488 research outputs found

    Evaluation of prediction accuracy for the Longley-Rice model in the FM and TV bands

    Get PDF
    Accurate geographical coverage predictions maps for FM and TV are needed for channel and frequency allocations and in order to avoid unwanted interferences. The Longley-Rice model has been used for this purpose over the last four decades and still being used almost exclusively by the FCC in the United States. In this work a comparison is presented between the relative accuracy of this model in the VHF-FM and UHF-TV frequency bands. Simulations were made with accurate and up to date input data (antenna height, location, gain, transmit power, etc.) for the FM-TV stations provided by the ERT S.A. public broadcaster in the region of Thessaloniki – Greece. Finally, the calculated – simulated results were confronted to field measurements using a Rohde & Schwarz FSH3 portable spectrum analyzer and high precision calibrated biconical and log-periodic antennas, and the errors between predictions and measurements were statistically analyzed in the two frequency bands. It has been found in this study that the Longley-Rice model, in general, overestimates field-strength values, but this overestimation is much higher in the VHF – FM radio band (88-108 MHz) than in the UHF-TV band (470-790 MHz)

    On the feasibility of unlicensed communications in the TV white space: Field measurements in the UHF band

    Get PDF
    In practical unlicensed communications in TV band, radio devices have to identify, at first, the transmission opportunities, that is, the portion of the spectrum licensed for broadcasting services unoccupied in a certain region at certain time, that is, the so-called TV white space. In this paper the outcome of field measurements in the UHF TV band (470-860 MHz) conducted in EU is presented. To obtain empirical values for the parameters upon which unlicensed radio devices are able to distinguish in a real scenario between empty and occupied TV channels, signal power measurements have been performed in Italy, Spain, and Romania on rural, suburban, and urban sites, at different heights over the ground by using different analysis bandwidths. The aim of this work is to provide a set of practical parameters upon which harmless unlicensed communication in the UHF TV white space is feasible. The results have been analyzed with respect to the hidden node margin problem, spectrum sensing bandwidth, and occupancy threshold

    Spectrum Utilisation and Management in Cognitive Radio Networks

    Get PDF

    The relationship between choice of spectrum sensing device and secondary-user intrusion in database-driven cognitive radio systems

    Get PDF
    As radios in future wireless systems become more flexible and reconfigurable whilst available radio spectrum becomes scarce, the possibility of using TV White Space devices (WSD) as secondary users in the TV Broadcast Bands (without causing harmful interference to licensed incumbents) becomes ever more attractive. Cognitive Radio encompasses a number of technologies which enable adaptive self-programming of systems at different levels to provide more effective use of the increasingly congested radio spectrum. Cognitive Radio has the potential to use spectrum allocated to TV services, which is not actually being used by these services, without causing disruptive interference to licensed users by using channel selection aided by use of appropriate propagation modelling in TV White Spaces.The main purpose of this thesis is to explore the potential of the Cognitive Radio concept to provide additional bandwidth and improved efficiency to help accelerate the development and acceptance of Cognitive Radio technology. Specifically, firstly: three main classes of spectrum sensing techniques (Energy Detection, Matched Filtering and Cyclostationary Feature Detection) have compare in terms of time and spectrum resources consumed, required prior knowledge and complexity, ranking the three classes according to accuracy and performance. Secondly, investigate spectrum occupancy of the UHF TV band in the frequency range from 470 to 862 MHz by undertaking spectrum occupancy measurements in different locations around the Hull area in the UK, using two different receiver devices; a low cost Software-Defined Radio device and a laboratory-quality spectrum analyser. Thirdly, investigate the best propagation model among three propagation models (Extended-Hata, Davidson-Hata and Egli) for use in the TV band, whilst also finding the optimum terrain data resolution to use (1000, 100 or 30 m). it compares modelled results with the previously-mentioned practical measurements and then describe how such models can be integrated into a database-driven tool for Cognitive Radio channel selection within the TV White Space environment. Fourthly, create a flexible simulation system for creating a TV White Space database by using different propagation models. Finally, design a flexible system which uses a combination of Geolocation Database and Spectrum Sensing in the TV band, comparing the performance of two spectrum analysers (Agilent E4407B and Agilent EXA N9010A) with that of a low cost Software-Defined Radio in the real radio environment. The results shows that white space devices can be designed using SDRs based on the Realtek RTL2832U chip (RTL-SDR), combined with a geolocation database for identifying the primary user in the specific location in a cost-effective manner. Furthermore it is shown that improving the sensitivity of RTL-SDR will affect the accuracy and performance of the WSD

