
University of Memphis University of Memphis

University of Memphis Digital Commons University of Memphis Digital Commons

Electronic Theses and Dissertations

11-28-2011

Performance Optimization and Dynamics Control for Large-scale Performance Optimization and Dynamics Control for Large-scale

Data Transfer in Wide-area Networks Data Transfer in Wide-area Networks

Xukang Lu

Follow this and additional works at: https://digitalcommons.memphis.edu/etd

Recommended Citation Recommended Citation
Lu, Xukang, "Performance Optimization and Dynamics Control for Large-scale Data Transfer in Wide-area
Networks" (2011). Electronic Theses and Dissertations. 363.
https://digitalcommons.memphis.edu/etd/363

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/363?utm_source=digitalcommons.memphis.edu%2Fetd%2F363&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu

PERFORMANCE OPTIMIZATION AND DYNAMICS

CONTROL FOR LARGE-SCALE DATA TRANSFER IN

WIDE-AREA NETWORKS

by

Xukang Lu

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Major: Computer Science

The University of Memphis

December 2011

ii

Copyright © 2011 Xukang Lu

All rights reserved

iii

This dissertation is dedicated to my beloved parents.

iv

Acknowledgements
 This dissertation arose in part out of years of research that has been done since I came

to Dr. Wu’s group. By that time, I have worked with a great number of people who have

contributed to the final production of this dissertation in assorted ways. I would like to

express my gratitude to these individuals for their support and assistance.

 First and foremost I want to express my deepest gratitude to my advisor, Prof. Qishi

Wu for his excellent guidance, caring, patience, and providing me with an excellent

atmosphere for doing research. Above all and the most needed, he provided me

unflinching encouragement and support in various ways. His time, effort, and resources

made him a constant oasis of ideas and passions in research, which exceptionally inspired

and enriched my growth as a student. Prof. Wu has been also very supportive and

considerate in many non-academic aspects, which have had significant impacts on my

life as an international student.

I am equally thankful to the members of my dissertation committee, Prof. Lih-Yuan

Deng, Prof. King-Ip Lin, and Prof. Vinhthuy Phan, for their constructive comments and

insightful suggestions on my dissertation. Their kind support and guidance have been of

great value throughout this study. My sincere thanks also go to all other faculty and staff

members in our department and university for their help during my study. I had the

pleasure of collaborating with Dr. Runzhi Li of Henan Education and Research Network

Center, China, who offered great help with some parts of the performance evaluation. I

would also like to pay tribute to my collaborators, Dr. Nageswara Rao at Oak Ridge

National Laboratory, and Dr. Dantong Yu at Brookhaven National Laboratory, for

sharing with me their expert and domain knowledge. I must acknowledge as well all my

friends and lab mates who assisted, and supported my research and writing efforts over

the years. Many thanks go in particular to Mr. Patrick Brown for his great contributions

to the development of the NADMA system.

Words fail me to express my appreciation to my parents and two brothers for their love

and encouragement. They were always supporting me in all my pursuits. Without their

unconditional, unchanging, and unending love and care, this work would never have

come into existence.

Table of Contents

Table of Contents v

List of Figures viii

Abstract xi

1 Introduction 1
1.1 Overview . 1
1.2 Problem Statements . 3

1.2.1 Scientific Applications . 3
1.2.2 Media Streaming Applications .6

1.3 Main Approaches . 8
1.3.1 Data Transfer Route Planner . 8
1.3.2 Transport Control . 9

1.4 Dissertation Organization 11
1.5 Main Contributions . 12

2 Background Survey and Related Work 13
2.1 Resource Provisioning .13

2.1.1 Network Resource Provisioning13
2.1.2 Storage Resource Provisioning 17

2.2 Topology Construction .18
2.3 Transport Protocol Optimization 20

2.3.1 Protocols in Transport Layer .21
2.3.2 TCP Enhancements . 22
2.3.3 UDP-based Protocols . 24

3 An Integrated High-Performance Transport Solution 26
3.1 Integrated Transport Solution Design 26
3.2 Functional Components .27

3.2.1 Data Transfer Route Planner . 27
3.2.2 Transport Control . 29

v

4 Maximizing Transport Performance over Dedicated Connections 30
4.1 Bulk Data Transfer Route Planner .. . 30

4.1.1 NADMA Architecture and Functional Components 31
4.1.2 System Implementation and Operation Procedure 40
4.1.3 Case Studies . 42

4.2 Peak Link Utilization Transport 47
4.2.1 Performance Analysis of Single Packet Processing 47
4.2.2 Transport Profiles . 57
4.2.3 Design of Peak Link Utilization Transport 60

4.3 Parallel Peak Link Utilization Transport 69
4.3.1 Performance Analysis of Multiple Packet Processing 70
4.3.2 Para-PLUT Control Structure . 77
4.3.3 Automatic Parallelism Tuning Mechanism 79

5 Stabilizing Transport Dynamics in Overlay Networks 81
5.1 Route Planner for Media Streaming Applications 81

5.1.1 Problem Formulation . 81
5.1.2 Complexity Analysis of max-minTC84
5.1.3 A Heuristic Solution to max-minTC85
5.1.4 An Optimal Solution for Complete Networks 87

5.2 Transport Stabilization Protocol 89
5.2.1 Transport Control Using a Window Structure 90
5.2.2 Goodput Stabilization of TSP . 91
5.2.3 Congestion Window Adjustment 93
5.2.4 Sleep Time Adjustment . 94
5.2.5 Performance Analysis . 95

6 Performance Evaluation and Comparison 97
6.1 Performance Evaluation for PLUT .. . 97

6.1.1 Implementation of PLUT . 97
6.1.2 Experimental-based Performance Evaluation 101

6.2 Performance Evaluation for Para-PLUT 107
6.2.1 Implementation of Para-PLUT . 107
6.2.2 Experimental-based Performance Evaluation 107

6.3 Performance Evaluation for Topology Construction 108
6.3.1 Experimental-based Performance Evaluation 109
6.3.2 Simulation-based Performance Evaluation 110

6.4 Performance Evaluation for TSP Based on Simulations andExperiments . . 114
6.4.1 Simulation-based Performance Evaluation 114
6.4.2 Experiment-based Performance Evaluation 116

vi

7 Conclusion and Future Work 123
7.1 Contribution . 123

7.1.1 Route Planner for Bulk Data Transfer in Scientific Applications . . 123
7.1.2 Peak Link Utilization Transport 124
7.1.3 Route Planner for Streaming Media Delivery 124
7.1.4 Transport Stabilization Protocol 124

7.2 Limitations and Future Work .. 125

Bibliography 126

vii

List of Figures

3.1 An Integrated Transport Solution. 27

4.1 NADMA framework: functional components and control flow. 31

4.2 Graphical User Interface. .. . 32

4.3 The user profile page. 33

4.4 Data discovery interface for Earth System Grid. 34

4.5 A screenshot of the administrative view of the web-service driven database. 35

4.6 A linear regression line to estimate the path bandwidth and latency between

a local SIUC node and a remote node in Connecticut: the x-axisrepresents

the file sizes in KB, and the y-axis represents the round-triptime in seconds. 39

4.7 The output in the use case from UM to UM. 43

4.8 The network path in the use case from UM to LSU. 44

4.9 A screenshot of the list of suggested nearby hosts with advanced network-

ing services in Case Study III. 45

4.10 A screenshot of the map generated using Google Static Maps API to display

the suggested routes and estimated performance in Case Study III. 46

4.11 Packet processing flow in Linux. 48

4.12 Markov state transition diagram for modeling packet processing. 50

4.13 The probability ofn packets in a M/M/1/B queue. 51

4.14 The mean number of packets in a M/M/1/B queue. 51

4.15 Survivor function for the number of packets for severalvalues of alpha. . . 52

4.16 Data receiving process running model (PDRP representing the data receiving

process). 54

4.17 Goodput performance comparison with and without concurrent loads. . . . 56

4.18 Packet loss rate with and without concurrent loads. 56

viii

4.19 Sending, goodput, loss and retransmission profiles over 9900 mile 1 Gbps

USN-ESnet hybrid connection. 57

4.20 PLUT control structure. .. 59

4.21 Steady-state packet flows over a dedicated connection.. 61

4.22 Approximation of goodput gradient in the one-measurement SPSA. 66

4.23 Single connection with parallel data receiving. 71

4.24 M/M/m/B state transition diagram for modeling packet processing. 72

4.25 Parallel connections each with a single data receivingprocess. 74

4.26 Markov state transition diagram for modeling packet processing. 74

4.27 Mean response time comparison with a service rate of 4 Gbps. 76

4.28 Throughput comparison with a service rate of 4 Gbps. 76

4.29 Transport control structure for disk-to-disk data transfer. 78

5.1 Transport control model using two control parameters. 90

6.1 Initial buffer states. .. . 98

6.2 Buffer states after receiving acknowledgements. 98

6.3 Buffer states after reloading. 98

6.4 Control flow diagram at the PLUT receiver. 99

6.5 PLUT performance comparison with iperf. 101

6.6 Disk to disk performance comparison over 1 Gpbs link. 103

6.7 Memory to memory performance comparison over 1 Gpbs link. 103

6.8 Performance comparison over a 10 Gpbs link with different RTT. 104

6.9 Disk to disk performance comparison over 10 Gpbs link. 105

6.10 Memory to memory performance comparison over 10 Gpbs link. 105

6.11 Memory to memory performance comparison over 10 Gpbs link with back-

ground workloads. 106

6.12 PLUT performance over a 10 Gpbs link with different MTU sizes. 107

6.13 Memory to memory performance comparison over 1 Gpbs link. 108

6.14 Memory to memory performance comparison over 10 Gpbs link. 108

6.15 Minimum node throughput performance comparison (meanand standard

deviation) among three algorithms based on a series of 10 simulated net-

works of various sizes ranging from small to large scales. 111

ix

6.16 Performance speedups of LBSF over DC and Greedy based ona series of

10 simulated networks of various sizes ranging from small tolarge scales. . 112

6.17 SMinimum node throughput performance comparison (mean and standard

deviation) among three algorithms based on a series of 10 simulated net-

works of 400 nodes and a varying number of links from 1000 to 10000 at

an interval of 1000 links. 112

6.18 Performance speedups of LBSF overk-DC and Greedy based on a series

of 10 simulated networks of 400 nodes and a varying number of links from

1000 to 10000 at an interval of 1000 links. 113

6.19 Simulation setup for TSP stabilization. 114

6.20 Goodput stabilization at a target rate = 7 Mbps with a = 0.8 andα = 0.8,

adjustment made on sleep time. 115

6.21 Goodput stabilization at a target rate = 15 Mbps with a = 0.8 andα = 0.8,

adjustment made on sleep time. 115

6.22 Performance comparison of instantaneous goodput sampled at an interval

of 100 ms using TCP, DCCP, and TSP targeting 5 Mbps. 117

6.23 Performance comparison of instantaneous goodput sampled at an interval

of 100 ms using TCP, DCCP, and TSP targeting 10 Mbps. 118

6.24 Performance comparison of instantaneous goodput sampled at an interval

of 100 ms using TCP, DCCP, and TSP targeting 15 Mbps. 118

6.25 Performance comparison of average goodput using TCP, DCCP, and TSP

targeting 15 Mbps. 119

6.26 Effects of TSP on concurrent TCP traffic. 120

6.27 UM-LSU link: concurrent control channels at 2.0 Mbps and 3.0 Mbps,

respectively,a = 0.8,α = 0.8, adjustment made on sleep time. 121

x

Abstract

Xukang Lu, Ph.D. The University of Memphis. December 2011. Performance Optimiza-

tion and Dynamics Control for Large-scale Data Transfer in Wide-area Network.

Major Professor: Prof. Qishi Wu

Transport control plays an important role in the performance of large-scale scientific

and media streaming applications involving transfer of large data sets, media streaming,

online computational steering, interactive visualization, and remote instrument control. In

general, these applications have two distinctive classes of transport requirements: large-

scale scientific applications require high bandwidths to move bulk data across wide-area

networks, while media streaming applications require stable bandwidths to ensure smooth

media playback. Unfortunately, the widely deployed Transmission Control Protocol is

inadequate for such tasks due to its performance limitations.

The purpose of this dissertation is to conduct rigorous analytical study of the design

and performance of transport solutions, and develop an integrated transport solution in a

systematical way to overcome the limitations of current transport methods. One of the

primary challenges is to explore and compose a set of feasible route options with multiple

constraints. Another challenge essentially arises from the randomness inherent in wide-

area networks, particularly the Internet. This randomnessmust be explicitly accounted

for to achieve both goodput maximization and stabilizationover the constructed routes by

suitably adjusting the source rate in response to both network and host dynamics.

The superior and robust performance of the proposed transport solution is extensively

evaluated in a simulated environment and further verified through real-life implementations

and deployments over both Internet and dedicated connections under disparate network

conditions in comparison with existing transport methods.

xi

Chapter 1

Introduction

1.1 Overview

Transport control is an important factor in the performanceof large-scale scientific and

media streaming applications involving transfer of large data sets, media streaming, on-

line computational steering, interactive visualization,and remote instrument control. In

general, these applications have two distinctive classes of transport requirements: large-

scale scientific applications require high bandwidths to move bulk data across wide-area

networks, while media streaming applications require stable bandwidths to ensure smooth

media playback.

Scientific applications: High-performance computing and networking technologies have

enabled large-scale scientific collaborations in various domains such as earth science, cli-

mate, and high energy physics among multiple national laboratories within U.S. Depart-

ment of Energy and other research institutes across the nation. These collaborative sci-

entific applications [1–4, 59, 60, 121] typically generate colossal amounts of simulation or

experimental data, on the order of terabytes at present and exabytes in the near future, which

must be stored, managed, and transferred to different geographical locations for distributed

data processing and analysis. Typical examples include: large simulation datasets produced

by an eScience application on a supercomputer that need to bemoved to a remote storage

site or to another site where the analysis takes place, and computing workflows involving

1

remote visualization of large datasets.

The success of these collaborative scientific applicationscritically depends on adequate

network accesses to the data generators, i.e., computing orexperimental facilities. The

efforts to support these large-scale applications on shared IP networks have not been very

successful since very little guarantees can be provided on the throughput or dynamics and

the available bandwidth varies depending on concurrent network traffic. In view of the

limitations of existing methods, dedicated connections offer a promising solution to ef-

fectively support these network-intensive applications because they provide large capacity

for massive data transfer. In fact, the importance of dedicated connections has been well

recognized, and several network research projects are currently underway to develop such

capabilities [5–12, 35, 51, 107, 137, 139]. Given dedicatedchannels, transport protocols

are the key to delivering the provisioned bandwidths to the applications. Moreover, when

dealing with large amounts of data and storage, scientists often need to interact with mul-

tiple heterogeneous storage and file systems, each with different interfaces and security

mechanisms, and to pre-allocate storage to ensure unimpeded data generation and analysis.

The success of these scientific applications also depend on bulk data management systems,

which provide common access interfaces to storage resources, as well as advanced func-

tionality such as dynamic space allocation and file management on shared storage systems.

Media streaming applications: Live media streaming applications often require the col-

lective use of massively distributed network resources andtherefore are not adequately

supported by the traditional client-server architecture on the Internet. Peer-to-peer (P2P)

overlay networks enable efficient resource sharing in distributed environments and provide

a highly effective and scalable solution to this problem [13, 14, 135]. The performance

metrics of streaming applications mainly concern throughput, jitter, and latency, and to a

large degree, these performance metrics rely on the overlaynetwork topology, upon which

the streaming application is built. Therefore, constructing an efficient overlay network

2

topology has become a fundamental task in streaming applications.

Given a well-structured overlay network topology, transport protocols are again the key

to achieving and sustaining an acceptable level of quality of service (QoS). Streaming ap-

plications often require streaming media be sent with predictable delays, which are in stark

contrast with the delays experienced over the Internet, particularly by the messages sent

using Transmission Control Protocol (TCP) [74]. In such applications, a stable transport

channel serves as a “carrier” for streaming media. Since theflow is stable, the delays of the

packets that constitute the flow have low levels of jitter that can be filtered out at the desti-

nation. Consequently, the streaming media carried by thesepackets have stable end-to-end

delays suitable for sustaining a streaming level that ensures smooth media playback and

continuous media supply. Without such transport stability, the stable throughput needed in

these applications cannot be sustained over wide-area networks.

1.2 Problem Statements

In this section, we describe the problems associated with large-scale scientific and media

streaming applications, and the problems we aim to solve in this dissertation.

1.2.1 Scientific Applications

We tackle two main problems in scientific applications: discovery of data transfer paths

and transport control for goodput maximization, which are briefly described as follows.

1.2.1.1 Resource Provisioning

Several network and storage research projects are currently underway to meet the afore-

mentioned networking and storage requirements of large-scale scientific applications. How-

ever, the existing tools, systems, or services have a very limited user scope thus far mainly

because their deployment requires a certain level of network/host reconfigurations and most

3

science users are even not aware of their existence inside their own networks. As new com-

puting and networking technologies rapidly emerge, enabling functionalities are progress-

ing at an ever-increasing pace, unfortunately, so are the dynamics, scale, heterogeneity, and

complexity of the networked computing environments. In many cases, application users,

who are primarily domain experts, need to manually configureand execute their routine

data-centric tasks over networks using software tools theyare familiar with based on their

own empirical studies, oftentimes resulting in unsatisfactory performance in such diverse

and dynamic network environments. The challenge of utilizing these services is over-

whelming when the user is unfamiliar with the systems and resources available to them.

This challenge is exacerbated by the difficulty of using unfamiliar networking technologies

while overcoming an often steep learning curve towards their adoption.

Apparently, the discovery of available networking and storage technologies is a critical

step towards their wide adoption. In other words, science users must be made aware of these

existing technologies with consideration of the data movement they intend to execute in

their target network environments. However, users are often unwilling to explore alternative

data transfer options due to the burdensome discovery and initiation process of advanced

network protocols and the difficulty of constructing and testing various network paths.

While a better data movement strategy may exist, users always tend to use slower but

more familiar alternatives.

1.2.1.2 Transport Control for Goodput Maximization

In the goodput1 maximization problem, we aim to explicitly account for the dynamics of

network environments to maximize application goodput overdedicated connections.

Even with a high-bandwidth dedicated channel, an inappropriate transport protocol may

lead to a low bandwidth utilization, resulting in a slow datatransfer. The design of transport

1Goodput only counts the user payload and is equivalent in value to throughput if packet duplicates and
protocol headers are negligible.

4

protocols is critical to achieve high link utilization and satisfy applications’ networking re-

quirements. From a transport protocol’s perspective, dedicated channels obviate the need

for explicit congestion and fairness control. However, theapplication throughput is still

critically affected by a number of parameters that require careful selection and tuning. As

indicated by the measurements over dedicated channels [108], the packet loss at high send-

ing rates is often non-zero and the delay variations containnon-trivial random components.

Due to the lack of a system-wide advance reservation scheme,the data receiver running in

a shared computing environment with other resource-demanding workloads such as visu-

alization and data analysis tools, oftentimes could not obtain sufficient system resources

to process packets arriving from high-speed links, therefore leading to significant packet

drops at the end system. Many transport protocols send a negative acknowledgment for a

dropped data packet to ensure transmission reliability. Athigh data rates, generating and

sending acknowledgments at the receiver consumes CPU time and may interfere with the

host’s receiving process, which probably leads to even morepacket drops. Consequently,

simply a priori fixing the source sending rate right at the connection capacity is unlikely

to maximize the throughput at the destination since it typically causes losses at rates that

depend on technologies used to provision the connection anddynamics of the running en-

vironment. Instead, the source rate must be continuously adjusted to match suitable rates,

which yield the maximum goodput at the destination, which inturn involves accounting at

some level for connection effects as well as host effects dueto components such as Network

Interface Card (NIC), CPU, memory and file systems.

The widely deployed TCP, which has been proved to be remarkably successful on the

Internet, is not adequate to make full use of the high link capacity in wide-area dedicated

networks because its Additive Increase Multiplicative Decrease (AIMD)-based conges-

tion control algorithm does not perform well with links of high Bandwidth Delay Product

(BDP). UDP-based transport protocols typically employ different threads to receive, ac-

knowledge, and store packets, respectively, in order to achieve an overall high transport

5

performance. However, due to the lack of a parallel packet processing scheme in the kernel

and the application, only one thread is actually running to consume all packets arriving

from high-speed links, therefore leading to an inefficient resource utilization on the end

system. The multi-core processors that are widely deployedand rapidly evolving make it

now possible to improve application throughput by implementing a parallel receiving strat-

egy in these UDP-based transport protocols. In order to support parallel data streams for a

single data transfer, multiple data receiving processes must be executed on different CPUs.

1.2.2 Media Streaming Applications

We tackle two main problems in media streaming applications: topology construction and

transport control for goodput stabilization, which are briefly described as follows.

1.2.2.1 Topology Construction

Due to the high resource demand, live media streaming applications are not adequately

supported by the traditional client-server architecture on the Internet. Peer-to-peer (P2P)

overlay networks enable efficient resource sharing in distributed environments and pro-

vide a highly effective and scalable solution to this problem [13, 14, 135]. There are three

types of overlay architectures widely adopted in P2P-basedlive streaming systems: tree-

push mechanism, mesh-pull mechanism, and hybrid mechanism[53] [122] [42] [133] [102]

[82] [50] [134] [90].

