523 research outputs found

    Network emulation focusing on QoS-Oriented satellite communication

    Get PDF
    This chapter proposes network emulation basics and a complete case study of QoS-oriented Satellite Communication

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    NETWORK PROGRAMMING FOR PERFORMANCE AND LIVENESS MONITORING IN SEGMENT ROUTING NETWORKS

    Get PDF
    Techniques are described herein to define network programming functions for performance and liveness monitoring in Segment Routing (SR) and SRv6 networks. The network programming functions enable probe messages to run at significantly faster rates as punting probe messages to the control plane (slow path processing) and re-injecting them are not required. This enables hardware offloading for Performance Measurement (PM) sessions as well with liveness and PM probes combined. Network programming labels may be allocated from the global SR Global Block (SRGB) for SR Multiprotocol Label Switching (SR-MPLS) by a Software Defined Networking (SDN) controller. END functions are defined for SRv6 for performance delay, loss and liveness monitoring

    Using GENI for experimental evaluation of Software Defined Networking in smart grids

    Get PDF
    The North American Electric Reliability Corporation (NERC) envisions a smart grid that aggressively explores advance communication network solutions to facilitate real-time monitoring and dynamic control of the bulk electric power system. At the distribution level, the smart grid integrates renewable generation and energy storage mechanisms to improve the reliability of the grid. Furthermore, dynamic pricing and demand management provide customers an avenue to interact with the power system to determine the electricity usage that best satisfies their lifestyle. At the transmission level, efficient communication and a highly automated architecture provide visibility in the power system and as a result, faults are mitigated faster than they can propagate. However, such higher levels of reliability and efficiency rest on the supporting communication infrastructure. To date, utility companies are moving towards Multiprotocol Label Switching (MPLS) because it supports traffic engineering and virtual private networks (VPNs). Furthermore, it provides Quality of Service (QoS) guarantees and fail-over mechanisms in addition to meeting the requirement of non-routability as stipulated by NERC. However, these benefits come at a cost for the infrastructure that supports the fullMPLS specification. With this realization and given a two week implementation and deployment window in GENI, we explore the modularity and flexibility provided by the low cost OpenFlow Software Defined Networking (SDN) solution. In particular, we use OpenFlow to provide 1.) automatic fail-over mechanisms, 2.) a load balancing, and 3.) Quality of Service guarantees: all essential mechanisms for smart grid networks

    Performance Optimization and Dynamics Control for Large-scale Data Transfer in Wide-area Networks

    Get PDF
    Transport control plays an important role in the performance of large-scale scientific and media streaming applications involving transfer of large data sets, media streaming, online computational steering, interactive visualization, and remote instrument control. In general, these applications have two distinctive classes of transport requirements: large-scale scientific applications require high bandwidths to move bulk data across wide-area networks, while media streaming applications require stable bandwidths to ensure smooth media playback. Unfortunately, the widely deployed Transmission Control Protocol is inadequate for such tasks due to its performance limitations. The purpose of this dissertation is to conduct rigorous analytical study of the design and performance of transport solutions, and develop an integrated transport solution in a systematical way to overcome the limitations of current transport methods. One of the primary challenges is to explore and compose a set of feasible route options with multiple constraints. Another challenge essentially arises from the randomness inherent in wide-area networks, particularly the Internet. This randomness must be explicitly accounted for to achieve both goodput maximization and stabilization over the constructed routes by suitably adjusting the source rate in response to both network and host dynamics.The superior and robust performance of the proposed transport solution is extensively evaluated in a simulated environment and further verified through real-life implementations and deployments over both Internet and dedicated connections under disparate network conditions in comparison with existing transport methods

    Performance evaluation of AAL2 over IP in the UMTS access network Iub interface

    Get PDF
    Bibliography: leaves 84-86.In this study, we proposed to retain AAL2 and lay it over IP (AAL2IIP). The IP-based lub interface is therefore designed to tunnel AAL2 channels from the Node B to the RNC. Currently IP routes packets based on best-effort which does not guarantee QoS, To provide QoS, MPLS integrated with DiffServ is proposed to support different QoS levels to different classes of service and fast forward the IP packets within the lub interface. To evaluate the performance of AAL2!IP in the Iub interface, a test-bed was created

    Performance enhancement of large scale networks with heterogeneous traffic.

