will only be the ones obtained with PCA. 

 SVM 

The first SVM configuration tested was with a linear SVM which gave a result worse than 

a random guess, the AUC is under 50% and this kind of SVM was discarded. 

Number of PCA features AUC 

64 0.488 

128 0.488 

256 0.484 

512 0.495 

1024 0.479 

2048 0.475 

4096 0.474 

Table 9. AUC comparison of the SVM with linear kernel. 

The next test was with the SVM with a RBF kernel, which improved the results of the 

threshold classifier by a small percentage. As in the case of the threshold classifier, the 

PCA does not make a big improvement, but it is true that the smaller dimensions perform 

better than the bigger ones. To achieve this improvement the parameters C and gamma 

were tuned, with gamma equal to 5 being the best result for any value of C. 
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Figures 12 & 13. SVM with kernel RBF and PCA (left). Parameter comparison for SVM 

with kernel RBF (right). 

4.3. Joint Bayesian 

Joint Bayesian has given the best results for the verification task out of all the algorithms, 

the results improve slightly the ones obtained with the SVM but in this case the best 

dimension is PCA 512 instead of 128/256. It is also important to notice that the results only 

show values of the PCA until the 1024 features, which is because computing the PCA for 

2048 and 4096 features lasted too much.  

 

Figures 14 & 15. JB for the Merged Dataset with PCA (left) and zoomed image (right). 

With the best classifier, the autoencoder values were, again, tested, giving a better result 

than for the threshold classifier but not reaching the results of the PCA. Also mention, the 

third autoencoder performs better than the other two, as in the threshold method. 

 

Figures 16 & 17. Comparison of PCA and Autoencoder with the JB (left) and zoomed 

image (right). 
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4.4. Advanced Joint Bayesian 

The algorithm implemented for the AJB following the pseudocode in [13] ended giving bad 

results. This method was supposed to converge faster than the JB and giving a result 

similar or better than the JB.  

 

Figure 18. ROC AJB with VGG19 PCA features. 

The results shown in the figure are too distant from the ones obtained with the JB, in order 

to find what could be the problem, the author of the AJB was contacted via email.  

The author of the AJB stated that the AJB works better with Gaussian models of data and 

with the case of Convolutional Neural Networks, the Joint Bayesian outperforms the AJB. 

Finally the time to compute each iteration of the AJB is higher than the time to compute an 

iteration for the JB with the same amount of features. 

Features JB AJB 

64 0.4s 2s 

128 0.6s 6s 

256 2.5s 32s 

512 10s 180s 

1024 60s 1320s 

2048 300s 11880s 

Table 10. Time required to compute one iteration of the JB and the AJB. 

For the purpose of this project, the Joint Bayesian method is superior in every single aspect 

respect the Advanced Joint Bayesian. 

4.5. Conclusions 

First, the VGG19 model performs better than AlexNet, as it was expected, since VGG was 

published after AlexNet as an improved model for the task of classification, proving that its 

performance was better.  

Then the datasets that were used to train the VGG19 perform different based on the type 

of images that generated the dataset. YTF has given the best results because the images 

have very little variations, since the faces are extracted from videos, while the merged 

dataset and Google UPC have faces from different pictures. That is also why for YTF DA 

does not work properly and for the merged dataset and Google UPC, DA improves the 

accuracy of the network. 
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Another interesting result is that the convolutional features extracted from the models have 

better results when being dimensionally reduced with PCA than with Autoencoders. 

Finally, regarding the verification task, JB is the method that performs the best out of all 

the ones tested. AJB was supposed to work even better, but the results showed that it was 

not working properly.  

The threshold classifier has proven to give very good results despite its simplicity, resulting 

in an AUC of only 0.66% less than the JB.  