Tree-push mechanism requires live streaming system to maintain the topology of the

peer tree. It is the most natural architecture for overlay multicast, but is vulnerable in

response to changes in the tree structure caused by peers’ churn. Mesh-pull mechanism re-

duces the cost of maintaining tree structure. Nevertheless, it increases the redundancy traf-

fic among peers requesting for Buffer-Mapping. Recent comparative study [99] of mesh-

pull and tree-push in static and dynamic scenarios shows that mesh-pull exhibits a superior

performance over tree-push, which statically maps contents to a particular overlay tree or

diversely places peers in different overlay trees. However, another measurement study [73]

6

with a goal of exploring the global characteristics of a mesh-pull PPLive system shows that

a mesh-pull live streaming architecture still incurs long start-up delays and playback lags,

ranging from several seconds to a couple of minutes, due to inefficient peering strategies

and video chuck scheduling schemes. In the hybrid mechanism, peers are divided into

Super Peers (SPs) and Normal Peers (NPs) based on their service capacity such as upload

bandwidth, online status, and CPU speed. Since SPs are generally more stable with higher

upload bandwidths than NPs, tree-push is usually applied toSPs and mesh-pull is em-

ployed among NPs to handle peers’ frequent joining and leaving requests. This mechanism

enables SPs to accommodate peers’ churn and fully utilize the network resources of NPs.

The performance metrics of these streaming applications mainly concern throughput, jitter,

and latency, and to a large degree, these performance metrics rely on the overlay network

topology, upon which the streaming application is built. Therefore, constructing an efficient

overlay network topology has become a fundamental task in streaming applications.

1.2.2.2 Transport Control for Goodput Stabilization

In the goodput stabilization problem, our research objective is to dynamically control the

source rate such that the goodput is stabilized at a desired level.

In a well-structured overlay network topology, we still rely on a good transport proto-

col to achieve and sustain an acceptable level of quality of service (QoS). In general, the

requirement of a stable flow at a target throughput level is fundamentally at odds with the

traditional notions of fair bandwidth sharing in the Internet environments. Note that regular

TCP-based Internet traffic competes with concurrent trafficfor a fair share of the available

bandwidth while the applications requiring stable channels aim to achieve a smooth data

flow at a fixed rate. In practice, TCP and some other UDP-like transport methods have been

most often used to transmit streaming media in the current (partially successful) implemen-

tations of the above applications, but their performance has not been very satisfactory. TCP

7

“shares” bandwidth with all concurrent sessions through the Additive Increase Multiplica-

tive Decrease (AIMD) congestion control algorithm. But dueto the specific non-linear

AIMD dynamics, it lacks the ability to maintain a stable and smooth flow to the destina-

tion.

In lightly loaded networks with large bandwidth links, TCP provides a higher goodput

since it occupies the “available” bandwidth. It is possibleto restrict TCP flows to a cer-

tain level by throttling the flow window or explicitly adopting a low priority mechanism

such as TCP-LP [88]. But in such methods even very small traffic bursts will result in an

“underflow”; in other words, they will not be able to sustain the flow levels. In heavily

loaded networks, TCP underflows more frequently since multiple losses drastically reduce

congestion window size, possibly below the desired goodputlevel at the destination. More

generally, the sawtoothed pattern in the variation of congestion window size controlled by

the AIMD algorithm exhibits non-smooth dynamics that make it challenging for TCP to

provide stable goodput.

1.3 Main Approaches

We propose a unified transport framework with two components: data route planner and

transport control. Data route planner helps applications explore and compose a set of fea-

sible route options and transport control suitably adjuststhe source rate in response to both

network and host dynamics for goodput maximization and stabilization on the constructed

routes. These two components, each of which takes a different approach for a different

application type, interact with each other to accomplish the tasks of data transfer.

1.3.1 Data Transfer Route Planner

1.3.1.1 Large-scale Scientific Applications

We design and develop a Network-aware Data Movement Advisor(NADMA) utility to en-

able automated discovery of network and system resources and advise the user of efficient

8

strategies for fast and successful data transfer. NADMA interacts with existing data/space

management and discovery services such as Storage ResourceManagement [15], transport

methods such as GridFTP [16], and network resource provisioning systems such as TeraP-

aths [17] and OSCARS [9]. NADMA acts as a route planer to explore and compose a set of

feasible route options and provide them to the user along with performance estimations as

well as specific steps and commands to authorize and execute data transfer. The efficacy of

NADMA is demonstrated in several use cases based on its implementation and deployment

in wide-area networks.

1.3.1.2 Media Streaming Applications

The purpose of overlay network topology construction is also to explore and establish data

transfer paths for media data delivery. We formulate and investigate a specific type of

problem to maximize the minimum node throughput in Tree Construction (max-minTC),

which aims at optimizing the system’s stream rate by constructing an efficient spanning tree

among SPs. We consider two scenarios: (i) When the overlay network is incomplete, we

prove max-minTC to be NP-complete by reducing from the Degree Constrained Spanning

Tree problem and propose an efficient heuristic algorithm. (ii) When the overlay network is

complete, we rigorously prove that the same heuristic algorithm yields an optimal solution

to the max-minTC problem.

1.3.2 Transport Control

1.3.2.1 Large-scale Scientific Applications

The selected route by NADMA might be an Internet path or a dedicated path over net-

work like UltrascienceNet. A major challenge for goodput maximization over wide-area

dedicated connections is to compute and adapt various data rates and transport parameters

automatically, whose estimates are subject to the variations due to connection and host

effects as well as the finite window effects. In particular, these estimates contain seem-

ingly stochastic components that are connection- and host-specific, and must be explicitly

9

accounted for to achieve high link utilization. Based on a mathematical analysis of the

impact of system factors on the performance of transport protocols, we proposePeak Link

Utilization Transport(PLUT) that incorporates a performance-adaptive flow control mech-

anism to regulate the activities of both the sender and receiver in response to system dy-

namics and automates the rate stabilization for throughputmaximization using stochastic

approximation methods, as opposed to the manual parameter tuning in many other UDP-

based transport protocols in high-performance dedicated networks. We also explore the

use of multiple parallel connections to improve the performance of a TCP-based transport

method. To the best of our knowledge, a very limited number ofefforts have been made in

employing parallel UDP connections for data transfer in dedicated networks. We propose

Parallel PLUT (Para-PLUT) to further improve the performance of PLUT by using parallel

UDP connections to take advantage of the full power of multi-core processors. We conduct

theoretical analysis to investigate the impact of multi-core processors on the performance

of transport protocols and design a rigorous approach to adaptively determine the number

of parallel UDP connections for high transport performance. We conduct an extensive set

of experiments on simulated and real-life networks, and both simulation and experimental

results illustrate the performance superiority of our proposed algorithms over existing ones.

1.3.2.2 Media Streaming Applications

Given an efficient overlay network topology, the design of transport protocols is impor-

tant to achieve and sustain an acceptable level of quality ofservice (QoS). The difficulty

of goodput stabilization over wide-area networks essentially arises from the randomness

inherent in the end-to-end delays observed at the application level, particularly over the

Internet, where routing changes also significantly affect packet delays and losses other

than queueing delays [136]. This randomness must be explicitly accounted for in order

to stabilize the goodput at destination by suitably throttling the source rate in response to

network dynamics and statistics. We propose Transport Stabilization Protocol (TSP) to

10

provide reliable transport with stable goodput at a given target rate. TSP features a rate- or

window-based flow control method using User Datagram Protocol (UDP) packet streams

to transport both data and acknowledgements. The source-sending rate is dynamically con-

trolled based on the estimates of destination goodput and loss rate at the source. Roughly

speaking, the source rate is continuously adjusted to be approximately equal to the sum

of goodput and loss rate estimates. We conduct an extensive set of experiments on sim-

ulated and real-life networks, and both simulation and experimental results illustrate the

performance superiority of our proposed algorithms over existing ones.

1.4 Dissertation Organization

The rest of the dissertation is organized as follows:

• In Chapter 2, we provide general research background information and conduct a

comprehensive survey of related work;

• In Chapter 3, we introduce the framework and components of the proposed integrated

transport solution;

• In Chapter 4, we propose and develop a route planer to explore and compose a set

of feasible route options, and design novel transport protocols to maximize transport

performance over dedicated connections;

• In Chapter 5, we investigate the complexity of topology construction problems and

tackle the problem of stabilizing transport dynamics in overlay networks;

• In Chapter 6, we present the network environmental settings and implementation

details, and conduct an extensive set of performance evaluations and comparisons

of the proposed transport protocols for both goodput stabilization and maximization

using theoretical calculations, simulations, and real network deployments.

• In Chapter 7, we conclude our work and discuss future research directions.

11

1.5 Main Contributions

This dissertation has made the following contributions to the field of transport control:

1. We propose a route planer to explore and compose a set of feasible route options and

provide them to the user along with performance estimationsas well as specific steps

and commands to authorize and execute data transfer;

2. We conduct a mathematical analysis to investigate the impact of system factors on

the performance of transport protocols;

3. We propose a performance-adaptive flow control mechanismto regulate the activi-

ties of both the sender and receiver in response to system dynamics to achieve the

maximum attainable goodput;

4. We propose a rate control mechanism to adjust the sending rate for goodput stabi-

lization at the estimated maximum attainable goodput;

5. We conduct theoretical analysis to investigate the impact of multi-core processors on

the performance of transport protocols, and design a rigorous approach to adaptively

determine the number of parallel UDP connections for high transport performance;

6. We investigate the complexity of topology construction problems with rigorous NP-

completeness proofs, and propose efficient heuristic algorithms;

7. We propose a new class of protocols capable of stabilizinga transport channel at a

specified throughput level in the presence of random networkdynamics;

8. We conduct an extensive set of data transfer experiments in both simulated and wide-

area networks for design validation and performance valuation of transport protocols.

12

Chapter 2

Background Survey and Related Work

2.1 Resource Provisioning

2.1.1 Network Resource Provisioning

The importance of dedicated connections has been well recognized, and several network

research projects [5–8,10–12,35,51,137,139] are currently underway to develop such ca-

pabilities. Such dedicated channels are a part of the capabilities envisioned for the Global

Environment for Network Innovations (GENI) project [18]. Furthermore, such deploy-

ments are expected to increase significantly and proliferate into both public and dedicated

network infrastructures across the globe in the coming years. Evidence of this trend in

production networks is reflected by Internet2 creating Multiple Protocol Label Switching

(MPLS) overlays using ION [19], and ESnet offering both MPLStunnels and dedicated

Virtual Local Area Networks (VLAN) using OSCARS. Here, we provide a brief overview

for several of these network research projects.

2.1.1.1 UltraScience Net (USN)

UltraScience Net is a wide-area experimental network testbed to support the develop-

ment of networking capabilities needed for next-generation computational science appli-

cations [107]. USN provides dedicated high-bandwidth channels for large data transfers,

13

and also high-resolution, high-precision channels for finecontrol operations. The data

plane of USN consists of four thousand miles of dual OC192 connections spanning Oak

Ridge, Atlanta, Chicago, Seattle and Sunnyvale shown. These connections are switched

in the core at SONET level using Ciena CD-CI switches and are provisioned at the edges

using Force10 E300 switches at the Ethernet level. Dedicated channels of maximum 10

Gbps capacity can be provisioned on USN at layer-1 and layer-2 at 150 Mbps resolution.

Layer-1 or SONET connections are provisioned exclusively between the CD-CI switches

with capacities ranging from OC3 to OC192. Layer-2 channelsare provisioned between

E300 switches via SONET paths between core switches with capacities ranging from 150

Mbps through 10 Gbps. Also, layer-2 channels can be provisioned between core CD-CI

switches but at lower capacities, ranging from 150 Mbps through 1 Gbps.

USN utilizes the OC192 links between Ciena SONET switches atORNL and Chicago

to realize OC21C connections of lengths 700, 1400, ..., 6300miles by suitably switching

them. At the end points, USN maps 1 Gbps Ethernet onto OC21C, thereby realizing 1 GigE

connections of various lengths. On ESnet, 1 Gbps VLAN-tagged MPLS tunnel is set up

between Chicago and Sunnyvale via Cisco and Juniper routers, which is about 3600 miles

long. USN peers with ESnet in Chicago. and 1 GigE USN and ESnetconnections are cross-

connected using Force10 Ethernet switch. Together, this configuration provides hybrid

dedicated channels of varying lengths, namely 4300, 5700, ... ,9900 miles, composed of

Ethernet-mapped layer 1 and layer 3 connections.

2.1.1.2 On-demand Secure Circuits and Advance ReservationSystem (OSCARS)

Energy Sciences Network (ESnet) [20] provides DOE scientists with comprehensive con-

nectivity to the global Internet and high-bandwidth accessto DOE sites and primary sci-

ence collaborators. ESnet shares its optical network with Internet2 [21], a U.S. national

Research and Education network, on a dedicated national fiber infrastructure. The ESnet

14

network is comprised of two distinct core networks, an IP network and a Science Data Net-

work (SDN). ESnet’s IP network functions as a Tier 1 internetservice provider to ESnet

sites with direct connections with all major commercial network providers. ESnet’s SDN is

designed to address the growing need for guaranteed bandwidth by large-scale collabora-

tions such as the LHC. The SDN is composed of more than 60 10 Gbps optical circuits and

provides the means to dynamically provision guaranteed, high-capacity bandwidth between

science facilities for DOE researchers to access time-sensitive applications and exchange

large datasets.

The OSCARS [9] enables on-demand provisioning of guaranteed bandwidth virtual cir-

cuits (VCs) at layer 2 (Ethernet VLANs), and layer 3 (IP) within ESnet. OSCARS utilizes

a graph-based algorithm to determine the path for a circuit reservation request. Topology

and capacity information is harvested from the network devices once an hour and is then

imported into the OSCARS topology database. When a new circuit reservation request is

received, a base topology graph is generated from the database taking into account any ex-

isting reservations whose time ranges overlap with the new reservation. Path computation is

subsequently performed on the base topology graph taking into account the parameters and

constraints specified in the VC reservation, such as source and destination endpoints, band-

width, or VLAN tagging. OSPF-TE [78], Multi-Protocol LabelSwitching (MPLS) [112],

and Resource Reservation Protocol (RSVP) [39] are used to manage MPLS-LSPs on which

the dynamic layer 2 and layer 3 VC services are built. Additionally, Label Switched Path

(LDP) [38] is used to support layer 2 VCs as defined in the EoMPLS [89] protocol. The

management of bandwidth usage and congestion control on each IP core and SDN link is

accomplished by VC admission control and by QoS parameters.

15

2.1.1.3 TeraPaths

The TeraPaths [17] project at Brookhaven National Laboratory (BNL) investigates the com-

bination of DiffServ-based LAN QoS [101] with WAN MPLS tunnels in creating end-to-

end (host-to-host) virtual paths with bandwidth guarantees. These virtual paths prioritize,

protect, and throttle network flows in accordance with site agreements and user requests,

and prevent the disruptive effects that conventional network flows can cause in one another.

TeraPaths deals with the problem of supporting efficient, reliable, predictable peta-scale

data movement in modern, high-speed networks. Since the network is a shared medium, its

default transport behavior is so-called ”best effort,” which essentially treats all data flows

as with the same level of priority, urgency, and equal sharing of bandwidth. In a networked

environment, it is not always the case that all data flows should be treated equally. Some

tasks can consume more bandwidth than others, such as video or real-time device controller

data, and some data must be delivered by a specific deadline. Yet in a typical environment,

an email transfer containing a large file attachment could disrupt an important, multi-day

data transfer. Also, it is impossible to maintain fair sharing of network resources among

user groups sharing a connection (the group with more flows receives more bandwidth). It

is therefore important to be able to prioritize and protect specific data flows, and to schedule

network bandwidth and usage.

The service offered by TeraPaths creates end-to-end (source host computer to destina-

tion host computer) virtual paths with guaranteed bandwidth for specific data flows. This

setup is realized by coordinating the configuration of the source and destination sites, which

are controlled by TeraPaths instances, and by automatically interfacing with WAN provider

systems to reserve bandwidth for these flows. This virtual path is tied to a specific data flow,

or group of flows, and is active only while the flows are present; as such, there is no impact

on other network users when the authorized data flow is inactive. TeraPaths is a fully-

distributed system: each site instance needs to know only about itself and how to connect

16

to other TeraPaths and WAN nodes. The system is implemented entirely in Java, for porta-

bility, as a set of web service layers. Access is achieved by means of a web interface for

manual reservations and an API for direct invocation from within other applications.

2.1.2 Storage Resource Provisioning

When dealing with large amounts data and storage, the scientists need to interact with

multiple heterogeneous storage and file systems, each with different interfaces and security

mechanisms, and to pre-allocate storage to ensure data generation and analysis tasks can

take place successfully. SRMs [22] are Grid storage services providing common access

interfaces to storage resources, as well as advanced functionality such as dynamic space

allocation and file management on shared storage systems. SRMs is a standard specification

against which multiple implementations can be developed. This approach proved to be a

remarkable and unique achievement, in that now there are multiple SRMs developed in

various institutions around the world that inter-operate.

SRM research has developed into an internationally coordinated effort between sev-

eral DOE laboratories including Lawrence Berkeley National Laboratory (LBNL), Fermi

National Accelerator Laboratory (FNAL) and Thomas Jefferson National Accelerator Fa-

cility (TJNAF), as well as several European institutions. This coordinated effort lead to the

development of multiple SRMs at various institutions around the world, including BeSt-

Man [23], CASTOR [24], dCache [25], DPM [26], and StoRM [27].The most recent

version of an SRM developed at LBNL, is called the Berkeley Storage Manager, or BeSt-

Man [23]. BeStMan is designed in a modular fashion, so that itcan be adapted easily

to different storage systems (such as disk-based systems, mass storage systems, such as

HPSS, and parallel file systems, such as Lustre) as well as using different transfer proto-

cols (including GSIFTP, FTP, BBFTP, HTTP, HTTPS). BeStMan is implemented in Java in

order to be highly portable. It provides all the functions related to space reservations, dy-

namic space allocation, directory management, and pinningof files in space for a specified

17

lifetime. It manages queues of multiple requests to get or put files into spaces it manages,

where each request can be for multiple files or entire directories. When managing multi-

ple files, BeStMan can take advantage of the available network bandwidth by scheduling

multiple concurrent file transfers.

2.2 Topology Construction

There exist a number of tree construction algorithms in the literature with a different focus

on delay, scalability, tree depth, or reliability. The tree-based overlay network topology

construction algorithm is referred to as a parent selectionstrategy in tree management,

which provides a parent the privilege to select a peer to transmit stream data. In [119],

Sripanidkulchaiet al. proposed an efficient random algorithm that requires no global topo-

logical information. Guoet al. [66] proposed a high-bandwidth-first algorithm, which lays

out peers according to their outbound bandwidth capacities. The tree-based topology con-

struction problem could be also considered as an optimal path selection problem for each

newly joining peer with the requirement that the maximal reservable bandwidth of a feasi-

ble path is not less than the requested bandwidth. Dijkstra’s or Bellman-Ford shortest path

algorithms are often used for this purpose. The widest shortest path algorithm [65], the

shortest widest path algorithm [125], and a utilization-based shortest path algorithm [98]

were proposed to solve route computation. They assign different weight factors to limit the

hop count and balance the network load. Jarviset al. [75] proposed a heap algorithm to

construct overlay topology by moving high-bandwidth and long-lived peers upward in the

logical tree to provide better service quality.

Degree constraints are considered extensively in multicast tree construction to reduce

the overall cost or latency. ZIGZAG [122] distributes mediacontents to many clients by

organizing them into an appropriate delivery tree rooted atthe server and including all

and only the receivers. The join, departure, and optimization policies of the delivery tree

18

must follow a set of rules proposed to bound the tree height and node degree. These rules

reduce the end-to-end delay from the source to a receiver, while there is no guarantee in re-

ceiver’s throughput. Yanget al.[132] modeled the overlay multicast tree construction as an

NP-complete degree-constrained minimum spanning tree problem. They used a heuristic

based on Prim’s algorithm to construct the initial overlay multicast tree and also proposed a

proactive approach to restore overlay multicast trees in order to minimize the disruption of

services due to node departures. ALMI [102] organized all peers as a minimum spanning

tree where the cost of each link is an application-specific metric, which was implemented

as the application-level delay between peers. SCATTERCAST[133] constructed the over-

lay topology based on a randomized three-step protocol, which runs a routing protocol on

top of the mesh to build source-rooted distribution trees. The routing protocol used the

unicast latency as its distance metric to ensure that paths in the overlay topology reflect

the underlying IP topology by favoring nodes that are closerin the IP topology over more

distant nodes. Merzet al. [100] modeled topology construction as a combinatorial opti-

mization problem and computed spanning trees for P2P overlay networks. They proposed

a distributed algorithm (TreeOpt) for spanning tree optimization to reduce the overall com-

munication time between any pair of nodes in the graph. Smallet al. [116] formulated the

optimal multicast tree problem as a minimal delay multicast(MDM) problem and the net-

work topology optimization problem as a minimization problem of server bandwidth cost.

They proved MDM to be NP-complete and proposed several solutions to it.

Some efforts in overlay network tree optimization have a specific goal to maximize

throughput. Cuiet al. [55] investigated the problem of achieving the max-min rateallo-

cation for all clients, which maximally utilizes the network resource, while maintaining

max-min fairness. They proposed a distributed algorithm tocompute the max-min rate al-

location for any overlay multicast tree and proved that finding the optimal tree whose max-

min rate allocation is optimal among all trees is NP-complete when the network is modeled

as a complete graph. They also proposed a heuristic algorithm for overlay multicast tree

19

construction with an approximation ratio of 1/2. Wanget al. [124] studied the multi-path

routing problem and proved it to be NP-complete. Zhuet al.[140] [141] introduced overlay

networks with linear capacity constraints (LCC) and investigated two problems for widest

path and maximum flow. Kimet al.[80] proposed an algorithm to find an optimal tree with

maximum average incoming rate under two network model assumptions: (i) access links

that connect hosts or LANs are bottlenecks causing congestion while backbone links are

loss-free; and (ii) access links have incoming and outgoingbandwidths that do not affect

each other.

The max-minTC problem in our study differs from the aforementioned ones in that we

consider a set of super peers with an arbitrary topology and the optimization objective is

to maximize the minimum node throughput in the tree for achieving the highest system

throughput.