    Get PDF
    Finally, these findings are applied towards improving the performance of the Differentiated Services architecture by developing a new Refined Assured Forwarding framework where heterogeneous traffic flows share the same aggregate class. The new framework requires minimal modification to the existing Diffserv routers. The efficiency of the new architecture in enhancing the performance of Diffserv is demonstrated by simulation results under different traffic scenarios.This dissertation builds on the notion that segregating traffic with disparate characteristics into separate channels generally results in a better performance. Through a quantitative analysis, it precisely defines the number of classes and the allocation of traffic into these classes that will lead to optimal performance from a latency standpoint. Additionally, it weakens the most generally used assumption of exponential or geometric distribution of traffic service time in the integration versus segregation studies to date by including self-similarity in network traffic.The dissertation also develops a pricing model based on resource usage in a system with segregated channels. Based on analytical results, this dissertation proposes a scheme whereby a service provider can develop compensatory and fair prices for customers with varying QoS requirements under a wide variety of ambient traffic scenarios.This dissertation provides novel techniques for improving the Quality of Service by enhancing the performance of queue management in large scale packet switched networks with a high volume of traffic. Networks combine traffic from multiple sources which have disparate characteristics. Multiplexing such heterogeneous traffic usually results in adverse effects on the overall performance of the network

    Redundancy in Communication Networks for Smart Grids

    Get PDF
    Traditional electric power grids are currently undergoing fundamental changes: Representative examples are the increase in the penetration of volatile and decentralized renewable-energy sources and the emerging distributed energy-storage systems. These changes are not viable without the introduction of automation in grid monitoring and control, which implies the application of information and communication technologies (ICT) in power systems. Consequently, there is a transition toward smart grids. IEEE defines smart grid as follows: "The integration of power, communications, and information technologies for an improved electric power infrastructure serving loads while providing for an ongoing evolution of end-use applications" . The indispensable components of the future smart grids are the communication networks. Many well-established techniques and best practices, applied in other domains, are revisited and applied in new ways. Nevertheless, some gaps still need to be bridged due to the specific requirements of the smart-grid communication networks. Concretely, a challenging objective is to fulfill reliability and low-delay requirements over the wide-area networks, commonly used in smart grids. The main ``playground" for the work presented in this thesis is the smart-grid pilot of the EPFL campus. It is deployed on the operational 20kV20kV medium-voltage distribution network of the campus. At the time of the writing of this thesis, the real-time monitoring of this active distribution network has been already put in place, as the first step toward the introduction of control and protection. The monitoring infrastructure relies on a communication network that is a representative example of the smart-grid communication networks. Keeping all this in mind, in this thesis, the main topic that we focus on, is the assurance of data communication over redundant network-infrastructure in industrial environments. This thesis consists of two parts that correspond to the two aspects of the topic that we address. In the first part of the thesis, we evaluate existing, well-established, technologies and solutions in the context of the EPFL smart-grid pilot. We report on the architecture of the communication network that we built on our campus. In addition, we go into more detail by reporting on some of the characteristics of the devices used in the network. We also discuss security aspects of the MPLS Transport Profile (MPLS-TP) which is one of the proposed technologies in the context of smart grids. In the second part of this thesis, we propose new solutions. While designing our campus smart-grid network, we analyzed the imposed requirements and recognized the need for a solution for reliable packet delivery within stringent delay constraints over a redundant network-infrastructure. The existing solutions for exploiting network redundancy, such as the parallel redundancy protocol (PRP), are not viable for IP-layer wide-area networks, a key element of emerging smart grids. Other solutions (MPLS-TP for example) do not meet the stringent delay requirement. To address this issue, we present a transport-layer solution: the IP-layer parallel redundancy protocol (iPRP). In the rest of the thesis, we analyze the methods for implementing fail-independent paths that are fundamental for the optimal operation of iPRP, in SDN-based networks. We also evaluate the benefits of iPRP in wireless environments. We show that, with a help of iPRP, the performance of the communication based on the Wi-Fi technology can be significantly improved

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal
    • 

    corecore