The final comparison of the best results is: 

Method AUC 

Threshold classifier with PCA 128 0.9894 

SVM kernel RBF with PCA 128 0.991 

Joint Bayesian with PCA 512 0.996 

Table 11. Comparison of the best methods used in this thesis. 
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5. Budget 

This project was carried out using the personal computer of the author and the 
Development Platform server from the GPI of the UPC where all the experiments and tests 
were executed.  

All the software used is open source or under a free to use for non-commercial profit license. 

 

This project was started in February of 2016 and was ended in September 2016, a total of 
7 months. Working 20 hours each week and considering that the salary of a junior engineer 
is around 1850€ a month, working full time (40h/week) would cost 6475€. 

 

Two supervisors have assisted in the realization of this project. Each week, a 1 hour 
meeting was realized with both of the supervisors to check on the process of the project. 
The supervisors fee is 55€/h. A total of 32 meetings have been done in this project, with a 
total cost of 3520€. 

 

Finally, if the server was outsourced to a company like Amazon, which offers access to 
their servers, the price for a server with enough RAM and a GPU is 2,7522€/hour. One 
week of this service would cost 462,88€ and for the total duration of this project, the cost 
of the server would have been 14812,16€. 

  

Name Cost/week Number of weeks Cost 

Junior Engineer 202,34375€ 32 6475€ 

Supervisors 110€ 32 3520€ 

Outsourced Server 462,88€ 32 14812,16€ 

    

Total   24807,16€ 

Table 12. Cost of the project. 

 

The total cost of this project would be 24807,16€.  
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6. Conclusions and future development 

The field of deep learning is improving every day, with new architectures, approaches and 

new interesting concepts which make the possibilities to extend this work very wide. 

In this thesis it is shown that by using convolutional features extracted from very well-known 

models, the results obtained can be really good. It is important to decide the best dataset 

for the task addressed at any time. For example to test the face verification algorithms the 

YTF dataset achieve better results than the merged dataset because of the fact that the 

images are all from the same clips of video, which makes the dataset invalid for a proper 

test.  

In the task of classification, new network architectures with recursive layers have become 

popular by winning the ILSVRC in 2015. With the improvements on the field and the 

publication of software like TensorFlow, the field will evolve even faster in the following 

years. Testing these new networks could be an interesting test for future projects, which 

would consist in implement the Inception-v3 [21] or Inception-v4 [22] models in TF and 

compare them with older models. 

Finally, regarding the verification task, generative Bayesian methods like Joint Bayesian 

have achieved the best results in this task the last years and some improvements like the 

Advanced Joint Bayesian are published reporting better results than the Joint Bayesian. 

The theory behind them is interesting to study but for the case of AJB, in this thesis is 

shown that does not improve the results of JB for face verification with deep neural features. 
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Glossary 

AJB: Advanced Joint Bayesian 

ANN: Artificial Neural Network 

BGR: Blue Green Red 

CNN: Convolutional Neural Network 

CPU: Central Processing Unit 

CV: Computer Vision 

DA: Data Augmentation 

EM: Expectation Maximization 

GB: Gigabyte 

GPI: Image Processing Group 

GPU: Graphics Processor Unit 

ILSVRC: ImageNet Large Scale Visual Recognition Competition 

JB: Joint Bayesian 

LFW: Labeled Faces in the Wild 

ML: Machine Learning 

MSE: Mean Squared Error 

MSLE: Mean Squared Logarithmic Error 

PCA: Principal Component Analysis 

RAM: Random Access Memory 

RBF: Radial Basis Function 

ReLU: Rectified Linear Unit 

RGB: Red Green Blue 

ROC: Receiver Operating Characteristic 

SGD: Stochastic Gradient Descent 

SVM: Support Vector Machine 

TF: TensorFlow 

TSC: Department of Signal Theory and Communications  

TV: Television 

UPC: Universitat Politècnica de Catalunya 

VGG: Visual Geometry Group 

WP: Work Package 

YTF: YouTube Faces 

ZCA: Zero-phase Component Analysis 