2.3 Transport Protocol Optimization

The network protocol is a standard procedure for facilitating data transmission between

nodes geographically distributed in networks [84]. The International Organization for Stan-

dardization (ISO) has created a Reference Model of Open System Interconnection (OSI),

which consists of seven layers: Application, Presentation, Session, Transport, Network,

Data Link, and Physical. TCP/IP Reference Model is the most widely employed model in

all computer networks, from the ARPANET to the worldwide Internet, which consists of

five layers: Application, Transport, Network, Data Link, and Physical. The base function

of the transport layer in the network protocol stack is to provide data transferring service

to the user applications. The OSI and TCP/IP layering model defines two protocols at the

transport layer: Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).

20

2.3.1 Protocols in Transport Layer

TCP is a reliable, connection-oriented, byte-stream-based protocol. TCP uses a variety

of mechanisms to guarantee reliable transmission and attempts to achieve fair sharing

of network resources among users, such as byte sequencing, positive acknowledgement,

lost packet retransmission, congestion avoidance/recovery, and sliding-window based flow

control. The TCP congestion control based on Additive Increase and Multiplicative De-

crease (AIMD) algorithm unfavorably imposes a major methodological limit on transmis-

sion throughput and results in complicated end-to-end dynamics with links of high Band-

width Delay Product (BDP). TCP increases the congestion windowcwinby one Maximum

Segment Size (MSS) every Round Trip Time (RTT), and halve itssize in the presence

of detected packet loss. TCP’s additive increase policy is explicitly in favor of low BDP

connections and TCP’s throughput is inversely proportional with RTT. Furthermore, TCP

detects packet loss either by timeout of an unacknowledged segment or several duplicated

acknowledgements. If packet loss is caused by network congestion, TCP is able to achieve

a reasonable link utilization. However, many observationshave shown that packet loss is a

poor indicator of network congestion, especially in high speed dedicated networks where

congestion has actually been pushed to the end system. This congestion shift deludes TCP

into increasingcwin conservatively and decreasingcwin aggressively, both to an excessive

degree, resulting in very low application goodput.

UDP is a simpler protocol providing unreliable, connectionless, datagram-based deliv-

ery. The unit of data processed by UDP is usually called datagram. UDP offers a direct

way to send and receive datagrams over networks, which makesit much faster than TCP

in terms of transmission rate, but its performance suffers from transmission errors and un-

reliability in either one of these situations: packet lost,packet partially damaged, packet

delivered out of order, and packet duplicated.

21

2.3.2 TCP Enhancements

In recent years, many changes to TCP have been introduced to improve its performance

for high-speed networks [63]. Efforts by Kelly have resulted in a TCP variant called Scal-

able TCP [79]. High-Speed TCP Low Priority (HSTCP-LP) is a TCP-LP version with

aggressive window increase policy targeted toward high-bandwidth and long-distance net-

works [87]. In some cases when interacting with certain types of traffic, it has been ob-

served and proved that TCP could exhibit even chaotic dynamics [104,123]. An empirical

study also shows that TCP cannot adapt well to online game traffic [52], which carries sim-

ilar control packets but with less transmission reliability requirements. A number of new

TCP variants such as TCP Vegas [48,49,93,94], Fast Active-Queue-Management Scalable

(FAST) TCP [76], TCP BIC [131], and TCP CUBIC [109] have been recently proposed to

reduce the AIMD dynamics by employing a smoother (linear or cubic) rate control func-

tion based on queuing delay, loss rate, or event time insteadof duplicate ACKs. TCP Vegas

measures timeouts were set and round-trip delays for every packet in the transmit buffer and

uses additive increases in the congestion window. The FAST is based on a modification of

TCP Vegas. The difference between TCP Vegas and FAST TCP liesin the way in which

the rate is adjusted when the number of packets stored is too small or large. TCP Vegas

makes fixed size adjustments to the rate, independent of how far the current rate is from the

target rate. FAST TCP makes larger steps when the system is further from equilibrium and

smaller steps near equilibrium. This improves the speed of convergence and the stability.

TCP BIC is an implementation of TCP with an optimized congestion control algorithm for

high speed networks with high latency. TCP BIC is used by default in Linux kernels 2.6.8

through 2.6.18. TCP CUBIC is a less aggressive and more systematic derivative of BIC,

in which the window is a cubic function of time since the last congestion event, with the

inflection point set to the window prior to the event. CUBIC isused by default in Linux

kernels since version 2.6.19.

The Explicit Control Protocol (XCP) has a congestion control mechanism designed for

22

networks with a high bandwidth-delay-product (BDP) [77]. Datagram Congestion Con-

trol Protocol (DCCP) is a newly emerged UDP-like protocol that provides a congestion-

controlled flow of unreliable datagrams. This protocol is particularly useful for multi-media

applications that prefer timeliness to reliability, but isalso not meant for stabilizing the data

stream at a target rate [81]. The Stream Control Transmission Protocol (SCTP) is a new

standard for robust Internet data transport proposed by theInternet Engineering Task Force

[120]. Other efforts in this area are devoted to TCP buffer tuning, which retains the core

algorithms of TCP but adjusts the send or receive buffer sizes to enforce supplementary rate

control [61,103,113]. However the congestion and fairnesscontrol of these TCP enhance-

ments still hinders the performance these protocols can achieve for high-speed dedicated

networks.

Since multiple TCP connections are simply faster than a single one, the simplest way for

achieving a faster transfer, without introducing a new congestion control algorithm, would

be a flow that sends data over multiple connections, e.g., GridFTP [16] [36] and bbcp [28].

This approach is effective, yet suffers from several problems such as unfairness to other

TCP streams, complex and inefficient multiplexing and demultiplexing data, difficulty to

determine the optimal number of streams [67] [68] [95]. The MulTCP [54] protocol

imitates the behavior of n standard TCP flows by having an n times higher increase factor

than the standard TCP protocol (n/cwnd) and decreasing the window size by (n - 0.5)/n in

case of congestion. MulTCP has an aggressive sending rate since it experiences a smaller

loss rate. Probe-Aided MulTCP (PA-MulTCP) [83] is based on MulTCP, and it tries to

overcome the problems of MulTCP. PA-MulTCP employs probes to determine a loss rate,

which is closer to the loss rate experienced by a real TCP thanthe loss rate of the original

MulTCP. Stochastic TCP collapses a set of parallel TCP streams into a single TCP stream

by partitioning a single TCP congestion window into a set of virtual TCP streams that are

stochastically managed to emulate the behavior of a collection of parallel TCP streams.

MPAT [114] is a scalable algorithm for fairly providing differential services to TCP flows

23

that share a bottleneck link. MPAT preserves the cumulativefair share of the aggregated

flows even where the number of flows in the aggregate is large. The use of multiple parallel

connections to improve the performance of a TCP-based transport method has been studied

in [37] [70] [69] [115].

2.3.3 UDP-based Protocols

Several UDP-based high-performance transport protocols have been developed to over-

come TCP’s throughput limitations for high bandwidth connections, although not neces-

sarily optimized for dedicated connections. Such researchefforts include Hurricane [126],

UDT [64], FRTP [138], PAUDP [62], Tsunami [29], RBUDP/LambdaStream [71, 130],

RAPID/RAPID+ [40,57], PAPTC [97], PAT [96], and many others(see [72] for overviews).

SABUL/UDT features with high performance, fairness, friendly and reliability. SABUL

uses UDP to transfer data and TCP to transfer control information. UDT is an improve-

ment over SABUL, which uses UDP only for both data and controlinformation. SABUL

uses an MIMD rate-based congestion control algorithm. UDT uses DAIMD (AIMD with

decreasing increases) as its rate control algorithm, associated with a bandwidth estima-

tion technique to determine the increase parameter, even ithas the similar efficiency with

MIMD, but is superior with regard to fairness. FRTP is designed for wide area circuit-

switched networks. Because circuit-switched networks reserve resources in a dedicated

manner, congestion control is not required during the data transfer. FRTP focuses on fixing

the sending rate at an value carefully chosen in order to get the acceptable circuit utilization

and low receiver buffer overflow. FRTP separates data channel and control channel through

separate NICs, which means that data is transferred on the circuit while control messages

are transferred over the Internet. RBUDP targets to keep link utilization as full as possible

during data transfer. It aggregates acknowledgements and delivers them from receiver to

sender at the end of the data transfer.

The aforementioned transport issue in shared network environments has been studied

24

by a number of works. LambdaStream [130] uses receiving interval as the primary metric

to control the sending rate. However the interval measurement probably yields very tran-

sient values, which are inefficient in networks with high latency. In [40] [58], Banerjee

et al. and Dattaet al. studied feedback-based network-scheduling approaches that allow

the receiver to deliver feedback to the sender. However, they cannot accurately estimate

the context-switch intervals, as shown in [57], and can alsolead to poor link utilization,

due to their “stop-and-go” approach. Furthermore, Dattaet al. [57] focused on dynami-

cally monitoring the packet loss at the receiving end host, where a large number of packets

may be dropped, to adapt the sending rate. But at high data rates, generating and sending

packets retransmission requests at the receiver consume CPU time and may significantly

interfere with the data receiving process. Banerjeeet al. [41] investigated an approach

to estimate the end system network I/O bottleneck rate by employing an off-line process

(System Evaluation Process) to generate the effective bottleneck rate tables. However, the

off-line generation of an accurate bottleneck rate table reflecting all host dynamics is a very

time-consuming process, and the subsequent parameter selection requires active human in-

volvement. Compared to PAPTC [97], PAT [96] further improved the overall goodput

over dedicated links by employing a more aggressive flow control mechanism, which in-

corporates the dynamics of running processes into the calculation of maximum attainable

goodput. But PAT requires extra efforts followed by trial-and-error parameter tuning to

find out the optimal values of the rate increase and decrease factors for different hardware

configurations. These protocols require finer manual tuningof parameters to achieve high

throughput. This tuning required an intricate knowledge ofimplementation details, and is

typically very labor-intensive and somewhat unstructured. The underlying optimizations

are ad-hoc and must be repeated for each different connection, thereby incurring the efforts

all over again.

25

Chapter 3

An Integrated High-Performance
Transport Solution

In this chapter, we first present the design of an integrated transport solution, and then

introduce its main functional components.

3.1 Integrated Transport Solution Design

The proposed integrated transport consists of two functional components: data route plan-

ner and transport control. These two components interact with each other to accomplish

the tasks of data transfer. Data route planner helps applications explore and compose a

set of feasible route options and transport control suitably adjusts the source rate in re-

sponse to both network and host dynamics for goodput maximization and stabilization on

the constructed routes. For large-scale scientific applications, the selected route might be

an Internet path or a dedicated path over network like UltrascienceNet. Transport con-

trol maximizes bulk data transfer performance on the selected route. For media streaming

applications, the route planner explores and composes a setof feasible routing paths for

streaming media delivery, which could be also considered astopology construction prob-

lem. Transport control stabilizes media streaming at a desired level to achieve and sustain

26

Transport Control
(Optimization & Dynamics Control)

Data Transfer Route Planner

Applications

Wide-area Networks

(Internet, UltrascienceNet, etc.)

Figure 3.1: An Integrated Transport Solution.

an acceptable level of quality of service over the constructed topology. This unique trans-

port solution has great potential to impact the science and network community by aug-

menting the traditional way of data transfer. Fig. 3.1 showsthe framework of the proposed

transport solution.

3.2 Functional Components

3.2.1 Data Transfer Route Planner

3.2.1.1 Large-scale Scientific Applications

In many cases, large-scale scientific application users, who are primarily domain experts,

need to manually configure and execute their routine data-centric tasks over networks using

software tools they are familiar with based on their own empirical studies, oftentimes result-

ing in unsatisfactory performance in the diverse and dynamic network environments. For

these scientific application users, the route planner enables automated discovery of network

and system resources and advises the user of efficient strategies for fast and successful data

27

transfer. The route planner allows the user to specify the source data by using metadata or

logical names and interacts with the remote metadata services and replica location services

(RLS) to identify the physical locations of these data itemsand stores the information in a

cache for quick access. It is designed to support generic data discovery mechanisms based

on web services. The route planner automatically discoversnetwork resource provisioning

systems such as TeraPaths [17] and OSCARS [9] as well as host capabilities with Storage

Resource Management [15], and transport methods such as GridFTP [16]. It estimates the

network performance of a transfer strategy using both an automated ICMP-based network

performance measurement as well as a manual protocol-basedperformance measurement.

At the end, the router planner explores and composes a set of feasible route options and

provides them to the user along with performance estimations as well as specific steps and

commands to authorize and execute data transfer.

3.2.1.2 Media Streaming Applications

Live media streaming applications often require the collective use of massively distributed

network resources and therefore are not adequately supported by the traditional client-

server architecture in the Internet. Peer-to-peer (P2P) overlay networks enable efficient

resource sharing in distributed environments and provide ahighly effective and scalable

solution to this problem [13, 14, 135]. For these applications, the route planner explores

and composes a set of feasible routing paths for streaming media delivery, which could be

also considered as topology construction problem. The route planner finds a spanning tree

whose minimum node throughput is maximized among all possible spanning trees of the

given overlay networks. By maximizing the minimum node throughput in tree construction,

the route planner improves the level of streaming quality for all the users, which can not be

achieved by increasing the average throughput.

28

3.2.2 Transport Control

Transport control is an important factor in the performanceof the large-scale scientific

and media streaming applications involving transfer of large data sets, and streaming me-

dia, computational steering, interactive visualization,and instrument control. In general,

these applications have two broad classes of networking requirements. Large-scale scien-

tific applications need high bandwidth to move bulk data across the wide-area networks.

The media streaming applications require stable bandwidthto ensure good media playback

and continuous supply of streaming media. The widely deployed Transmission Control

Protocol is inadequate for these tasks due to its performance drawbacks.

A main challenge in the goodput maximization over wide-areadedicated connections

is to compute and adapt various data rates and transport parameters automatically, whose

estimates are subject to the variations due to connection and host effects as well as the fi-

nite window effects. The transport control component regulates the activities of both the

sender and receiver in response to system dynamics and automates the rate stabilization for

throughput maximization using stochastic approximation methods, as opposed to the man-

ual parameter tuning in many other UDP-based transport protocols in high-performance

dedicated networks.

The difficulty of goodput stabilization over wide-area networks essentially arises from

the randomness inherent in the end-to-end delays observed at the application level, partic-

ularly over the Internet, where routing changes also significantly affect packet delays and

losses other than queueing delays [136]. The transport control component explicitly ac-

counts for this randomness to stabilize the goodput at destination by suitably throttling the

source rate in response to network dynamics and statistics.

29

Chapter 4

Maximizing Transport Performance
over Dedicated Connections

In this chapter, we present how the integrated transport solution works for large-scale sci-

entific applications. We first propose and develop a data transfer router to explore and

compose a set of feasible route options and provide them to the user along with perfor-

mance estimations as well as specific steps and commands to authorize and execute data

transfer in Section 4.1. In Section 4.2, we proposePeak Link Utilization Transport(PLUT)

to maximize data transfer performance over the discovered dedicated path. We will also

introduce Parallel PLUT (Para-PLUT) in Section 4.3, which further improves the perfor-

mance of PLUT by using multiple parallel UDP connections to take advantage of the full

power of multi-core processors.

4.1 Bulk Data Transfer Route Planner

We design and develop a Network-aware Data Movement Advisor(NADMA) utility to

enable automated discovery of network and system resourcesand advise the user of ef-

ficient strategies for fast and successful data transfer. NADMA is primarily a client-end

program that interacts with existing data/space management and discovery services such as

Storage Resource Management [15], transport methods such as GridFTP [16], and network

resource provisioning systems such as TeraPaths [17] and OSCARS [9]. NADMA acts as

30

User Interface

(Request submission, database management, workflow viewing)

User Request Interpretation

Hostnames or

IP Addresses

Web Service

1. Metadata location

2. Network profile

3. IP Geolocation DB

4. User authentication

Network Profile

Management

Network Profile

Management

Network QoS

IP Geolocation

Transfer Protocol Discovery

Network Quality of Service Discovery

Performance Estimation

(End-to-end delay, bottleneck bandwidth)

D
a
ta

 M
o

v
e
m

e
n

t
W

o
rk

fl
o

w
 G

e
n

e
ra

ti
o

n

(G
e
n

e
ra

te
 w

o
rk

fl
o

w
s
 f

o
r

d
a
ta

 m
o

v
e
m

e
n

t
b

y

a
n

a
ly

z
in

g
 a

n
d

 c
o

m
b

in
in

g
 d

is
c
o

v
e
re

d
 s

to
ra

g
e
 a

n
d

n
e
tw

o
rk

in
g

 i
n

fo
rm

a
ti

o
n

)

Metadata or

Logical names

NADMA Database

Data Discovery

(Physical file location, data size)

Figure 4.1: NADMA framework: functional components and control flow.

a route planer to explore and compose a set of feasible route options and provide them to

the user along with performance estimations as well as specific steps and commands to

authorize and execute data transfer. The efficacy of NADMA isdemonstrated in several

use cases based on its implementation and deployment in wide-area networks.

4.1.1 NADMA Architecture and Functional Components

As shown in Fig. 4.1, the NADMA framework consists of a User Interface with a User

Request Interpretation component that interacts with other components for Data Discov-

ery, Network Quality of Service Discovery, Transfer Protocol Discovery, and Performance

Estimation to identify and develop data movement strategies through a Data Movement

Workflow Generation component.

The client end of NADMA is a downloadable software program with a user interface

that communicates with a lightweight web service. The NADMAclient interacts with

31

Figure 4.2: Graphical User Interface.

existing data management, discovery, and movement tools and services such as SRM and

GridFTP, as well as existing network resource provisioningsystems such as TeraPaths,

OSCARS, and ESCPS to generate workflow-based solutions to data movement. The server

end of NADMA is based on a web service and provides a client administration interface to

manage a database of discovered storage and network resource provision systems.

4.1.1.1 User Interface and Request Interpretation

The User Interface provides a general means for users to submit data movement requests

based on SRM, gsiftp, http, https, bbftp, scp, sftp, and so on. The interface also displays

the discovered host and network information as well as the resultant data movement sug-

gestions.

As shown in Fig. 4.2, in the main interface of NADMA, the user inputs the source and

destination hosts, the data files to be transferred, and the path to which the transferred files

should be saved. Both source and destination fields could be either a URL or an IP address.

Note that this graphical user interface might be removed in the final version for integration

with other actual data transfer tools such as GridFTP.

32

Figure 4.3: The user profile page.

To discover the system resources of the source and destinations hosts, the user may

provide access information such as an account the user has onthose machines, the protocols

the user wishes to use for data transfer, and the user accountdetails for each of these

protocols through the user profile page as shown in Fig. 4.3. On this page, the user may

also upload a list of user certificates to be used for accessing the remote host.

For each proposed data transfer solution, the corresponding network path is visually

displayed on a dynamically generated map. The route information determined by NADMA

is used to produce the path layout by first matching the intermediate nodes of each route

against a Geolocation IP database using the NADMA web service and then placing them

onto the map using Google Static Maps API.

The User Request Interpretation component is responsible for interpreting the request

and invoking the corresponding functions.

33

Figure 4.4: Data discovery interface for Earth System Grid.

4.1.1.2 Data Discovery

In addition to specifying a particular dataset, the user is also provided the capability of

discovering the dataset of interest using the built-in datadiscovery component. The dataset

properties including source location and dataset size are automatically determined when

the user selects a target dataset from the dataset discoverycomponent.

NADMA allows the user to specify the source data by using metadata or logical names.

The data discovery component interacts with the remote metadata services and replica loca-

tion services (RLS) [30] to identify the physical locationsof these data items and stores the

information in a cache for quick access. NADMA is designed tosupport generic data dis-

covery mechanisms based on web services, and we use the EarthSystem Grid (ESG) data

discovery web service as an example for testing purposes. The user can search for data by

only providing a dataset ID, which is submitted by NADMA in a query to multiple data

repositories using the available data services. The searchresults from those geographically

located ESG gateways are assembled and presented to the user. As shown in Fig. 4.4, the

location and size of each data file with the matched ID are displayed in the user interface.

Other information such as physical access points is cached and may be used to determine

and compose the fastest transfer option.

34

Figure 4.5: A screenshot of the administrative view of the web-service driven database.

4.1.1.3 Network Profile Management Using Web Services

To provide accurate advising for data movement in dynamic network environments, it is

critical to collect and store status and resource information including network topology,

provisioning services, data management and movement protocols, which must be updated

in a timely manner. For this purpose, we create and maintain adatabase, which is accessible

by regular users for information lookup and by the system administrator for information

updates through web service calls. The user interface interacts with the remote centralized

database to retrieve network profile information. Both client requests and server responses

are encoded using Hessian binary web service protocol.

Since the network profile changes as new services are added orexisting services are

updated or removed, NADMA provides a set of system administration functions to add,

remove, and edit these catalog entries through an administration interface. Fig. 4.5 shows

an example of displaying all entries from a node table and editing a node’s fields such

as organization and protocols supported via a web service System Administration window.

User can also choose to delete selected nodes or add additional nodes in that same interface.

35

4.1.1.4 Network Quality of Service Discovery

Different from best-effort IP networks, high-performancenetworks are capable of provi-

sioning dedicated bandwidths. The Network Quality of Service Discovery component is

designed to automatically discover network resource provisioning systems as well as host

capabilities with SRM and GridFTP services. This componentinteracts with the NADMA

web service to determine if an end host has access to the high-performance network infras-

tructure and necessary provisioning services. The NADMA web service queries a prede-

fined centralized network profile database of known subnets and domains to determine the

resource availability without the need to query the services directly. If the source and desti-

nation hosts do not support some advanced networking services such as SRM and GridFTP,

NADMA tries to compose a data transfer path using known intermediate hosts in the same

domain or subnet in order to achieve the best possible performance over the WAN.