    Time Frequency Slicing for Future Digital Terrestrial Broadcasting Networks

    Full text link
    “© © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”Time Frequency Slicing (TFS) is a novel transmission technique for the future of terrestrial broadcasting. TFS breaks with the traditional transmission of TV services over single RF channels.With TFS, services are distributed across several channels by frequency hopping and time-slicing. The bundling of several RF channels into a TFS multiplex provides important advantages. A capacity gain is obtained due to a more efficient statistical multiplexing of video content since more services can be encoded in parallel. Improved frequency diversity also provides a coverage gain since signal imbalances between RF channels can be smoothed. Enhanced robustness against static and time varying interferences can also be achieved. TFS was described, although not implemented, for DVB-T2 and was fully adopted in DVB-NGH. At present, it is proposed for a future evolution of DVB-T2 and will also be considered in the ongoing ATSC 3.0 standard. This paper investigates the potential advantages of TFS by means of field measurements as well as simulations and discusses practical implementation aspects and requirements regarding transmission and reception. Results demonstrate the interesting advantages of TFS to improve both coverage and spectral efficiency, which addresses the future necessity of a more efficient DTT spectrum usage.Gimenez Gandia, JJ.; Stare, E.; Bergsmark, S.; GĂłmez Barquero, D. (2014). Time Frequency Slicing for Future Digital Terrestrial Broadcasting Networks. IEEE Transactions on Broadcasting. 60(2):227-238. doi:10.1109/TBC.2014.2315766S22723860

    Investigation of high bandwith biodevices for transcutaneous wireless telemetry

    Get PDF
    PhD ThesisBIODEVICE implants for telemetry are increasingly applied today in various areas applications. There are many examples such as; telemedicine, biotelemetry, health care, treatments for chronic diseases, epilepsy and blindness, all of which are using a wireless infrastructure environment. They use microelectronics technology for diagnostics or monitoring signals such as Electroencephalography or Electromyography. Conceptually the biodevices are defined as one of these technologies combined with transcutaneous wireless implant telemetry (TWIT). A wireless inductive coupling link is a common way for transferring the RF power and data, to communicate between a reader and a battery-less implant. Demand for higher data rate for the acquisition data returned from the body is increasing, and requires an efficient modulator to achieve high transfer rate and low power consumption. In such applications, Quadrature Phase Shift Keying (QPSK) modulation has advantages over other schemes, and double the symbol rate with respect to Binary Phase Shift Keying (BPSK) over the same spectrum band. In contrast to analogue modulators for generating QPSK signals, where the circuit complexity and power dissipation are unsuitable for medical purposes, a digital approach has advantages. Eventually a simple design can be achieved by mixing the hardware and software to minimize size and power consumption for implantable telemetry applications. This work proposes a new approach to digital modulator techniques, applied to transcutaneous implantable telemetry applications; inherently increasing the data rate and simplifying the hardware design. A novel design for a QPSK VHDL modulator to convey a high data rate is demonstrated. Essentially, CPLD/FPGA technology is used to generate hardware from VHDL code, and implement the device which performs the modulation. This improves the data transmission rate between the reader and biodevice. This type of modulator provides digital synthesis and the flexibility to reconfigure and upgrade with the two most often languages used being VHDL and Verilog (IEEE Standard) being used as hardware structure description languages. The second objective of this thesis is to improve the wireless coupling power (WCP). An efficient power amplifier was developed and a new algorithm developed for auto-power control design at the reader unit, which monitors the implant device and keeps the device working within the safety regulation power limits (SAR). The proposed system design has also been modeled and simulated with MATLAB/Simulink to validate the modulator and examine the performance of the proposed modulator in relation to its specifications.Higher Education Ministry in Liby

    A Survey of the DVB-T Spectrum: Opportunities for Cognitive Mobile Users

    Get PDF
    • 

    corecore