In addition to a possible high-performance network path with reserved bandwidth,

NADMA also explores a default Internet path between the source and destination nodes.

If the source or destination node is a local host, NADMA identifies the path between the

local host and the remote host using the existing tracerouteor tracepath utility. If the sys-

tem natively supports the tracepath command using UDP, it ispreferred to the standard

ICMP-based traceroute to minimize the use of superuser privileges.

4.1.1.5 Transfer Protocol Discovery

The Transfer Protocol Discovery component discovers transfer protocols that may be used

to support the desired data transfer. NADMA scans for open ports of popular transfer

protocols such as GSIFTP, HTTP, HTTPS, BBFTP, SCP, SFTP, andFTP. Special consider-

ation is taken when initiating a third-party transfer from aremote source host to a remote

destination host with respect to these protocols.

An open protocol port detected by the port scanner is considered available only if it is

supported in the transfer scenario. There are three types oftransfer options:

36

• Local Host to Remote Host:The protocol is considered available if the destination

host port for the protocol is open.

• Remote Host to Local Host:The protocol is considered available if the source host

port for the protocol is open and the protocol supports pull requests.

• Remote Host to Remote Host:The protocol is considered available if both the source

host and the destination host have open ports for the protocol and the protocol allows

third-party transfers.

Available transfer protocols are ordered by priority numbers according to the known

performance and general security of the protocol with preference given to security-conscience

massive data transfer protocols.

4.1.1.6 Bandwidth Estimation and Measurement

NADMA estimates the network performance of a transfer strategy using both an automated

ICMP-based network performance measurement as well as a manual protocol-based per-

formance measurement.

Bandwidth Estimation Using ICMP. Bing [31] is a standalone network performance

measurement program that computes point-to-point throughput using two ICMP

ECHO REQUESTpackets of different sizes between a pair of nodes. We convert Bing

to a library that works on both Windows and Linux systems. ThePerformance Estimation

component invokes the Bing library to estimate the end-to-end delay and the bottleneck

bandwidth of the network path.

The bandwidth is estimated for both reserved and Internet network paths. However,

there are two distinct processes used to estimate the bottleneck bandwidth depending on

the type of network.

37

• Reserved Network Bandwidth Estimation:When a bandwidth reservation service

such as OSCARS is available between two endpoints, a defaultshortest path is com-

puted based on the ESnet topology. The minimum link capacityalong the path is

reported to the user together with the bandwidth estimationacquired from the Bing-

based estimation from the local host to its respective OSCARS ingress endpoint,

namely the intranet performance of the LAN. These two measurements are intended

for the user to make an informative bandwidth reservation request to OSCARS in the

future.

• Internet Network Bandwidth Estimation:The bottleneck bandwidth of the default

Internet path between the local host and the remote host is directly measured using

the Bing library. This bottleneck bandwidth provides a snapshot of the current In-

ternet traffic condition and can also be considered as a projection on the expected

performance in the near future.

Both bandwidth estimations require either the source or thedestination host to be a

local host due to the limitation of ICMP packets. NADMA does not perform ICMP-based

bandwidth estimation for third-party transfer.

Bandwidth Estimation using Transfer Protocol. When ICMP-based bandwidth esti-

mation is not available, NADMA offers a protocol-specific bandwidth estimation method,

which can be used to select the most suitable transfer protocol. The users can initiate band-

width measurement within NADMA to estimate bandwidth between two hosts, including

two remote hosts. The bandwidth measurement based on a specific transfer protocol such

as SCP or FTP involves sending a sequence of data packets of different sizes using that pro-

tocol, measuring the corresponding data transfer times, and performing a linear regression

whose slope approximates the path bandwidth and intercept approximates the minimum

path delay. A linear regression line that computes the bandwidth and delay of an Internet

38

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

ro
u
n
d
 t
ri
p
!t
im

e
!(
se
c)

file!size!(KBytes)

bandwidth Linear (bandwidth)

Figure 4.6: A linear regression line to estimate the path bandwidth and latency between a
local SIUC node and a remote node in Connecticut: the x-axis represents the file sizes in
KB, and the y-axis represents the round-trip time in seconds.

path between a local host at Southern Illinois University, Carbondale (SIUC) and a remote

host in Connecticut is illustrated in Fig. 4.6 .

For instance, the FTP bandwidth measurement tool in NADMA measures the band-

width between two FTP servers. This tool uses File eXchange Protocol (FXP) that is built

into the FTP standard. It allows file copy from one FTP-serverto another using an FXP-

client without going through the local machine. To use the FXP operation, both servers

must support and enable FXP. However, many servers do not have it enabled by default due

to its potential security risks and the overhead of allowingpassive mode transfers, which

typically require a block of ports to be open in the system firewall.

39

4.1.1.7 Data Movement Workflow Generation

The Data Movement Workflow Generation component generates workflows for data move-

ment by analyzing and combining discovered storage, host, and network resource infor-

mation to build feasible data movement strategies. The estimated performance of each

transfer strategy including network bandwidth and transfer duration is used to prioritize

transfer workflows and make specific recommendations to the user. Each workflow-based

data transfer strategy contains performance estimation, network route as well as security

and transfer protocol information, and presents several specific instructional steps using

third-party tools to realize the recommended transfer solution.

4.1.2 System Implementation and Operation Procedure

NADMA is implemented in Java, consisting of a client front-end and a web service back-

end. The web service initiates a Hessian binary web service on top of Apache Tomcat to

provide a simple and secure SSL-enabled web service. The back-end uses MySQL to store

and query against a database of known advanced network resource storage and provisioning

systems as well as find the geolocation of IP addresses. The client generates data movement

strategies in a three-step process involving Endpoint Specification, Network Discovery, and

Workflow Generation and Display.

4.1.2.1 Endpoint Specification

NADMA requires the entry of the source endpoint and destination endpoint, one of which

may be a local host, for the desired data transfer. The two endpoints are sufficient for

NADMA to provide a detailed analysis, but the user may optionally specify dataset charac-

teristics and transfer constraints such as dataset size, transfer times, and preferred transfer

protocols. Additional information provided by the user assists in determining routes more

suitable to the request of the user.

40

If an endpoint is unknown, the dataset discovery tool may be used to locate the desired

dataset. The dataset discovery tool interacts with metadata services to locate and retrieve

information about the desired data. The user may query the target metadata service for

a dataset of interest by keywords. The user selects from a list of matched datasets and

NADMA populates the appropriate endpoint and dataset information automatically.

4.1.2.2 Network Discovery

The source and destination endpoints provided by the user are scanned to determine sup-

ported transfer protocols. The client application attempts to connect to the common ports

of various transfer protocols to determine if the protocol is available. If the source or desti-

nation host is a local host, an Internet trace route is executed to determine an Internet path

and an ICMP bandwidth test is performed.

The client queries the NADMA web service with the IP addresses and hostnames of

the endpoints to determine if the endpoints have access to advanced network provisioning

systems, including bandwidth reservation networks such asOSCARS as well as known

SRM systems. The web service locates systems that are associated with either the endpoint

hostname or a subnet of the endpoint IP address. Specific information about these systems

is retrieved from the database and sent to the client application.

Geographic locations of all endpoints and intermediate nodes are determined by query-

ing the IP address geolocation database using the web service. The client application de-

termines the geographic location of the IP address of each endpoint and intermediate node.

The city, state or province, country, postal code, and longitude and latitude are sent to the

client. The client uses this information to construct a map of the topology of potential

routes using the Google Static Maps API.

41

4.1.2.3 Workflow Generation and Display

After the network, path, and location information have beendiscovered, the client appli-

cation generates multiple data movement workflows. The workflows are limited by the

dataset characteristics and transfer preferences specified in the first step and organized by

priority of transfer protocols and adherence to dataset characteristics and transfer prefer-

ences.

The client application presents a topological overview andbasic network summary, in-

cluding discovered route information for a high-performance network path with bandwidth

reservation as well as an Internet path with basic bandwidthinformation. A summary of

the available transfer protocols are presented with links to launch protocol-specific band-

width tests. The tests allow for additional authenticationinput from the user and perform

an automated bandwidth test using the given protocol.

A detailed analysis containing multiple data movement strategies is also available. The

user may cycle through different workflows to view estimatedperformance, network path

and topology, and specific steps to realize each workflow for data transfer. Each step con-

tains general information about its function as well as specific commands that can be exe-

cuted using third-party tools.

4.1.3 Case Studies

4.1.3.1 Case Study I: from University of Memphis (UM) to UM

Experimental Setup. The data source (dragon.cs.memphis.edu) and destination

(mouse.cs.memphis.edu) in this use case are both located inthe campus network at UM.

The data source is an Intel Xeon Linux box with kernel 2.6.30,equipped with one 1 GigE

NIC, Intel(R) Core(TM)2 Duo CPU, 3 GBytes of RAM, and 250 GBytes of SCSI hard

drive. The data destination is a Dell Precision 490 Linux boxwith kernel 2.6.20, equipped

with a 1 Gigabit NIC, 8 Pentium 4 processors, 4 GBytes of RAM, and 800 GBytes of SCSI

42

Figure 4.7: The output in the use case from UM to UM.

hard drive. The available transport protocols include SCP,HTTP and HTTPS. We have an

account and password on the destination host.

Data Movement Advising Output. As shown in Fig. 4.7, the discovered host and net-

work information is displayed in the source, destination, and network panels. The source

and destination panels display the host profiles such as the host name, account, total mem-

ory, free memory, total disk, free disk, and available protocols. The OSCARS dedicated

channel service is not available between these two end hosts. The network panel displays

the network profile such as the Internet path, bottleneck bandwidth in Mbps, path delay in

ms. In this use case, we estimate that the bottleneck bandwidth is about 32 Mbps and the

path delay is around 0.2 ms. The workflow panel displays all workflow-based data transfer

options, and the user has the flexibility to explore the details (e.g, path map) on each of

them.

43

Figure 4.8: The network path in the use case from UM to LSU.

4.1.3.2 Case Study II: from UM to Louisiana State University(LSU)

Experimental Setup. In this use case, the data source (dragon.cs.memphis.edu) is the

same as in Case I and the data destination (bit.csc.lsu.edu)is located in the LSU campus

network. The data destination is a Linux box with kernel 2.6.20, equipped with 8 3.2 GHz

processors and 16 GBytes of RAM. The available protocols include SCP and HTTP. We

have an account and password on the data destination.

Data Movement Advising Output. As shown in Fig. 4.8, the discovered host and net-

work information is displayed in the source, destination, and network panels. We estimate

that the bottleneck bandwidth is about 18 Mbps and the path delay is around 28 ms. The

network path corresponding to each workflow-based data transfer option is displayed on a

Google map.

44

!

Figure 4.9: A screenshot of the list of suggested nearby hosts with advanced networking
services in Case Study III.

4.1.3.3 Case Study III: from Lawrence Berkeley National Laboratory (LBL) to Fermi

National Laboratory (FNL)

Experimental Setup. This use case handles an OSCARS-based high-performance data

transfer request. The source host (src.lbl.gov) is a node located at LBL, Berkeley, Califor-

nia. The destination host (dea.fnal.gov) is located at FNL,Batavia, Illinois near Chicago.

Data Movement Advising Output. After receiving the user inputs, the NADMA system

looks up the networking service profiles stored in multiple databases and generates a list of

preferred source and destination URIs, which have advancednetworking services installed

such as SRM and GridFTP, and are close to the given endpoints.This list is sorted in a

certain priority order based on the capability of performing high-performance data transfer.

The given endpoints are always placed on the top of the list ifthey have those advanced

networking services installed. Fig. 4.9 shows an example ofthe suggested intermediate

sources and destinations close to the endpoints.

Among these suggestions, the user may choose one source and one destination based on

his or her preference and accessibility. Suppose that the user has chosen (srm://sim.lbl.gov:8443)

45

Figure 4.10: A screenshot of the map generated using Google Static Maps API to display
the suggested routes and estimated performance in Case Study III.

as the source and (gsiftp://cms-xen13.fnal.gov:2811) as the destination from the suggested

list. The automatic port scanner also reports that both hosts have GridFTP service running

at port 2811 and SRM running at port 8443. Note that the port scanning results can be

used to update the database. For any pair of selected source and destination hosts, the user

can further examine the transfer route information and predict the transfer performance by

interacting with OSCARS API. Based on the query results fromOSCARS, the user is able

to explore the best bandwidth reservation solution on this dedicated channel, either for the

shortest duration or for the earliest finishing time. For illustration purposes, the map in

Fig. 4.10 displays a dedicated high-performance path with intermediate routers at Kansas

City and Denver, reserved bandwidth, number of hops, start time, and end time.

46

4.2 Peak Link Utilization Transport

Given the high bandwidth dedicated channel, inefficient transport protocols will ultimately

lead to underutilized reserved bandwidth networks and significantly slower data transfer.

So the design of Transport protocols are very important to achieve high link utilization

and satisfy large-scale scientific applications networking requirements. In this section,

we first provide a mathematical analysis to investigate the impact of system factors on

the performance of transport protocols. Then we proposePeak Link Utilization Transport

(PLUT) that incorporates a performance-adaptive flow control mechanism to regulate the

activities of both the sender and receiver in response to system dynamics and automates the

rate stabilization for throughput maximization using stochastic approximation methods, as

opposed to the manual parameter tuning in many other UDP-based transport protocols in

high-performance dedicated networks.

4.2.1 Performance Analysis of Single Packet Processing

We conduct an analytical study to investigate the impact of system factors on the perfor-

mance of transport protocols. To instantiate our analysis,we consider the commonly used

Linux kernel.

4.2.1.1 Packet Processing Issues

When a new packet arrives, the NIC generates an interrupt andthe packet is put into the

kernel buffer by the card DMA engine. In general, heavily engaging the CPU in other

compute-bound tasks during an interrupt may severely hinder a running process. To avoid

flooding the host system with too many interrupts, the interrupt coalescence scheme col-

lects multiple packets and generates one single interrupt for them, therefore reducing the

amount of time that the CPU would otherwise have to spend on context switching to serve

multiple interrupts. The Linux kernel usessk buff structure to hold any single packet. The

47

Figure 4.11: Packet processing flow in Linux.

pointers ofsk buff are held in a ring buffer in the kernel memory and manipulatedthrough

the network stack. If there are no free pointers in the ring buffer, incoming packets will

be dropped by the kernel silently. From the ring buffer, the packets are delivered to the

corresponding receiving function of the IP layer, which examines the packets for errors

and then forwards them up to the INET Socket layer (such as TCPor UDP), which in turn

checks for errors and copies the packets into the socket receive buffer. Then, the waiting

application wakes up and returns from a corresponding receive system call that copies the

data from the kernel into the application buffer. For convenience, we plot in Fig. 4.11 an

overview of Linux packet processing that involves the NIC hardware, device drive, kernel

protocol stack, and application [110] [111].

The Linux packet processing flow shows that packet drops by the kernel could happen

in either the ring buffer, or the socket receive buffer, or both. Since the data receiving pro-

cess has a lower priority than the packet processing by the kernel and the Interrupt Service

Routine (ISR), packets are more likely to drop in the socket receive buffer. Although UDP

is buffered on both the sender and receiver sides, we focus onthe receiver side since the

48

receiver is under considerably more system strain than the sender. The flow control mech-

anism of TCP is implemented to avoid packet drops in the receive buffer. However, the

UDP receive buffer might be overflowed if the packet receiving process can not acquire

enough CPU cycles to consume the data in the buffer due to CPU contention. In this case,

all incoming packets are discarded, hence wasting the protocol processing resources and

impairing the application performance. Therefore, it is critical to employ a flow control

mechanism in UDP-based transport protocols to avoid havingthe sender send data too fast

for the receiver to receive and process.

4.2.1.2 Single Connection With a Single Data Receiving Process

We assume that the packets are of a fixed size up to the Maximum Transfer Unit (MTU)

and are placed in the receive socket buffer by the kernel protocol stack at a mean Poisson

rate ofλ . We further assume that the effective service time is exponentially distributed and

its mean is1
µ for packet processing carried out by the data receiving process. Therefore, the

time that the data receiving process spends in processing the incoming packet and writing

it to the disk is1
µ . We denote the quantityλµ by α, i.e.,α = λ

µ . LetT be the time in seconds,

M be the UDP buffer size in bytes, andB be the maximum number of packets in the UDP

buffer. Thus, we have:

B = d
M

MTU
e. (4.2.1)

Since UDP was designed without transmission reliability guarantee, the default UDP

receive buffer size on most operating systems is set very small. The kernel variable that

defines the maximum buffer size has different values in different kernels. For example, in

Linux, the variable namednet.core.rmemmaxhas a default value of 131071 Bytes. Since

the MTU is of 1500 Bytes in the Internet, given this default UDP receive buffer size, we

haveB that is equal to 88.

Based on the above assumptions, the packet receiving process that starts from the socket

49

receive buffer to the user application can be modeled as a Markovian birth-and-death pro-

cess where the state-space is finitely limited by the buffer size [46] [47] [56], as shown in

Fig. 4.12.

Figure 4.12: Markov state transition diagram for modeling packet processing.

In this model, the states of the process are represented by the numbern of packets in the

socket receive buffer. State0 represents the state where there are no packets in the socket

receive buffer, and staten, 1≤ n≤ B, represents the state where there aren packets in the

buffer. The steady-state probabilityPn of this process being in staten is given by:

Pn =
λ n

µn ·P0, n = 1,2, ...,B. (4.2.2)

Using the boundary condition:

P0+ΣB
n=1Pn = 1, (4.2.3)

we obtain

P0 =
1

1+ΣB
n=1

λ n

µn

=
1

1+α +α2 + ...+αB =
1−α

1−αB+1 , α 6= 1.

Using Eqs. (3.12) and (3.11) in [47], we obtain the steady-state probability ofn packets

being in the socket receive buffer:

Pn =

{

(1−α)·αn

1−αB+1 0≤ n≤ B,

0 n > B.
(4.2.4)

We plot in Fig. 4.13 this steady-state probability forα = 4
5. From the figure, we observe

that this probability decreases over the increasing numberof packets in the socket receive

buffer.

50

Figure 4.13: The probability ofn packets in a M/M/1/B queue.

Figure 4.14: The mean number of packets in a M/M/1/B queue.

Since there are at mostB packets in the socket receive buffer, this queueing system is

stable for all values ofλ andµ. If λ = µ, thenα = 1 and

P0 =
1

B+1
= Pn, n = 1,2, ...,B. (4.2.5)

The mean number of packets in the socket receive buffer is given by:

E[n] =

{

α
1−α −

B+1
1−αB+1 ·αB+1, α 6= 1,

B
2 , α = 1.

(4.2.6)

We plot in Fig. 4.14 the mean number of packets in the socket receive buffer as a

function ofα, which clearly illustrates the effect of the increasing number of packets due

51

Figure 4.15: Survivor function for the number of packets forseveral values of alpha.

to the increase ofα.

The probability of havingn or more packets in the socket receive buffer is given by:

P(≥ n packets in bu f f er) = ΣB
j=nPj

= ΣB
j=n

(1−α) ·α j

1−αB+1

=
αn−αB+1

1−αB+1 , α 6= 1. (4.2.7)

The quantityP(≥ n packets in buffer) is called the survivor function for the number

of packets in the socket receive buffer. We plot in Fig. 4.15 this survivor function for

several different values ofα. We observe that asα approaches unity, the probability that

the number of packets in the receive buffer exceeds a given value increases substantially

due to the small changes inα.

The utilizationρ of this queueing system is defined as:

ρ = 1−P0

= 1−
1−α

1−αB+1

=
α−αB+1

1−αB+1 , α 6= 1. (4.2.8)

By Little’s law, the mean response time of this queueing system is:

52

R =
E[n]

λ̃

=
1
µ

[
1

1−α
−

B ·αB

1−αB], α 6= 1. (4.2.9)

The throughputG of this queueing system is defined as:

G = λ · (1−PB) = λ ·
1−αB

1−αB+1 . (4.2.10)

The time to deplete the buffer sizeM when the packet receiving process runs out of its

time slice is given by:

T =
M
λ

. (4.2.11)

On the other hand, the time to deplete the buffer sizeM when the CPU time is available

to process the arriving packets is given by:

T =
M

λ −µ
. (4.2.12)

At time T, the UDP receive buffer is not able to accept any new packets and thus will

have to drop them. The depleted UDP buffer results in the dropof UDP datagrams received

by the kernel.

Eq. 4.2.10 has some important implications. (i) Ifα > 1, the socket receive buffer

will become full after timet, as shown in Eqs. 4.2.11 and 4.2.12. In this situation, the data

receiving process is not able to consume all the packets arriving from the network, which

ultimately results in packet loss in the UDP receive buffer.At high data rates, generating

and sending packet retransmission requests at the receiverconsume CPU time and may

significantly affect the data receiving process. (ii) Ifα < 1, the data receiving process

has enough CPU cycles to consume packets but no enough packets are placed in the UDP

receive buffer. In this situation, the UDP receive buffer could become empty and there are

still idle CPU cycles, either of which is a waste of system resources.

53

Figure 4.16: Data receiving process running model (PDRP representing the data receiving
process).

4.2.1.3 Mathematical Model for Data Receiving Process

Linux 2.6 is a preemptive multi-processing kernel whose scheduling policy is priority-

based and is explicitly in favor of I/O bound processes in order to provide a fast process

response time (interactive processes are I/O bound). Processes are initially assigned with

static priorities, which can be modified dynamically by the scheduler to fulfill scheduling

objectives. The Linux scheduler calculates a dynamic priority through the static priority

and interactivity of the process. A process with a higher interactivity is assigned with a

higher dynamic priority and hence runs more frequently. On the contrary, CPU bound

processes receive a lower dynamic priority. The timeslice of a process is determined by

its dynamic priority per round of execution. Thus, important processes are assigned a

longer timeslice that enables these processes to run longer. The old Linux CPU scheduler

recalculates each task’s timeslice using anO(n) algorithm implemented as a loop over each

task; while the newer Linux scheduler maintains two priority arrays, an active array and an

expired array, withO(1) complexity for priority updating. Processes move from the active

array to the expired array when they exhaust their timeslices. Recalculating all timeslices

is just to switch the active and expired arrays [92] [91].

Based on the analysis of scheduling policy for Linux 2.6, theruntime behavior of the

data receiving process is shown in Fig. 4.16. LettDRP andtEXP be the CPU time and the

expired time assigned to the data receiving process, respectively, andtTOT be the total CPU

54

time assigned to all the running processes. We have:

tDRP= timeslice(PDRP). (4.2.13)

tTOT = timeslice(PDRP)+
n

∑
i=1

timeslice(Pi), Pi 6= PDRP. (4.2.14)

The expired time for the data receiving process is:

tEXP= tTOT− tDRP. (4.2.15)

From Eqs. 4.2.13, 4.2.14 and 4.2.15, we know that the runningtime of the data receiving

process is contingent on its own priority and the system load, which includes all interrupt-

related processing and handling as well as the load of concurrent processes. Note that

interrupt handling has the highest priority and is always scheduled to run before other

tasks. Hence, a system with a high interrupt rate is not able to respond to the data receiving

process immediately, resulting in a decreased data receiving rate. In an extreme case where

the system is completely occupied for handling interrupts,the data receiving process could

be temporarily suspended, resulting in significant packet losses in the socket receive buffer.

Similarly, a system heavily loaded with concurrent processes could not guarantee enough

CPU cycles for the data receiving process because processeswith higher priorities may

starve the data receiving process. To increase the data receiving rate, one needs to either

increase the data receiving process’ priority or reduce thesystem load. However, reducing

the system load does not seem to be a viable solution since thedata receiving process

typically runs with other concurrent resource-intensive workloads in a shared computing

environment.

In order to show the effects of concurrent background workloads on the performance of

UDP-based transport protocols, we run iperf UDP on a local dedicated connection, which

is provisioned by a back-to-back link between two Dell Precision 490 Linux boxes with

kernel 2.6.20, each equipped with a 1 Gigabit NIC, dual Pentium 4 processors, 3 GBytes

of RAM, and 1 TBytes of SCSI hard drive. A CPU-bound program named Burncpu is

55

Figure 4.17: Goodput performance comparison with and without concurrent loads.

Figure 4.18: Packet loss rate with and without concurrent loads.

specifically designed and executed to emulate concurrent host background workloads. We

conduct four sets of transport experiments, in each of which, 10 files are transferred using

iperf. In the first set of experiments, no Burncpu process is executed while in the other three

sets of experiments, 1, 2 and 3 concurrent Burncpu processesare launched, respectively.

The goodput performance measurements and packet loss ratesfor iperf are shown in

Figs. 4.17 and 4.18. From these measurements, we observe that the amount of concurrent

background workloads has a significant impact on the transport performance of iperf. The

iperf UDP achieves high and stable goodputs when there are noconcurrent background

workloads, but yields lower goodputs of varying dynamics with 1, 2, 3 concurrent Burncpu

56

0
10

20
30 0

20

40
0

500

1000

1500

2000

ctrl period (RTTs)

Source Rate vs. Idle Time & Ctrl Period

idle time (microseconds)
so

ur
ce

 r
at

e
(M

bp
s)

0
10

20
30 0

20

40
200

400

600

800

1000

ctrl period (RTTs)

Goodput vs. Idle Time & Ctrl Period

idle time (microseconds)

go
od

pu
t (

M
bp

s)

0
10

20
30 0

20

40
0

20

40

60

ctrl period (RTTs)

Loss rate vs. Idle Time & Ctrl Period

idle time (microseconds)

lo
ss

 r
at

e
(%

)

0
10

20
30 0

20

40
0

0.5

1

1.5

ctrl period (RTTs)

Retransmission Rate vs. Idle Time & Ctrl Period

idle time (microseconds)

re
tr

an
sm

is
si

on
 r

at
e

(%
)

Figure 4.19: Sending, goodput, loss and retransmission profiles over 9900 mile 1 Gbps
USN-ESnet hybrid connection.

processes. The iperf UDP peak goodputs without background workloads and with 3 con-

current Burncpu processes differ in about 200 Mbps, which isdue to the limited CPU cycles

assigned to the iperf UDP when there are competitive background workloads. In addition

to having higher goodputs compared to those cases with 2 and 3concurrent Burncpu pro-

cesses, from Fig. 4.18, we also observe that the iperf UDP without background workloads

and with 1 concurrent Burncpu process has almost near-zero packet loss.

4.2.2 Transport Profiles

We collected throughputs, loss rates and retransmission rates of PLUT over USN-ESnet

hybrid channel as shown in Fig. 4.19, where each point in the horizontal plane corresponds

to (T(t), I(t)). These profiles illustrate how the destination acknowledgment interval to-

gether with the source rate affects the transport performances over dedicated channels. On

USN we utilize the OC192 links between Ciena SONET switches at ORNL and Chicago

to realize OC21C connections of lengths 700, 1400, ..., 6300miles by suitably switching

57

them. At the end points, we map 1 Gbps Ethernet onto OC21C, thereby realizing 1 GigE

connections of various lengths. On ESnet, 1 Gbps VLAN-tagged MPLS tunnel is set up

between Chicago and Sunnyvale via Cisco and Juniper routers, which is about 3600 miles

long. USN peers with ESnet in Chicago, and 1 GigE USN and ESnetconnections are cross-

connected using Force10 Ethernet switch. Together, this configuration provides us hybrid

dedicated channels of varying lengths, namely 4300, 5700, ... ,9900 miles, composed of

Ethernet-mapped layer 1 and layer 3 connections. We also utilize USN infrastructure to

provision OC192 connections of lengths 1400, 6600 and 8600 miles in loopback configu-

rations. In each transport experiment, we employ a fixed pairof (T(t), I(t)) such thatT(t)

controls the source rate andI(t) determines the ACK sending rate. By varying these two

parameters, we measure the corresponding source rate, destination goodput, loss rate and

retransmission rate as plotted in Fig. 4.19. The ACK interval is measured in the unit of

Round Trip Time (RTT) of the connection. These transport profiles provide us a revealing

insight into the parameter values to be employed by the transport protocol.

The peak throughput is achieved with low loss and low retransmission rate whenT(.) is

slightly below 10 microseconds andI(.) is above 20 times the round trip time; if parameters

are manually set to values within these ranges, PLUT will achieve the peak throughput

of approximately 950 Mbps. These ranges are dependent on theconnection as well as

host parameters, and can be manually identified if various profiles area priori generated.

However, profile generation typically is a very time consuming process (about 8 hours for

this case), and the subsequent parameter selection requires active human involvement. In

Section 4.2.3, we present stochastic approximation methods to automate the process for

parameter selection that bypasses both the profile generation and manual parameter tuning.

If the window sizeW(t) is fixed to be one datagram, we have the rate-based control

such that

rS(t) =
CNIC×MDS

CNIC×Ti(t)+MDS
, (4.2.16)

58

Storage Disk Storage Disk

Receiver Disk

I/O Module

(reordering

and writing)

UDP Data Channel

UDP ACK Channel

ACK Event

Period Control

Sender

Buffer Idle Time

cwin

Source Rate Control

Receiver Datagram Check List

Retransmission

Control

Bottleneck Rate

Estimation

User data flow

PLUT control flow

Sequencing

Figure 4.20: PLUT control structure.

where the rateCNIC is determined by the speed of the host NIC in “writing” to connec-

tion. The statistical effects ofcwin or W(t) and idle time on transport performances were

discussed in [127]. Note that the source rate calculated by Eq. 4.2.16 might differ signif-

icantly from the actual sending rate observed during file transfer. Besides the value set

for idle time, other host factors such as disk I/O speed, buffer management process, and

CPU scheduling policy may all affect the actual sending ratesignificantly. This is partic-

ularly true when high sending rates require peak processor utilization or the processor is

shared with other CPU-bound applications, where the idle time itself may not be precisely

enforced. Therefore, the destination goodput back-calculated from a user-specified target

rate using Eq. 4.2.16 does not automatically match the target rate. Such host effects com-

bined with variations in connection delays and finite computation periods lead to random

components in the computed rates; such randomness must be explicitly accounted for in au-

tomatically tuning the parameters. We assume that errors due to these effects are bounded,

which is justified by the small variations observed in our measurements.

59

4.2.3 Design of Peak Link Utilization Transport

4.2.3.1 PLUT Control Structure

PLUT employs a UDP-based transport control structure for disk-to-disk data transfer as

shown in Fig. 4.20. The sender (source) reads data sequentially from its local storage device

as a set of UDP datagrams ofMaximum Datagram Size(MDS), each of which is assigned

a unique continuous sequence number and loaded into the sender buffer. The receiver

(destination) accepts the incoming datagrams in the order of their arrival and keeps track of

the datagram sequence numbers in a check list. The received datagrams are immediately

forwarded to a disk I/O module that handles datagram reordering if necessary and writes

them to the disk in order in the background. Based on the status of the datagram checklist,

a list of positive or negative acknowledgments (ACK) of lostdatagrams for the interval

I(t) are generated and sent periodically to the sender for retransmission. The receiver’s

maximum attainable goodput is is dynamically estimated andsent back to the sender for

source rate control.

As shown in Fig. 4.20, the data flow moves from source to destination along the solid

lines and the acknowledgment feedback follows the dotted lines from destination to source.

In this transport structure, there are two control operations represented by two shaded el-

liptic boxes: (a) source rate control through idle time and (b) ACK event interval control.

The transport performance over high-speed dedicated channels critically depends on the

strategies used in these control operations. In several transport control protocols, a posi-

tive acknowledgment is sent for received data packets, which is necessary for shared lossy

links in Internet environments. However, dedicated channels usually provide much more

reliable connections, where packet loss is much smaller than connection capacities. At

high data rates, generating and sending acknowledgments atthe receiver consumes CPU

time and may interfere with the host receiving process. Similarly, accepting and processing

acknowledgments at the sender may also affect the host sending process. To achieve peak

60

performance over dedicated channels, we employ a mixed acknowledgment mechanism

that sends an either positive or negative acknowledgment after a carefully selected period

of time. We adaptively determine appropriate delay times ofmixed acknowledgments for

network connections based on link and host properties.

4.2.3.2 Sender-receiver flow equations

receiversender

original packets

retransmitted

losses

original packets

sender receiver

sender
receiver

retransmitted packets

packets

original packets losses

(a) low sending rate − no loss

(b) balanced sending rate

(c) high sending rate − high loss

Figure 4.21: Steady-state

packet flows over a dedicated

connection.

We consider a steady state flow of packets from a sender

to a receiver over a dedicated connection as shown in

Fig. 4.21, wherein the time window over which various

rates are computed are assumed to be sufficiently large to

ignore the small window effects.

In particular, rate variations due to jitter in packet de-

lays caused by connection and host dynamics are assumed

to be negligible, which is verified by our previous trans-

port performance measurements over dedicated connec-

tions [106]. LetrS(t) be the rate at which packets are sent

and let l(t) be the fraction of them that are lost before

being read by the receiver, and hence have to be retrans-

mitted. Letx(t) be the fraction ofrS(t) that corresponds

to retransmitted packets. Thus the flowrS(t) is composed

of two streams of ratesgS(t) andx(t)rS(t) corresponding

to packets sent for the first time and retransmissions, respectively. In general the goodput

gR(t) at the receiver depends onrS(t), l(t) andx(t), and there are three different regions:

(a) No loss region:Under very low sending rate, there are no losses and retransmissions as

shown in Fig. 4.21(a) such thatgR(t) = rS(t), which results in low utilization.

(b) Low loss region:Under the peak utilization and low loss rate, the retransmitted packets

61

are not lost as shown in Fig. 4.21(b). Thus we have

gR(t) = gS(t)[1− l(t)]+ rS(t)x(t)

= rS(t)[1−x(t)][1− l(t)]+ rS(t)x(t)

= rS(t)[1− l(t)+x(t)l(t)].

When all lost packets are replenished in each window, we havegS(t)l(t) = rS(t)x(t) and

gR(t) = rS(t)
[

1− [1−x(t)] rS(t)x(t)
gS(t)

]

= rS(t)
[

1− [1−x(t)] rS(t)x(t)
rS(t)[1−x(t)]

]

= rS(t)[1−x(t)].

This is an optimal region to stabilize transport since the peak utilization is achieved with

a low “wasted” bandwidth due to retransmissions.

(c) High loss region:Under the peak utilization and high loss rate, both originaland retrans-

mitted packets can be lost as shown in Fig. 4.21(c), and we have

gR(t) = gS(t)[1− l(t)]+ rS(t)x(t)[1− l(t)]

= rS(t)[1−x(t)][1− l(t)]+ rS(t)x(t)[1− l(t)]

= rS(t)[1− l(t)].

In practice, however, the above rates are computed over finite window sizes, and the

packets experience non-constant delays at the destination. Typically, jitter levels are more

prominent over MPLS tunnels compared to SONET circuits, andheavily-loaded, shared

end hosts lead to higher delay variations compared to dedicated hosts. Consequently,

the estimators ˆrS(.), ĝR(.) and x̂(.) computed at discrete time points are random vari-

ables with typically unknown distributions. Their values deviate from their long term

averages, and in particular, they do not exactly satisfy theequalities such asgR(t) =

rS(t)[1− x(t)] due to randomness. The effect of such randomness necessitates the uti-

lization of stochastic approximation methods, which has a non-trivial effect on the un-

derlying transport method: the step sizes used in parameteradaptation must be appro-

priately varied as per conditions such as in classical Robbins-Monro case [86]. In par-

ticular, methods that utilize fixed step sizes are not sufficient to guarantee optimal re-

sults in all but very simple cases. To take into account such random effects, we define

62

goodput-rate regressionas GR(r) = E [ĝR(t)|rS(t) = r], and goodput-ACK regressionas

GI (a) = E [ĝR(t)|I(t) = a]. Similarly, we haveloss-fractionand retransmission-fraction

regressionsdefined asL(r) = E
[

l̂(t)|rS(t) = r
]

andX(r) = E [x̂(t)|rS(t) = r].

Let g∗ be the maximum attainable goodput at the receiver over a given dedicated con-

nection. The objective of PLUT control is to stabilize bothr(.) andI(.) at suitable ratesr∗

andI ∗, respectively, such that:

(a) GR(r∗) = g∗ = r∗[1−X(r∗)], which ensures that peak throughput is attained at low

loss rate, and

(b) GI (I ∗) = max
I

GI (I), which ensures thatI is optimally tuned.

We make the following assumptions about the regression functions and the underlying

random process based on the measurements from Section 4.2.2:

(A.1) The goodput-rate regressionGR(r) is continuous and non-decreasing inr in both zero

and low loss regions, and bothL(r) andX(r) are continuous and non-decreasing in

r.

(A.2) The goodput-ACK regressionGI(a) is a unimodal and differentiable function ofa.

(A.3) The error magnitudes are bounded forGR(.), GI(.), L(.) andX(.). For example,

|ĝR(r)−G(r)|< τG for all r and someτG.

(A.4) Error terms forGR(.), GI (.), L(.) andX(.) are not temporally correlated in the sense

described in the next section using the martingale property.

We define two functionsα(k) anda(k) such that ˆgR(k) = α(k)g∗ and ˆrS(k) = a(k)g∗.

The source rate control of PLUT at the sender is a two-step process corresponding to

the above two objectives:

(a) In step one, the maximum attainable goodput is estimatedby ĝ∗(k) at time stepk, and

r̂S(k) is stabilized to achieve this goodput at a low loss rate. Thisstep involves the

63

adaptation based on monotoneGR(.) andX(.), which makes it suitable for Robbins-

Monro [86] type stochastic approximation.

(b) In step two, the source rate is adjusted so that the measured goodput ˆgR(k) at the

receiver stabilizes at the maximum achievable level for thegiven connection. This

step involves the adaptation ofÎ(k) based on unimodalGI (.), which makes it suitable

for Keifer-Wolfowitz [86] type gradient descent method.

4.2.3.3 Source rate control for peak link utilization

At time stepk, for the measured source rate ˆrS(k), measured goodput ˆgR(k), and measured

retransmission rate ˆx(k), the equation ˆr(k)= ĝ(k)/[1− x̂(k)] is only approximately satisfied.

For r̂S(k) = a(k) ·g∗(k) andĝR(k) = α ·g∗(k), the coefficient function are typicallya(k) >=

1 andα(k) <= 1. Thus there are two possible estimates ofg∗(k) based on ˆrS(k) andĝR(k),

which yield two different values. We consider the followinggeneral form that combines

these two estimates:

ĝ∗(k) = [r̂S(k)(1− x̂(k))]β ĝR(k)1−β , 0≤ β ≤ 1, (4.2.17)

whereβ is determined by host and link properties. Typically, ˆrS(k) and x̂(k) are more

stable compared to ˆgR(k) since the the former are not subject to connection-level varia-

tions. For the specific case whereα(k) = 1/a(k), we have ˆg∗(k) =
√

r̂S(k)ĝR(k). To ac-

count for randomness in measurements and the effects of delay and its variation of sending

rate ˆrS(k) on goodput measurement ˆgR(k), we apply a dynamic version of Robbins-Monro

method [86,118] to adjust the source rate to achieve the target goodputg∗(k) at the receiver:

r̂S(k+1) = r̂S(k)−ρk[ĝR(k)− ĝ∗(k)], (4.2.18)

where the time step adjustment coefficient is given byρk = b/kγ for 0.5< γ < 1.0 andb> 0,

a suitably chosen constant. The sending rate will increase if the measured goodput ˆgR(k)

is less than the estimated maximum attainable goodput ˆg∗(k) at low sending rates; while in

64

the source rate control zone approaching the peak goodput, the goodput measurement may

exceed the maximum goodput estimate due to increased retransmission rate, causing the

sender to back off.

The step sizes satisfy the Robbins-Monro property namely,
∞
∑

k=1
ρk = ∞ and

∞
∑

k=1
ρ2

k < ∞.

We assume that the errors satisfy the following martingale property for ˆrS(k) = r:

E [ĝ(k)− ĝ∗(k)|r̂S(k) = r] = GR(r)− [r(1−X(r)]βGR(r)1−β ,

which essentially assumes that the errors are not correlated across the time steps other than

through ˆr(.). Then the limit behavior of Eq. 4.2.18 is specified by the Ordinary Differential

Equation (ODE) (Chapter 5, [86]):

dr̂
dt

= E [ĝ∗(k)− ĝR(k)] = E [ĝ∗]−GR(r̂).

Under low loss condition, we approximate

E[ĝ∗] = [r̂(1−X(r̂)]β GR(r̂)1−β .

Then under the conditions (A.1), (A.3-4), the solution to ODE is given by the stationary

point corresponding to

GR(r̂)

[

1−

(

r̂[1−X(r̂)]
GR(r̂)

)β
]

= 0,

which in turn corresponds toGR(r̂) = r̂[1−X(x̂)] = g∗. Thus the limit behavior of this

algorithm is to stabilize at sending rateR̂S(k)→ r̂ such that ˆgR(k)→ g∗ ask→ ∞. Alterna-

tively, the required stability property can be derived for this algorithm using the monotonic

property ofGR(.) andX(.) to show this convergence result as in [44]. Thus, this step en-

sures that PLUT probabilistically stabilizes at a high utilization rateg∗ of the connection

while ensuring the low loss rate.

4.2.3.4 Destination ACK interval control for goodput maximization

At the destination, we adaptively adjust the ACK intervalI(k) = I ∗ such that the good-

put is maximized, i.e.,GI(I ∗) = max
I

GI(I). The Kiefer-Wolfowitz Stochastic Approxi-

mation (KWSA) and Simultaneous Perturbation Stochastic Approximation (SPSA) have

65

been shown to be very effective in solving such stochastic maximization problems whose

gradient information cannot be directly obtained [117].

time stepk k+1k-1

)(kI

)(kg

)1(kg

)1(kI

)1(!kg

)1(!kI

Figure 4.22: Approximation of goodput gradient in the

one-measurement SPSA.

These two methods require

collecting at least two measure-

ments before making an adjust-

ment on control parameters for the

next time step. In transport con-

trol, however, it might be difficult

to do so if the process dynamics

change in the course of collecting

two measurements for the gradi-

ent approximation. We apply a

one-measurement form of SPSA

to I(k) at the receiver for goodput maximization as follows:

Î(k+1) = Î(k)−ckĜ (I(k)), (4.2.19)

whereÎ(k) denotes the ACK interval at time stepk, Ĝ (I(k)) denotes the SP approximation

to the gradient of goodput-ACK regressionGI (.) andck is a scalar gain coefficient such that

ck→ 0 ask→ ∞,
∞
∑

k=1
ck = ∞ and

∞
∑

k=1
c2

k < ∞. As shown in Fig. 4.22, the goodput gradient

in the one-measurement form of SPSA is approximated as:

Ĝ (I(k)) =
ĝR(k)− ĝR(k−1)

dk · (Î(k)− Î(k−1))
, (4.2.20)

wheredk is a positive scalar.

We assume that the error process satisfies the following martingale property:

E[Ĝ (I)|Î(k) = I] = Ĝ (I)

, which is similar to the above case in that errors are not correlated in time domain except

throughÎ(.). Then under the conditions (A.2-4), the ODE specifying the limit behavior of

66

Eq. 4.2.19 is given bydÎ
dt = E[Ĝ (Î)], which corresponds to the maximization ofGI(.) [86].

Thus Î(k)→ I ∗ ask→ ∞ such thatGI(I ∗) = max
I

GI(I). The convergence to optimalI ∗ is

asymptotically and probabilistically guaranteed and doesnot depend on the knowledge of

the underlying probability distributions.

4.2.3.5 Maximum attainable goodput estimation for rate adjustment

In our previous analysis, we ignored the impact of the concurrent background workloads,

which vary during the data transfer period. As more background workloads are added,

tTOT increases. From Eqs. 4.2.13, 4.2.14, and 4.2.15, we know that this will incur a larger

expired time for the data receiving process and vice versa. The probability of processes

changes in the running environment might result in a changing maximum attainable good-

put ĝ∗(k) during the data transfer. In this case, we are more interested in incorporating the

dynamics of running processes into the calculation of ˆg∗(k). Employing a mechanism in

PLUT such that the sender could suitably adjust its sending rate in response to dynamics of

the receiver is essential to maximize the overall goodput over dedicated links. The experi-

ences gained and lessons learned from the design of PAPTC andPAT enable us to propose

a more stable and efficient flow control scheme by removing thetuning process for PAT’s

rate increase and decrease factors.

PLUT maintains a tableGT at the receiver, which holds the estimated maximum attain-

able goodputs represented as a function of the number of CPU-bound processesblCPU and

I/O-bound processesblIO. This table is initiated as empty and dynamically updated during

the process of data transfer. The change of the number of running processes at the receiver

triggers the goodput estimation process to calculate the new maximum attainable good-

put. Then the sending rate is adjusted for goodput stabilization at the estimated maximum

attainable goodput using the aforementioned stochastic approximation methods.

Suppose at time stepk, the number of running processes is changed. Lett be the time

period in seconds between time stepk andk+1, f b(k) and f b(k+1) be the size of the free

67

buffer at time stepk andk+ 1, and f b = f b(k+ 1)− f b(k). Then f b is the size of free

buffer depleted in the amount of timet after the change of background workloads, which is

given by:

f b = (ĝ∗(k+1)− ĝ∗(k))∗ t. (4.2.21)

Rearranging, we see that the new maximum attainable goodputĝ∗(k+1) can be updated

by the following equation:

ĝ∗(k+1) = ĝ∗(k)+
f b
t

. (4.2.22)

f b > 0 means the maximum attainable goodput needs increasing;f b = 0 means the

goodput needs no adaption; andf b < 0 means its decrease.

In practice, we can sample the background loadsblIO(k)/blCPU(k), the goodput ˆgR(k),

and the free buffer sizef b(k) at an carefully selected interval∆. We denote such sequences

of blIO, blCPU, andĝR(k) samples as< blIO(k) >= ...blIO(k−1)blIO(k)blIO(k+ 1)..., <

blCPU(k) >= ...blCPU(k−1)blCPU(k)blCPU(k+1)..., < ĝR(k) >= ...ĝR(k−1)ĝR(k)ĝR(k+

1)..., and< f b(k) >= ... f b(k−1) f b(k) f b(k+ 1).... For thek-th control interval, if the

value ofblIO(k)/blCPU(k) is different from the value ofblIO(k−1)/blCPU(k−1), the max-

imum attainable goodput needs to be updated and sent back to the sender in the acknowl-

edgement. LetC be the link capacity, which is known in advance with dedicated channels,

M be the size of buffer allocated at the destination. The flow control follows these steps:

(1) Initialize parameters:

ĝ∗(0)←C,

f b(0)←M,

blIO(0)← 0,

blCPU(0)← 0,

GT← 0

68

(2) The sender transmits data with the rate equal to the link capacityC, which is known

in advance with dedicated channels;

(3) Compute the difference of background workloadsblIO(k−1)/blCPU(k−1)

and blIO(k)/blCPU(k); if there is difference, then proceed to Step (4); otherwise,

proceed to Step (6);

(4) Check the maximum attainable goodput table GT, ifGT(blIO(k),blCPU(k)) is not

equal to 0, set

ĝ∗(k)←GT(blIO(k),blCPU(k)), (4.2.23)

and send it back to the sender; otherwise, the maximum attainable goodput ˆg∗(k)

is adjusted in the proportion of current CPU cycles assignedto the data receiving

process by the Eq. 4.2.22, set

GT(blIO(k),blCPU(k))← ĝ∗(k), (4.2.24)

and send it back to the sender;

(5) The source rate ˆrS(k) is stabilized to achieve this goodput at a low loss rate by the

Robbins-Monro Stochastic Approximation (RMSA) algorithmand the acknowledg-

ment intervalÎ(k) is adapted to maximize the application goodput at the receiver

based on the Simultaneous Perturbation Stochastic Approximation (SPSA) algo-

rithm.

(6) Return to Step (3).

4.3 Parallel Peak Link Utilization Transport

When a large number of packets arrive in the receive buffer, multiple threads or processes

can process these packets in parallel to achieve a high aggregate throughput. Therefore,

69

employing an efficient parallel mechanism in UDP-based transport protocols is critical to

improving application goodput and resources utilization.To the best of our knowledge, a

very limited amount of efforts have been made in employing parallel UDP connections for

data transfer in dedicated networks.

In this section, we first conduct theoretical analysis to investigate the impact of multi-

core processors on the performance of transport protocols and design a rigorous approach

to adaptively determine the number of parallel UDP connections for high transport perfor-

mance. Then we propose Parallel PLUT (Para-PLUT) to furtherimprove the performance

of PLUT by using multiple parallel UDP connections to take advantage of the full power

of multi-core processors. Currently Para-PLUT does not account for the impact of the

background workloads, which vary during the data transfer period.

4.3.1 Performance Analysis of Multiple Packet Processing

The UDP-based protocols without a multiple data receiving scheme employ a single thread

to process all incoming packets and therefore exhibit a low rate in resource utilization on

the end system. These under-utilized system resources could be used to further improve

application throughput. We conduct an analytical investigation into the impact of multiple

data receiving processes on the performance of transport protocols.

4.3.1.1 Single Connection With Multiple Data Receiving Processes

In this case, one UDP connection is built to do the data transfer just like the case in subsec-

tion 4.2.1.2. But there are multiple data receiving processes running in parallel to consume

data arriving from high-speed links as shown in Fig. 4.23. Inthis subsection, we provide

an initial analysis of the impact of this model on the data transfer performance.

A data receiving process can only handle one packet at a time and hence, it is either in

a ”busy” or an ”idle” state. If all data receiving processes are busy upon the arrival of a

packet, the newly arriving packet is buffered, assuming that socket receive buffer space is

70

Socket Recv Buffer

Data Receiving

Process

.

.

.

Figure 4.23: Single connection with parallel data receiving.

available. When the packet currently in process is finished,one of the waiting packets is

selected for service according to a queueing discipline.

We assume that the packets are of a fixed size up to the Maximum Transfer Unit (MTU)

and are placed in the socket receive buffer by the kernel protocol stack at a mean Poisson

rate ofλ . We further assume that the effective service time is exponentially distributed and

its mean is1
µ for packet processing carried out by each data receiving process. Letm be

the number of data receiving process, andM be the UDP buffer size in bytes andB be the

maximum number of packets in the UDP buffer, andB > m.

We denote the quantityλ
(mµ) by α, i.e.,α = λ

(mµ) and the quantityλ
(µ) by ρ , i.e.,ρ = λ

(µ) .

Based on the above assumptions, this packet processing flow that employs multiple data

receiving to consume arriving data is a M/M/m/B queuing system which can be modeled

as a death birth process [46] [47] [56] [45], as shown in Fig. 4.24.

In this model, the states of the process are represented by the numbern of packets in the

socket receive buffer. State0 represents the state where there are no packets in the socket

receive buffer, and staten, 1≤ n≤ B, represents the state where there aren packets in the

buffer. The state-space is finitely limited by the buffer size.

71

0 1 2

µ

λ λ λ

2µ 3µ

... B

mµ

λ

B-1m-1

λ

(m-1)µ

m

λ

mµ

m+1

λ

mµ

λ

mµ

λ

mµ

Figure 4.24: M/M/m/B state transition diagram for modelingpacket processing.

The steady-state probabilityPn of this process being in staten is given by:

Pn =

λ n

n!µn ·P0 0≤ n≤m−1,

λ n

m!mn−mµn ·P0 m≤ n≤ B,

0 n > B.

(4.3.1)

And, becauseα = λ
(mµ)

,

Pn =

(mα)n

n! ·P0 0≤ n≤m−1,

αnmm

m! ·P0 m≤ n≤ B,

0 n > B.

(4.3.2)

Using the boundary condition:

P0+ΣB
n=1Pn = 1, (4.3.3)

we obtain

P0 =

1

1+
(1−αB−m+1)(mα)m

m!(1−α) +∑m−1
n=1

(mα)n

n!

α 6= 1,

1
1+mm

m! (B−m+1)+∑m−1
n=1

(m)n

n!

α = 1.
(4.3.4)

The number of packetsn in the queuing system is defined as the number of packets in

queuenq plus that of in servicens. The mean number of packets in the queuing system is

given by:

E[n] =
B

∑
n=1

nPn. (4.3.5)

72

The mean number of packets in the socket receive buffer is given by:

E[nq] =
B

∑
n=m+1

(n−m)Pn. (4.3.6)

The probability of havingn or more packets in the socket receive buffer is given by:

P(≥ n packets in bu f f er) = ΣB
j=nPj

= ΣB
j=n

(1−α) ·α j

1−αB+1

=
αn−αB+1

1−αB+1 , α 6= 1 (4.3.7)

Because arrivals of packets are constrained by the size of socket receive buffer, packets

can be received only when buffer is available. The effectivepacket arrival ratẽλ is less

thanλ :

λ̃ =
B−1

∑
n=0

λPn

= λ (1−PB). (4.3.8)

And the differenceλ − λ̃ is the packet loss rate.

The throughputG of this queuing system is defined as the number of packets processed

per unit time.

G = µ
m−1

∑
j=1

jPj +mu
B

∑
j=m

Pj

= λ (1−PB). (4.3.9)

By Little’s law, the mean response time of this queuing system is:

R =
E[n]

λ̃
.

4.3.1.2 Parallel Connections With Multiple Data ReceivingProcesses

In this case, multiple UDP connections are built to do the data transfer and each of these

UDP connections creates a data receiving process. These multiple data receiving processes

73

running in parallel to consume data arriving from high-speed network. In this subsection,

we provide theoretical analysis on how the use of parallel UDP connections affects the

transport performance and bandwidth utilization.

Socket Recv Buffer Data Receiving

Process

.

.

.

Figure 4.25: Parallel connections each with a single data receiving process.

We assume thatm parallel UDP connections are established to transfer data in a single

file transfer. Each of these UDP connections creates a data receiving process to consume

data arriving from high-speed links at the rate ofµ as shown in Fig. 4.25. Based on the

above assumptions on packet arrival and consumption, each packet receiving flow starting

from the socket receive buffer to the user application is an M/M/1/B queueing system with

an arrival rate ofλ/m. This aggregated system can be modeled as a special case of the

death/birth process, whose Markov state transition diagram is illustrated in Fig.4.26.

0 1 32

µ

λ/m λ/m λ/m

µ µ

... B

µ

λ/m

Figure 4.26: Markov state transition diagram for modeling packet processing.

74

By replacing the arrival rate in the equations derived in subsection 4.2.1.2 withλ/m, we

obtain the steady-state probability, mean response time, and waiting time of this aggregated

queueing system as follows.

P0 =
1− (α

m)

1− (α
m)B+1 , α 6= 1.

Using Eqs. (3.12) and (3.11) in [47], we obtain the steady-state probability ofn packets

being in the socket receive buffer:

Pn =

(1−(α
m))·(α

m)n

1−(α
m)B+1 0≤ n≤ B,

0 n > B.
(4.3.10)

The utilizationρ of this queueing system is defined as:

ρ =
(α

m)− (α
m)B+1

1− (α
m)B+1 , α 6= 1.

By Little’s law, the mean response time of this aggregated queueing system is:

R =
1
µ

[
1

1− α
m

−
B · (α

m)B

1− (α
m)B], α 6= 1. (4.3.11)

The throughputG of this aggregated queueing system is defined as:

G = λ ·
1− (α

m)B

1− (α
m)B+1 , α 6= 1. (4.3.12)

4.3.1.3 Comparison of Single and Parallel Connections

We conduct further comparative analysis on single and parallel UDP-based transport pro-

tocols to show the difference in their performance such as throughput and mean response

time. These analysis results provide us a deep insight into the benefits of using parallel

connections and also help us determine the optimal number ofparallel connections for a

given system.

Since UDP was designed without transmission reliability guarantee, the majority of

operating systems have a very small default UDP receive buffer size. For example, in most

75

Linux implementations, the default UDP receive buffer sizeis 131071 bytes. Given the

MTU of 1500 bytes in the Internet, with this default UDP receive buffer size, we have

B=88. In general, the packet processing capacity of the kernel protocol stack is much

larger than that of the application. Suppose that the largest packet receiving rateµ of

each data receiving process is 2 Gpbs and the numberm of data receiving processes is 3.

Based on Eqs. 4.3.10, 4.2.10, 4.3.11, and 4.3.12, we obtain the performance comparison of

mean response time and throughput between the single M/M/1/88 queueing system and the

combined system with 3 aggregated M/M/1/88 queueing systems in response to increasing

packet arrival rateλ , as shown in Figs. 4.27 and 4.28.

0 2 4 6 8 10
0

10

20

30

40

50

Arrival rate (Gbps)

M
ea

n
re

sp
on

se
 ti

m
e

(n
s)

Figure 4.27: Mean response time comparison with a service rate of 4 Gbps.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

Arrival rate (Gbps)

T
hr

ou
gh

pu
t (

G
bp

s)

M/M/1/88
3 M/M/1/88

Figure 4.28: Throughput comparison with a service rate of 4 Gbps.

From these performance comparison curves, we observe some important features and

76

their implications. (i) Whenλ < µ, these two methods have the same throughput and a

very small difference in mean response time. The data receiving process in both methods

has sufficient CPU cycles to consume packets but no enough packets are placed in the UDP

receive buffer. Under this circumstance, the UDP receive buffer could become empty and

there are still idle CPU cycles, either of which is a waste of system resources. (ii) When

µ ≤ λ < 3µ, the single M/M/1/88 queueing system has a much larger mean response

time but a much smaller throughput than that of the combined M/M/1/88 queueing sys-

tem. This is because the packet arrival rate is beyond the processing capability of a single

data receiving process even if there is unused computing resources available at the receiver.

The combined M/M/1/88 queueing system is able to obtain a higher throughput by aggre-

gating multiple UDP connections to utilize the under-utilized computing resources. This

observation strongly indicates that the presence of multi-core processors offers a great op-

portunity to achieve better transport performance by executing multiple threads at different

processing cores. (iii) Whenλ ≥ 3µ, the mean response time of the combined M/M/1/88

queueing system increases quickly and approaches that of the single M/M/1/88 queueing

system. Meanwhile, there is no more throughput improvementbecause the packet arrival

rate is beyond the system processing capability, which is limited by the total computing

power of the receiver host.

4.3.2 Para-PLUT Control Structure

Para-PLUT employs a UDP-based transport control structurefor disk-to-disk data transfer

as shown in Fig. 4.29. The data flow moves from source to destination along the solid lines

and the acknowledgment feedback follows the dotted lines from destination to source. The

sender (source) reads data sequentially from its local storage device as a set of UDP data-

grams of Maximum Datagram Size (MDS), each of which is assigned a unique continuous

sequence number and loaded into the sender buffer. Para-PLUT opens multiple connec-

tions between the sender and the receiver, divides the entire set of datagrams into a number

77

of partitions, and assigns them proportionally to different UDP data channels based on their

throughput measurements for parallel transfer. On a computer with multi-core processors,

when the number of UDP data channels is larger than the numberof CPU processors, Para-

PLUT performs parallel data receiving to increase the receiver throughput by making full

use of the multi-core processors. Para-PLUT regulates the source sending rate of each UDP

data channel by a pair of congestion windowW(t) and sleep or idle time (i.e., inter-window

delay)T(t) as in PLUT [129].

Storage Disk Storage Disk

Receiver Disk

I/O Module

UDP Parallel Data Channel

UDP ACK Channel

ACK Event

Period Control

Sender

Buffer

Idle Time

cwin

Source Rate Control

Receiver Datagram Check List

Retransmission

Control

Figure 4.29: Transport control structure for disk-to-diskdata transfer.

Each UDP data channel accepts incoming datagrams in the order of their arrival and

keeps track of the datagram sequence numbers in a shared checklist. The received data-

grams are immediately forwarded to a disk I/O module that handles datagram reordering

if necessary and writes them to the disk in order in the background. Para-PLUT opens

a UDP control channel for sending datagram acknowledgements from the receiver to the

sender. Based on the status of the datagram checklist, Para-PLUT receiver generates and

sends a list of positive or negative acknowledgments (ACK) of lost datagrams to the sender

for retransmission through the control channel.

78

4.3.3 Automatic Parallelism Tuning Mechanism

Para-PLUT uses multiple UDP data channels in a single file transfer to improve the system

resource utilization and the aggregated throughput performance. However, the aggregated

throughput may drop if the numberm of parallel UDP connections is too large because

of the increased overhead for scheduling (e.g. context switching) and coordinating these

concurrent threads on the end host. As in many parallel transport methods, it is important

to determine the optimal number of UDP connections based on the end system status.

In [129], PLUT uses stochastic approximation methods to estimate the maximum at-

tainable goodputg∗ of the data receiver at the beginning of data transfer. Para-PLUT starts

from one UDP connection, and gradually increases the numberof parallel UDP connec-

tions at the end of the transfer of every data partition untilthe Para-PLUT receiver sees a

decrease in its goodput measurements. LetG(m) be the Para-PLUT goodput measured at a

certain interval, andm−1 be the number of parallel UDP connections used for the previous

data partition transfer,R be the sending rate for the newly established UDP connection,

andC be the link bandwidth. Para-PLUT takes the following steps to adjust the number of

parallel UDP connections:

(a) Initialize parameters:

m←m0,

R← g∗,

G(m−1)← 0,

wherem0 is set to 1 as the initial number of parallel UDP connections.

(b) Transfer partitions of data through each UDP channel andmeasure the aggregated

Para-PLUT goodputG(m).

(c) Terminate the algorithm if the following inequality is satisfied:

G(m) < G(m−1);

79

otherwise, set

R←min(C−G(m), g∗).

and proceed to Step (d).

(d) Increase the number of parallel UDP connections by 1, setthe sending rate of the

newly added UDP channel to beR, and return to Step (b).

80

Chapter 5

Stabilizing Transport Dynamics in
Overlay Networks

In this chapter, we present how the integrated transport solution works for media streaming

applications in P2P overlay networks. In section 5.1, we first formulate and investigate a

specific type of problem to maximize the minimum node throughput in Tree Construction

(max-minTC), and investigate the complexity of max-minTC problem. Overlay network

topology construction could be also considered as a path routing problem subject to mul-

tiple constraints. So max-minTC works as a route planner to explore and compose a set

of feasible routing paths for streaming media delivery. Then in section 5.2, we propose

Transport Stabilization Protocol(TSP) to stabilize transport channels over the composed

routing paths at a specified throughput level in the presenceof random network dynam-

ics. TSP dynamically adjusts the window size or sleep time atthe source to achieve stable

throughput at the destination.

5.1 Route Planner for Media Streaming Applications

5.1.1 Problem Formulation

An overlay network is often modeled as a complete graph underthe assumption that there

is an overlay path between any two peers, which, however, maynot be always true. For

81

example, when some selfish peers are reluctant to contributebandwidth to other peers,

the overlay network can not be simply modeled as a complete graph. In most local- and

wide-area networks, the computer nodes are of disparate system resources and the network

links (IP paths) are of different transport properties. Depending on the underlying network

infrastructure, the topology of an overlay network may be complete as in the case of the

Internet based on layer-3 IP routing, or not as in the case of most dedicated research testbed

networks using layer-1 or 2 circuit/lambda switching or MPLS/GMPLS techniques. Even

in Internet environments, the overlay network topology maynot be always complete be-

cause the network connectivity and resource accessibilityor availability could be largely

affected by system dynamics and firewall settings on either routers or end hosts.

We model an overlay network as a directed graphG(V, E), whereV is the set of nodes,

andE is the set of overlay links between all pairs of nodes inV, |V| = n. Each nodev∈V

has an incoming (downloading) bandwidth, an outgoing (uploading) bandwidth, a splitting

outgoing bandwidth, and a throughput, which are defined as follows:

Definition 1. incoming bandwidth is the maximum downloading speed of a node. As evi-

denced in many commercial production networks, a node’s incoming bandwidth is typically

much higher than its outgoing bandwidth and the data rate, and hence is assumed to be

unconstrained in our problem.

Definition 2. outgoing bandwidth b[vi] ∈ Z+ is the maximum uploading speed of node vi

denoted by a finite constant value, which is much smaller thanthe incoming bandwidth1

and usually causes a bottleneck of data transfer.

Definition 3. splitting outgoing bandwidth s[vi] ∈ Z+ is the bandwidth share over an out-

going overlay link of a node. In a tree-structured graph, if the outgoing bandwidth of a

node vi is b[vi] and it has p child nodes, each of which is connected via one overlay link,

then s[vi] = b[vi]/p for each overlay link, assuming that the outgoing bandwidth of vi is

1In the current Internet access market, most Internet Service Providers offer very limited uploading speed
compared to downloading speed.

82

fairly shared by its p child nodes. This cost model is based onthe fact that the transport

bottleneck is often located on or close to the end node (last mile) in the underlying physical

network and the fair share of bandwidth is well supported by the wide deployment and use

of TCP or TCP-friendly protocols on the Internet.

Definition 4. node throughput r[vi] = min(r[vp],s[vp]) is the data receiving rate of node

vi assuming a sufficiently large source data rate2, where vp is vi ’s parent node.

Any node must respect the following constraints: (i) flow constraint, i.e., its throughput

does not exceed the throughput of its parent node (namely, a node cannot deliver more than

received), and (ii) capacity constraint, i.e., the sum of the throughput of all its children

nodes does not exceed its own outgoing bandwidth. These two constraints are defined as:

∑
vi∈child(vk)

r[vi] ≤ b[vk], k = 0,1,2, ...n−1

r[vi]− r[v j] ≤ 0, v j = parent(vi), i = 1,2, ...n−1

Based on the above network models, we formulate the maxminTCproblem as follows:

given a directed weighted graphG = (V,E), outgoing bandwidthb[v] for each nodev∈V,

and a specified root nodev0 ∈ V, find a spanning treeT rooted at nodev0 in G whose

minimum node throughput is maximized among all possible spanning trees of G. The cor-

responding decision problem is: givenG(V, E), other related information, and a positive

integerβ ≤ r[v0], doesG have a spanning tree in which any node has throughput at least

β?

In max-minTC, we assume that the overlay link capacity and the node incoming band-

width are much larger than the node outgoing bandwidth and the root node has the largest

outgoing bandwidth. Therefore, the bandwidth of a path fromthe root node to any other

2If the bottleneck is limited by the source data rate, the treeconstruction problem becomes trivial.

83

node is determined by the minimal splitting outgoing bandwidth of all the nodes on that

path. We maximize the minimum node throughput in tree construction to improve the level

of streaming quality for all the users, which can not be achieved by increasing the average

throughput.

5.1.2 Complexity Analysis of max-minTC

We proved max-minTC to be NP-complete by reducing from DCST (Degree-Constrained

Spanning Tree) whose NP-completeness is well known in the literature.

Theorem 1: The max-minTC problem is NP-complete.

Proof. To show that max-minTC∈ NP, for a given graphG(V, E)and an integerβ , we

use the spanning treeT as a certificate forG. Obviously, checking if the throughput of all

nodes inT is larger thanβ can be done in polynomial time. We prove its NP-hardness by

showing DCST≤P max-minTC.

Let < G,k> be an instanceIDCST of DCST whereG= (V,E). We construct an instance

Imax−minTCof max-minTC< G′,k′ > such thatG′ has a spanning tree in which no node has

throughput less thanβ , if and only if G has a spanning tree in which no node has a degree

greater than k. First, we make a copy ofG and denote it asG′ = (V,E). Second, we set

the specified root nodev0, a source rater[v0] and node outgoing bandwidthb[v] = b,v∈V

and a constant integerβ = b/k. The instanceImax−minTC asks if there exists a spanning tree

of G′ in which no nodes has throughput less thanβ . Obviously, the transformation can be

done in polynomial time.

Now we prove that there exists a spanning tree in G in which no node has a degree

greater thank if and only if there exists a spanning tree ofG′ in which no nodes has

throughput less thanβ . Given a solutionT to IDCST, we can find a spanning treeT ′ in

G′ that corresponds toT. It follows that no node has a degree larger thank in T ′. Based on

the instance construction, we know that every node inG′ has the same outgoing bandwidth

b. The node that has the largest degree has the smallest node throughput, which is larger

84

than or equal tobk . Therefore, the throughput of any node inT ′ is at leastβ = b
k , i.e.,T ′ is

a solution toImax−minTC.

Similarly, given a solutionT ′ to Imax−minTC, i.e., the throughput of any node inT ′ is at

leastβ , we can find a spanning treeT in G which is the corresponding spanning tree ofT ′.

The node with the smallest throughput in treeT ′ has the largest degree, which is less than

or equal tok. Therefore,T ′ is a solution toIDCST. This concludes the proof.

5.1.3 A Heuristic Solution to max-minTC

We design a heuristic solution based on the search strategy of A∗ algorithm, which uses

a distance-plus-cost heuristic functionf (x) to determine the order in which the nodes are

visited in the tree. The heuristic functionf (x) is a sum of two functions:g(x), i.e., the

“path-cost” from the starting node to the current node, andh(x), i.e., an admissive heuristic

estimate of the distance to the goal. In our solution,g(x) andh(x) are defined as func-

tions of the outgoing bandwidth or streaming rate. For different optimization purposes,

these functions can represent different quantities such asthe available splitting outgoing

bandwidth, the smallest node throughput of a path rooted at one node, the smallest node

throughput of a spanning tree rooted at one node, or simply the outgoing bandwidth itself.

This property makes our solution generic to fit in a wide variety of multicast scenarios with

differentg(x) andh(x) functions. Here, we propose a specific heuristic algorithm,named

Largest Bandwidth Sum First (LBSF), to solve the max-minTC problem. In LBSF,g(x)

andh(x) are defined as the available splitting outgoing bandwidth and outgoing bandwidth,

respectively. We further define the following notations:

B: the list of outgoing bandwidths of all nodes.

nc(v): the number of child nodes ofv that have been selected for tree construction.

X : the set of nodes already added to the tree.

Y : the set of nodes that are not added to the tree yet.

85

G(v) : the set of undetermined neighbor nodes ofv.

S(G) : the deterministic state of the links inG for constructing a tree.

f (v) : the function that determines the order the nodes are selected from the graph for tree

construction.

g(v) : the function that is the available splitting outgoing bandwidth of the current node.

h(v) : the function that denotes a ”heuristic estimate” of the possible minimum node through-

put if adding this node into the tree.

max: the maximum value off (v).

Algorithm 1 Algorithm LBSF(G, B,v0, r)
Input: networkG(V,E), outgoing bandwidth listB, root nodev0 and source data rater
Output: spanning treeT

1: X← v0;
2: Y←V−v0;
3: for all (u,v) ∈ E do
4: S((u,v)) = 0;
5: for all v∈V do
6: nc(v) = 0;
7: while Y 6= /0 do
8: max= 0;
9: for all v∈ X,G(v) 6= /0 do

10: g(v) =
b[v]

nc(v)+1;

11: for all u∈G(v),u∈Y do
12: h(v) = b[u];
13: f (v) = g(v)+h(v);
14: if f (v) > maxthen
15: max= f (v);
16: vs = v;
17: vt = u;
18: S((vs,vt)) = 1;
19: nc(vs) = nc(vs)+1;
20: X← vt ;
21: Y←Y−vt ;
22: Construct the spanning treeT in G using links{l ∈ E|S(l)≡ 1};
23: return T.

86

The pseudocode of LBSF is provided in Algorithm 1. LBSF computes a spanning tree

rooted at a specified root node to maximize the minimum node throughput. This heuristic

algorithm takes a graphG, outgoing bandwidth listB for all nodes, and root nodev0 as

input, and computes a spanning tree rooted atv0. At lines 1-6 in Algorithm 1, we initialize

the states of all links and the number of child nodes to be undetermined. Initially, only root

nodev0 is in X and all other nodes are inY. Starting from the root nodev0, at each iteration

(lines 7-23), we select the pair of nodes with the largest value of f (v) as the current code

and the child node in the spanning tree, which means that thispair of nodes have the largest

sum of available splitting outgoing bandwidth and outgoingbandwidth. Once a child node

is selected, the state of the link between the current node and the selected child node is

marked. This iterative search process terminates when all nodes have been selected, and

the final spanning tree is constructed by using only those marked links. Since the algorithm

always picks up the node with the largest value off (v), nodes with larger splitting outgoing

bandwidths and its neighbor nodes with larger outgoing bandwidths are generally deployed

at higher tiers of the spanning tree. The computational complexity of this algorithm is

O(|V|3) in the worst case.

5.1.4 An Optimal Solution for Complete Networks

When the overlay network is complete, LBSF appears similar to the heuristic algorithm

in [55]. However, the network model and optimization objective function in our problem

are different from those in [55]. We provide a rigorous proofon the optimality of LBSF

for max-minTC in this special case. With a complete network,LBSF always selects the

node with the largest outgoing bandwidth as a child of the node with the largest available

splitting outgoing bandwidth.

vs = argmax
∀v∈X,G(v)6= /0

{
b[v]

nc(v)+1
}, (5.1.1)

vt = argmax
∀v∈G(vs)

{b[v]}. (5.1.2)

87

Without loss of generality, we assume that the source rate islarger than any other node’s

outgoing bandwidth.

Lemma 1: Child nodevt must be one of the nodes with the minimum node throughput

r[vt] of the current spanning tree, which is equal tob[vs]
nc(vs)+1.

Proof. We prove this lemma by contradiction. Suppose that child node vt is not one of

the nodes with the minimum node throughput. This means that there is at least another

node already in the tree which has smaller node throughput than this child node. Let the

node resulting in the minimum throughput bevoc, and its parent node bevop. The claim is

r[vt] ≥ r[voc]. Since nodevoc results in the minimum throughput,r[voc] must be equal to

b[vop]
nc(vop)

, wherenc(vop) is the number of children aftervoc was added undervop. There are

two cases: (i) Ifvs was added to the tree beforevoc, based on Eq. 5.1.1, we haveb[vop]
nc(vop)

≥

b[vs]
nc(vs)+1, wherenc(vs) is the number of children beforevt was added undervs. From the

definition, we know b[vs]
nc(vs)+1 ≥ r[vt]. (ii) If vs was added to the tree aftervoc, there must be

one ascendant nodevsp of vs which was added beforevoc and satisfiesb[vop]
nc(vop)

≥
b[vsp]

nc(vsp)+1

based on Eq. 5.1.1. From the definition, we knowb[vsp]
nc(vsp)+1 ≥ r[vt]. In both cases, we have

{r[voc] =
b[vop]

nc(vop)
} ≥ r[vt], which contradicts each other. Therefore, child nodevt is one of

the nodes with the minimum node throughput andr[vt] =
b[vs]

nc(vs)+1.

Lemma 2: The minimum node throughput of the current spanning tree islarger than

or equal to the maximum outgoing bandwidth of all leaf nodes including the newly added

node.

Lemma 2 is obvious according to Lemma 1.

Theorem 2: LBSF constructs a spanning tree T with the maximized minimum node

throughput among all the spanning trees for a given completegraph.

Proof. Let R(T) be the minimum node throughput of the spanning treeT, lea f(T) be

the set of leaf nodes. We prove this theorem by showing that the statement holds for any

partial spanning treeT(k), k ≤ |V|. This can be done as follows. Based on Lemma 1,

R(Tk) = b[vs]
(nc(vs)+1) . Given any other spanning treeT ′k with the numberk of nodes. Let

88

S= T ′−T be the set of nodes that are in spanning treeT ′ but not inT, S′ = T −T ′ be

the set of nodes that are in spanning treeT but not inT ′. The outgoing bandwidth of any

node inS′ is larger than the outgoing bandwidth of any node inS because LBSF selects

nodes with larger outgoing bandwidths first as shown in Eq. 5.1.2. LetT ′′k be the spanning

tree generated by replacingS of T ′k with S′. T ′′k has exactly the same nodes asTk, and

R(T ′′k) ≥ R(T ′k), because increasing the node outgoing bandwidth does not decrease the

node throughput. We consider two cases: (i) If any nodeu ∈ lea f(Tk) is an internal node

in T ′′k , thenR(T′′k)≤ b[u]. Based on Lemma 2,R(Tk)≥ b[u]. Then we getR(Tk)≥ R(T′′k).

(ii) If all nodes in lea f(Tk) are still leaf nodes inT ′′k , then lea f(Tk) ≤ lea f(T ′′k). When

lea f(Tk) < lea f(T ′′k), at least one nodev′ among all internal nodes inT ′′k has a larger degree

than its corresponding nodev in Tk, which meansnc(v′)≥ nc(v)+1. Since b[v′]
nc(v′) ≥R(T′′k),

b[v]
nc(v)+1 ≥

b[v′]
nc(v′) , whereb(v′) is equal tob(v), and(R(Tk) =

b[vs]
(nc(vs)+1)) ≥

b[v]
nc(v)+1, we get

R(Tk) ≥
b[v′]

nc(v′) ≥ R(T ′′k). When lea f(Tk) is equal tolea f(T ′′k), let v′s be the node inT ′′k

corresponding to nodevs in Tk. If nc(v′s) ≥ nc(vs), which means b[vs]
nc(vs)+1 ≥

b[v′s]
nc(v′s)

, where

b[vs] is equal tob[v′s], then we getR(Tk) ≥
b[v′s]

nc(v′s)
≥ R(T ′′k). Otherwise,nc(v′s) ≤ nc(vs),

which means that at lease one of the other internal nodesv′′ ∈ T ′′k has larger degree than its

corresponding nodev ∈ Tk. As the above analysis, showsR(Tk) ≥ R(T′′k). Therefore, the

optimality statement holds for anyk≤ |V|.

5.2 Transport Stabilization Protocol

Given an efficient overlay network topology, the design of transport protocols is important

to achieve and sustain an acceptable level of quality of service (QoS). The media streaming

applications often require streaming media be sent with predictable delays, which are in

stark contrast with the delays experienced over the Internet, particularly by the messages

sent using Transmission Control Protocol (TCP) [74]. In this section, we present a network

89

transport method that dynamically controls the source ratesuch that the goodput is stabi-

lized at a desired stream level which ensures good media playback and continuous supply

of streaming media.

5.2.1 Transport Control Using a Window Structure

Source (Sender) Destination (Receiver)

Congestion Window

Sleep Time

Detect and retransmit lost
datagrams

Receiver Buffer

Acknowledge new datagrams
Acknowledgements

)(tWc

)(tTs

)(trS)(tgD

)(tlD

UDP datagrams

)(tgS)(tlS

Figure 5.1: Transport control model using two control parameters.

We consider a transport control method using a window structure as illustrated in

Fig. 5.1. The sender or source divides the data into parts of size MTU minus UDP and

IP header lengths (i.e., MTU – 8 bytes – 20 bytes), and sends them to the receiver or des-

tination as UDP datagrams at the sending raterS(t). The receiver reads and acknowledges

the incoming datagrams in the order they arrive. Upon the receival of a new acknowl-

edgement, the sender computes the goodput estimategS(t) and loss rate estimatelS(t) as

the number of successfully acknowledged datagrams and the number of lost datagrams,

respectively, each of which is divided by the time elapsed. All lost datagrams are reloaded

for retransmission right after they are concluded to have been lost. The goodput and loss

rate at the destination node are denoted bygD(t) andlD(t). The goodput measurements at

the destination are sent to the source along with the acknowledgements. The measurements

collected at the source are used to estimate those at the destination node as explained later.

This transport control scheme maintains two parameters, congestion window and sleep

90

time, both of which control the source-sending rate, but with different effects on the good-

put. The congestion window, denoted byWc(t), is a counterpart ofcwnd in TCP. It repre-

sents the number of UDP datagrams that can be sent in a burst asfast as the computer and

communication hardware resources allow. The sleep time or idle time, denoted byTs(t),

represents the amount of time the sender suspends transmission right after sending a full

congestion window of UDP datagrams until next burst transmission. Based on this flow

control model, the instantaneous source raterS(t) can be computed as:

rS(t) =
Wc(t)

Ts(t)+Tc(t)
=

Wc(t)

Ts(t)+
Wc(t)
BW

=
1.0

Ts(t)
Wc(t)

+ 1.0
BW

, (5.2.1)

whereTc(t) = Wc(t)/(BW) is the time needed to continuously send a full window of UDP

datagrams. It is determined by the congestion window size and communication hardware

resources, and mostly by the system bandwidth BW, i.e., the maximum speed at which the

sender host can generate the bit signal and put it on wire. Thesleep timeTs(t) is akin to

RTT of TCP. Generally we haveTc(t) < Ts(t) due to the long delay, widely available high

bandwidth, and relatively small packet size in wide-area networks. Note that the inter-cwin

delay in TCP is approximately set to the value of RTT.

5.2.2 Goodput Stabilization of TSP

We consider the problem of transport control for stabilizing a flow from a source node

S to a destinationD at a specified goodput level over a wide-area network, typically the

Internet, in the presence of dynamically changing background traffic. A message made

up of a number of data packets is sent from source nodeS to destination nodeD. Both

data packets and acknowledgements may be delayed or lost dueto a variety of reasons

such as buffer occupancy levels at intermediate routers andend hosts. The objective is to

achieve a specified constant target goodputg∗D at the receiverD by dynamically controlling

the transmission raterS(t) at the senderS through the adjustment made on the congestion

window or sleep time. We collect measurements of goodputgS(·) at source to estimate the

91

destination goodputgD(·). The main difficulty is that the relationship betweengD(·) and

rS(t) is very complicated.

Due to the randomness in network traffic, the destination goodput gD(·) is a random

variable even at a fixed source raterS(t) = r. The presence of router buffers, host buffers,

and the interaction between the NIC and host CPU, in general results in a non-linear rela-

tionship betweenrS(t) andgD(·). As a result, it is not possible to simply “back calculate” a

suitable value ofrS(t) to achieve the desired goodput level. Instead, we rely on theoverall

statistical properties of these parameters.

We define the destinationgoodput response regressionas:

M(r) = E[gD(t)|rS(t) = r] =
∫

gDG(dgD, r), (5.2.2)

whereG(·, r) is anunknowndistribution function of the real-valued random variablegD at

a given constant sending rater. It is practically infeasible to provide a general analytical

form for the range ofgD, which could be observed, though, for a specific sending rateusing

a large number of measurements in a specific real network environment. We assume that

M(·) is completely unknown. For the analytical results, we assume it to be constant in the

first part of analysis, and then consider it to be time-varying in the second part. Note that

even the first condition is quite general in that no constraints are imposed onG(·, r) except

its existence; since it can be infinite-dimensional, it is significantly more general than the

stationary condition under parametric distributions.

We assume that the destination goodput response regressionis locally monotonicat the

target goodputgD(t)= g∗ such that there exists a target source rater∗ satisfyingM(r∗) = g∗,

and the goodput response regression ismonotonicin the vicinity of r∗, i.e.,

M(r) > g∗ if rS(t) > r∗,

M(r) < g∗ if rS(t) < r∗.
(5.2.3)

This monotonic assumption has been validated by extensive real network performance mea-

surements conducted in [128] at a target level below the available path bandwidth. Infor-

mally, by maintainingrS(t) = r∗, we would achieve an average goodput ofg∗, and an

92

increase (decrease) inr∗ results in an increase (decrease) inM(r∗). In general, computing

r∗ is difficult based on the information about the packet transmissions and acknowledge-

ments alone sinceG(·, r) (and henceM(·)) is completely unknown. Note that based on the

transmissions and acknowledgements, we can only infer “noisy” versions ofM(·) in the

vicinity of actual sending rates.

As defined in Eq. 5.2.1, we may control the source raterS(t) by adjusting either con-

gestion windowWc(t) or sleep timeTs(t) individually, or both simultaneously. Generally,

many different transport control problems can be solved by computingWc(t) and/orTs(t)

dynamically to achieve the optimal source sending rates. However, the two-way statistical

analysis conducted in [128] indicates that these two parameters strongly interact with each

other, which could lead to unstable control if both are adjusted simultaneously. Therefore,

we adjust one parameter at a time while fixing the other as described in the following two

subsections.

5.2.3 Congestion Window Adjustment

We shall first fix the sleep time and dynamically adjust the congestion window to stabilize

the goodput at a desired level given a time-varying goodput response regression. From

Eq. 5.2.1 we have:

Wc(t) =
Ts(t)

1.0/rS(t)−1.0/BW
. (5.2.4)

Consider that the sleep time is fixed atTs(t) = Ts, and the desired goodput level is chosen

within the initial monotonically increasing part of the goodput response regression; hence,

the sending rate is a small portion of the network bandwidth.We may rewrite this equation

in an approximate form:

Wc(t)≈
Ts

1.0/rS(t)
= Ts · rS(t). (5.2.5)

93

It follows that the sending rate can be also approximated as the ratio of the varying conges-

tion window to the fixed sleep time:

rS(t)≈Wc(t)/Ts. (5.2.6)

At time stepn+1, we apply a new sending rate based on the new congestion window size

Wc, n+1, which is computed as follows:

Wc, n+1 = Wc, n−
a ·Ts

nα (gn−g∗), (5.2.7)

where the gain coefficienta ·Ts/nα of the step adjustment size will be chosen as specified

later.

5.2.4 Sleep Time Adjustment

Besides the congestion window, the source rate is also controllable through sleep time.

From Eq. 5.2.1, we obtain the expression for sleep timeTs(t) in terms of windowWc(t) and

sending raterS(t) as follows:

Ts(t) = Wc(t)(1.0/rS(t)−1.0/BW). (5.2.8)

Again, since the desired goodput is targeted at a level much lower than the network band-

width, we may rewrite it in the following approximate form with a fixed windowWc:

Ts(t)≈Wc/rS(t). (5.2.9)

Similarly, the source rate is approximately determined by the ratio of the fixed congestion

window to the varying sleep time:

rS(t)≈Wc/Ts(t). (5.2.10)

At time stepn+1, the new sleep time is computed as follows to update the sending rate to a

new value:

Ts, n+1 =
1.0

1.0
Ts, n
−

a/Wc
nα · (gn−g∗)

. (5.2.11)

94

After rearranging, we have the following recursive updating procedure for sleep time:

1.0
Ts, n+1

=
1.0
Ts, n
−

a/Wc

nα · (gn−g∗). (5.2.12)

We define a new sleep time variableT
′

s, n = 1.0
Ts, n

and obtain the following:

T
′

s, n+1 = T
′

s, n−
a

nα ·Wc
· (gn−g∗), (5.2.13)

where the gain coefficient a
nα ·Wc

of the step adjustment size will be chosen as specified in

the next subsection.

5.2.5 Performance Analysis

The TSP rate control methods defined above are instantiations of the classical Robbins-

Monro Stochastic Approximation (SA) method described in general as follows:

rn+1 = rn− εn(gn−g∗) = rn−
a

nα (gn−g∗),

a > 0, 1
2 < α < min(1, ω)

(5.2.14)

whereεn = a/nα is the gain coefficient of the step adjustment size andgn is a random

variable denoting the goodput estimate at the source. The classical RM conditions on the

gain coefficients or step sizes are more general and are givenby:

+∞

∑
i=0

εi = +∞,
+∞

∑
i=0

ε2
i < +∞, (5.2.15)

whereεi → 0 wheni→ +∞, andεi > 0 for all i. Our results are valid under these general

conditions, but we use Eq. 5.2.14 for concreteness. Note that the most important consid-

eration for applying the RM stochastic approximation method to source rate control is to

explicitly account for the random components and delay effects in performance measure-

ments.

We will present two stability results. First, we considerM(·) to be stationary. By

tagging the goodput estimates to the acknowledgements fromD, we estimate two loss

rates: fromS to D, and fromD to S. We obtain the estimatorgn by using either one of the

following two ways:

95

1. subtracting from source rate the mean loss rate estimate fromS to D;

2. adding to the acknowledgement rate the mean loss estimatefrom D to S.

In the special case of symmetric loss rate [105], there is no need to tag the acknowledgments

since the loss rate can be estimated as the half of differencebetween the sending rate and

received acknowledgement rate. In either case, the estimator gn is unbiased at fixed sending

rater(t) = r. We also clip the sending rate values to be below a fixed bound.Thus at the

time stepn we have the following two properties:

E[gn|r i, gi , rn, i < n] = M(rn) for all n, (5.2.16)

Var[gn|r i, gi , rn, i < n]≤ σ2 for all n. (5.2.17)

The recursive procedure in Eq. 5.2.14 can be rewritten as:

rn+1 = rn−
a

nα (Mn−g∗)− a
nα (gn−Mn),

a > 0, 1
2 < α < 1,

(5.2.18)

where the noise terms(gn−Mn), denoted byδMn, are the martingale differences [85].

Eq. 5.2.16 describes the martingale property, which together with the properties of the step

size adjustment coefficientεn = a
nα guarantees the convergencern→ r∗ with probability

one.

96

Chapter 6

Performance Evaluation and
Comparison

In this chapter, we conduct an extensive set of performance evaluation and comparison of

the proposed transport protocols for both stabilization and maximization using theoretical

calculation, simulation, and real-life wide-area networks.

6.1 Performance Evaluation for PLUT

6.1.1 Implementation of PLUT

6.1.1.1 Sender buffer management

We now present the details of Sender Datagram Buffer Management (SDBM) and receiver

acknowledgment scheme. The initial PLUT implementation employs a simple static circu-

lar buffer management that allocates a buffer of datagrams and iterates that buffer for trans-

mission. This has its merits: indexing with random access, fairly simple implementation,

and no expensive allocation/deallocation of heap-dynamicmemory. There is, however, one

critical flaw in that the static buffer has a chance of “overflowing” in the case of a persistent

datagram loss or delayed receiver retransmission request.When the flow window in the cir-

cular buffer cannot advance, the sender will not load datagrams until the first outstanding

datagram is acknowledged, hence drastically reducing the overall transport throughput.

97

DG_2DQ

OP

RP

DG_1 DG_3 DG_4

DG_1 DG_2 DG_3

Serving causes the DQ to point to the next DG.

Once served, DG's are placed on OP.

Figure 6.1: Initial buffer states.

DG_2

DQ

OP

RP

DG_1 DG_3

DG_4

DG_1 DG_3

Acknowledgement has been received
and DG_[1&3] have been accepted
thus they are moved to the RP.
This leaves DG_2 still outstanding.

Figure 6.2: Buffer states after
receiving acknowledgements.

DG_2

DQ

OP

RP DG_5 DG_6

DG_4

DG_5 DG_6 Once the DQ depletes, the RP
reloads the DQ with DG_[5&6].

Figure 6.3: Buffer states after
reloading.

To solve this SDBM problem, we designed a new data structure —Three Tier Dynamic

Queuing Buffer (3TDQB) and a dynamic buffer management scheme to not only fix but

provide a failsafe measure for buffer overflow as well as low retransmission frequency.

This 3TDQB is composed of: 1st tier – Linked Queue, 2nd tier – Linked List, and 3rd tier

– Linked List. These three tiers implement three buffers: Datagram Queuing Buffer (DQ),

Outstanding Pointer Buffer (OP), and Reload Pointer Buffer(RP), respectively. Note that

the DQ is dynamically allocated at the start of the protocol to alleviate allocating memory

from the heap during protocol runtime, while the OP and RP only contain the pointers to the

datagram buffer space allocated in DQ. This process is shownin Fig. 6.1 via the DQ’s four

datagrams (DG [1−4]). Once allocated, the total number of nodes the DQ initiallycreated

will not change except under extreme circumstances. The 3TDQB works in a descending

manner. Each datagram will travel through the tiers consecutively before being flushed,

reloaded and returned to the DQ. The DQ is a queue in which datagrams reside awaiting to

be sent.

As shown in Fig. 6.1, once served, the datagram will be placed(linked through a

98

ACK interval control

Measure current
goodput

Are there any new
incoming datagrams within

the TIMEOUT interval?

Are there any
lost datagrams?

Are there any
lost datagrams?

Generate and
send NXT ACK

Generate and
send RXM ACK

Generate and
send TNT ACK

Generate and
send TMO ACK

Yes

No Yes

No

No Yes

Receiver Main Thread

Figure 6.4: Control flow diagram at the PLUT receiver.

pointer) in the OP buffer where it waits for acknowledgment from the receiver. When

acknowledged, the datagram is then placed in the RP buffer for flushing of the accepted

data and reloading of the new data, as shown in Fig. 6.2. As theDQ depletes of all data-

grams, the RP then reloads the DQ with an address change as shown in Fig. 6.3 so that

the DQ now points to the flushed/reloaded datagrams on the RP,thus creating a new queue

without new memory allocation.

The 3TDQB provides a failsafe feature to overcome the bufferoverflow problem in

the static circular buffer management scheme. Consider thefollowing case: The DQ has

served all remaining datagrams, the RP lies empty, and for some reason the OP has not

yet received an acknowledgment. This is the 3TDQB’s worst case scenario in that all

datagrams reside in the OP buffer. This is similar to the circular buffer implementation,

resembling a buffer overflow. To counter the overflow, the 3TDQB allocates datagrams

from the heap to continue sending while waiting for acknowledgment from the receiver,

thus never completely stopping the stream of data, just reducing the datagram sending rate.

99

6.1.1.2 Acknowledgment types

As shown in Fig. 6.4, we implement four different types of acknowledgment at the receiver:

NXT (Next), RXM (Retransmission), TNT (Timeout Next), and TMO (Timeout Retrans-

mission). For every normal ACK control period, if all datagrams received so far are in

continuity, an “NXT” ACK is generated and sent to the sender;otherwise if there are lost

datagrams (i.e., “holes” in the datagram checklist), the receiver compiles a list of lost data-

gram sequence numbers and sends them with a “RXM” ACK. If no datagram is received

within a certain period of time, a timeout event is triggeredwhere the receiver sends either a

“TNT” ACK if all datagrams received so far are in continuity,or a “TMO” ACK enclosing

the lost datagram sequence number list if there are “holes” in the datagram checklist. For

all ACK types, the receiver measures the current instant goodput and sends it to the sender

as part of the acknowledgment. On the sender side, for each incoming acknowledgment,

we apply rate control using the goodput measurements enclosed in the acknowledgment.

6.1.1.3 PLUT Monitor

The PLUT Monitor provides a layer between the operating system state information in

Linux environments and the transport protocol that needs the state information for flow

control. We obtain the required state information by using LibGTop library [32] to read the

/proc filesystem. The virtual file system/proc contains a hierarchy of special files which

represent the current state of the kernel, and stores the information of the processes cur-

rently running. After reading the PID and state (running or sleeping) for each process from

this filesystem, PLUT checks the state of these processes to estimate processes changes. A

process is considered as CPU-bound if it is always ready to run when its state is checked

and as IO-bound if the state of this process is different from“running” [43].

100

Dedicated
channels

ORNL-CHI
USN EoS

ORNL-SUN
EoS/MPLS Mixed

CHI-SUN
ESnet MPLS

Goodput
#1 (Gbps)

954.22

952.11

952.14

Goodput
#2 (Gbps)

954.57

952.13

952.03

Goodput
#3 (Gbps)

954.78

952.09

952.11

Goodput
#4 (Gbps)

954.58

948.92

951.67

Goodput
#5 (Gbps)

954.03

952.41

949.29

Goodput
#6 (Gbps)

951.70

951.39

952.02

Goodput
#7 (Gbps)

953.94

952.16

950.32

Goodput
#8 (Gbps)

954.57

947.27

952.85

Goodput
#9 (Gbps)

952.64

950.41

951.06

Goodput
#10(Gbps)

954.42

951.69

946.73

Mean
(Gbps)

953.95

951.06

951.02

Standard
deviation

0.996

1.707

1.829

Figure 6.5: PLUT performance comparison with iperf.

6.1.2 Experimental-based Performance Evaluation

6.1.2.1 Wide-area dedicated connections

We collect goodput measurements using iperf and PLUT over USN and ESnet. For iperf

TCP, the number of streamsn is varied between 1 and 10, and for iperf UDP, the target

rate is varied as 100, 200, ..., 1000, 1100 Mbps; each set of measurements is repeated 100

times. First, we compare USN and ESnet connections of lengths 3500 and 3600 miles,

respectively, and their concatenation. TCP throughput is maximized whenn is around 7

or 8 and remained constant around 900, 840 and 840 Mbps for SONET, MPLS and hy-

brid connections, respectively. For UDP, the peak throughput is 957, 953 and 953 Mbps

for SONET, MPLS and hybrid connections, respectively. Thusthere is a difference of 60

Mbps and 4 Mbps between the TCP and UDP peak throughputs, respectively, over SONET

and MPLS connections. There is a difference in peak throughput achieved by TCP and

UDP in all cases, in particular, 57 and 93 Mbps for SONET and MPLS connections, re-

spectively. This difference is in part due to the congestioncontrol of TCP, and the high

UDP bandwidth makes it a viable candidate for transport since there is no “congestion” on

dedicated channels. We measured file transfer rates over these connections using PLUT,

which achieved 954, 951 and 951 over SONET, MPLS and hybrid connections, respec-

tively. The hosts used in these experiments are Intel Xeon Linux workstations, each of

which is equipped with 4 GB memory, four 3.2 GHz CPUs, one 1 GigE NIC, and one 10

GigE NIC. The results are summarized in Fig. 6.5. Thus PLUT isable to achieve actual file

transfer rate within 3 Mbps of iperf UDP bandwidth estimate in all three types of dedicated

101

Table 6.1: Input file sizes in file transfer experiments.

Idx. of transfer case 1 2 3 4 5 6 7
File size (MB) 100 300 500 800 1000 1500 2000

connections.

6.1.2.2 Local dedicated connections

For performance comparison, we run PLUT, UDT (version 4.4) and Tsunami (version 1.1)

on a local dedicated connection, which is provisioned by a back-to-back link between two

Linux boxes with kernel 2.6.30, each equipped with one 1 GigENIC and one 10 GigE

NIC, Intel(R) Core(TM)2 Duo CPU, 3 GBytes of RAM, and 1 TBytesof SCSI hard drive.

Physical packet loss rate in optical fiber cables is considered very small (around 10−7)

and packet loss could happen at end hosts or switches. As indicated by measurements

over dedicated channels [108], the packet loss at high sending rates is not negligible and

the delay variations contain non-trivial random components. netem [33] provides network

emulation functionality for testing protocols by emulating the delay, packet loss, packet

duplication and re-ordering of wide area networks. In our experiment, the packet loss rate

and delay are emulated by netem. And the packet loss rate is always set to be 10−5.

Case A: 1 Gbps, disk-to-disk transfer.In this case we generate test data from the disk,

the link bandwidth is set to be 1 Gbps, and the link RTT is set tobe 125ms. We transfer

seven files with different sizes using these three transportmethods in comparison. For each

file size, we run 10 tests using each transport method and collect corresponding throughput

measurements. Tab. 6.1 tabulates the file sizes used in sevenfile transfer experiments. The

mean and standard deviation of the average throughput measurements for seven different

file sizes obtained by each of these three protocols are plotted in Fig. 6.6. We observe that

PLUT consistently achieves higher throughput than UDT and Tsunami. The maximum

possible throughput achieved by PLUT is about 970 Mbps on this link.

102

1 2 3 4 5 6 7
0

200

400

600

800

1000

Index of file transfer cases

T
hr

ou
gh

pu
t (

M
bp

s)

PLUT
UDT
Tsunami

Figure 6.6: Disk to disk performance comparison over 1 Gpbs link.

0 5 10 15 20 25 30
0

200

400

600

800

1000

Time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

PLUT
UDT

Figure 6.7: Memory to memory performance comparison over 1 Gpbs link.

Case B: 1 Gbps, memory-to-memory transfer. We set up another experiment on

the same link as in Case A to test the memory-to-memory transfer performance of PLUT.

The throughput measurements are plotted in Fig. 6.7, where we only include the perfor-

mance comparison between PLUT and UDT because Tsunami (version 1.1) does not sup-

port memory-to-memory data transfer. This experiment demonstrates that PLUT without

disk I/O activities is able to sustain an average throughputof 980 Mbps over this 1 Gbps

link, which is within 4 Mbps of the iperf UDP bandwidth estimate. We observe that UDT

also achieves a higher throughput than that achieved in CaseA.

Case C: 10 Gbps, memory-to-memory transfer with different link delay. We now

103

0.04 25 50 75 100 125 150 175 200 250
0

500

1000

1500

2000

2500

3000

RTT (ms)

T
hr

ou
gh

pu
t (

M
bp

s)

PLUT
UDT

Figure 6.8: Performance comparison over a 10 Gpbs link with different RTT.

use a local dedicated connection of 10 Gbps for further performance comparison on memory-

to-memory data transfer. This link bandwidth is provisioned by connecting two 10 GigE

NICs back-to-back and all other network and transport control settings remain the same as

in Case A. To investigate the impact of link RTT on the PLUT performance, we conduct

data transport experiments by varying link RTT from 0.04 to 250 ms. Since the network

delay is not constant, each selected RTT in the experiment varies based on a normal distri-

bution. The average throughput performance measurements for PLUT and UDT are plotted

in Fig. 6.8, where both protocol’s throughput decrease along with the increase of RTT.

Case D: 10 Gbps, disk-to-disk transfer.We set up another experiment on the same

10Gbps link as in Case C to test disk-to-disk data transfer performance. The link RTT is

set to be 125ms. We transfer seven files with different sizes using these three transport

methods in comparison as in Case A. The corresponding mean and standard deviation of

the average throughput measurements of these three protocols are plotted in Fig. 6.9, which

again illustrates the performance superiority of PLUT overUDT and Tsunami. From the

measurements of iperf UDP, we know that the maximum achievable bandwidth is about 3.1

Gbps on this link. The increase in link bandwidth shifts the bottleneck from the network

to the end hosts. As a result, the maximum throughput achieved by PLUT in this case is

104

1 2 3 4 5 6 7
0

1000

2000

3000

4000

Index of file transfer cases

T
hr

ou
gh

pu
t (

M
bp

s)

PLUT
UDT
Tsunami

Figure 6.9: Disk to disk performance comparison over 10 Gpbslink.

5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

Time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

PLUT
UDT

Figure 6.10: Memory to memory performance comparison over 10 Gpbs link.

about 2.4 Gbps.

Case E: 10 Gbps, memory-to-memory transfer.We test memory-to-memory trans-

fer on the same link as in Case D and all other network and transport control settings also

remain the same. Fig. 6.10 plots the corresponding PLUT and UDT throughput measure-

ments. The maximum throughput of PLUT reaches 2.5 Gbps and stabilizes at that level.

Case F: 10 Gbps, memory-to-memory transfer with concurrentbackground work-

loads. We test memory-to-memory transfer on the same link as in CaseE and all other

105

5 10 15 20 25 30 35 40 45 50 55 60
0

500

1000

1500

2000

2500

3000

3500

4000

Time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

PLUT
UDT

Figure 6.11: Memory to memory performance comparison over 10 Gpbs link with back-
ground workloads.

network and transport control settings also remain the same. Burncpu is a CPU-bound pro-

gram designed and executed to emulate concurrent host background workloads. In this ex-

periment, 10 seconds after the data transfer begins, we execute the first concurrent Burncpu

process at the data receiver, which will run 25 seconds. And 15 seconds after the data trans-

fer begins, we execute the second concurrent Burncpu process, which will run 30 seconds.

Fig. 6.11 plots the corresponding PLUT and UDT throughput measurements. From

these measurements, we observe that the amount of concurrent background workloads has

a significant impact on the performance of each transport method. UDT also adapts to the

workload changes but adopts a somewhat more conservative rate control than PLUT. UDT

has a relative unstable throughput measurement, because the packet loss rate increases

when several CPU-bound processes compete for CPU resources.

Case G: 10 Gbps, memory-to-memory transfer with different link MTU. The previ-

ous experiments use the default MTU (1500 Bytes). To investigate the impact of link MTU

on the PLUT performance, we conduct data transport experiments by varying link MTU

from 3000 to 9000 bytes over the same 10 Gbps connection as in Case E. The throughput

performance measurements and standard deviations for PLUTare tabulated in Fig. 6.12,

where the maximum throughput is more than 7.3 Gbps.

106

Link MTU (Byte)

3000

5000

4000

Goodput

#1 (Mbps)

3833.87

4453.02

5172.70

Goodput

#2 (Mbps)

3638.49

4745.19

5169.18

Goodput

#3 (Mbps)

3837.67

4451.08

5189.87

Goodput

#4 (Mbps)

3588.69

4510.52

5167.06

Goodput

#5 (Mbps)

3796.16

4740.97

5169.90

Goodput

#6 (Mbps)

3524.89

4771.68

5195.95

Goodput

#7 (Mbps)

3627.23

4743.89

5482.91

Goodput

#8 (Mbps)

3569.66

4491.91

5464.07

Goodput

#9 (Mbps)

3757.78

4667.82

5473.70

Goodput

#10(Mbps)

3630.39

4431.95

5211.91

Mean

(Mbps)

3680.5

4600.8

5280.9

Standard

deviation

115.28

144.31

145.25

7000 6566.56 6224.71 6568.56 6472.92 6237.34 6276.81 6182.01 6588.95 6252.93 6503.08 6387.4 165.9

9000 7045.62 7032.46 7051.13 7005.08 6990.82 7362.09 7330.65 7025.61 7337.69 7040.57 7122.2 153.97

Figure 6.12: PLUT performance over a 10 Gpbs link with different MTU sizes.

6.2 Performance Evaluation for Para-PLUT

6.2.1 Implementation of Para-PLUT

We implement a proportional datagram allocation scheme forparallel transfer at the sender.

Once the largest number of parallel UDP connections is reached, the sender divides the rest

datagrams into several partitions, one for each connection. The partition size is proportional

to the throughput measurement of the corresponding UDP channel.

6.2.2 Experimental-based Performance Evaluation

For performance comparison, we run Para-PLUT over the same local dedicated connection

as in 6.1.2.2. In our experiment, the packet loss rate and delay are emulated by netem. The

packet loss rate is set to be 10−5 and the link RTT is set to be 125ms.

Case A: 1 Gbps, memory-to-memory transfer.We set up one experiment on the same

1Gbps link as in PLUT to test the memory-to-memory transfer performance of Para-PLUT.

The throughput measurements are plotted in Fig. 6.13. This experiment demonstrates that

Para-PLUT almost reaches 100% of link utilization by using parallel UDP connections.

Case B: 10 Gbps, memory-to-memory transfer.We test memory-to-memory trans-

fer on the same 10Gbps link as in PLUT. Fig. 6.14 plots the corresponding Para-PLUT

throughput measurements. The maximum throughput of Para-PLUT reaches 3.1 Gbps,

which is around 20% higher than the maximum throughput reached by PLUT.

107

5 10 15 20 25 30
0

200

400

600

800

1000

Time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

Para−PLUT

Figure 6.13: Memory to memory performance comparison over 1Gpbs link.

In both cases we studied, the proposed Para-PLUT method consistently achieves better

performance than PLUT and other protocols.

5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

Time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

Para−PLUT

Figure 6.14: Memory to memory performance comparison over 10 Gpbs link.

6.3 Performance Evaluation for Topology Construction

We conduct a set of experiments based on simulated and real networks of various sizes and

topologies for performance evaluation. The proposed LBSF algorithm is compared with

a Greedy algorithm and ak Degree Constrained (k-DC) algorithm that were previously

implemented in the LStream live streaming system [34]. The Greedy algorithm always

selects the neighbor node with the largest outgoing bandwidth of the current code as the

child node in the spanning tree at each iteration, starting from the root node, and the next

108

Table 6.2: Network parameters for performance comparison betweenk-DC, greedy, LBSF,
and LABF algorithms

Index of problem size 1 2 3 4 5 6 7 8 9
Number of nodes 4 6 8 10 12 14 16 18 20

Table 6.3: Throughput performance comparison betweenk-DC, Greedy and LBSF algo-
rithms.

Simulation results / Experimental results
Alg 1 2 3 4 5 6 7 8 9

k-DC
180 160 100 150 100 113 120 86 70
/167 /145 /91 /124 /88 /76 /64 /68 /23

Greedy
100 160 100 50 140 140 120 90 130
/98 /143 /91 /34 /76 /102 /102 /68 /56

LBSF
180 160 100 200 160 170 120 100 140
/167 /156 /88 /189 /96 /124 /102 /96 /92

iteration of search starts from the selected child node. Thek-DC algorithm first sorts the

nodes by their capacities in a decreasing order, and then adds neighbor nodes to each node

(also starting from the root node) until the degree constraint k is reached. Both greedy

and degree-constrained strategies have been widely used tosolve similar multicast tree

construction problems, and therefore are suited for performance comparison.

6.3.1 Experimental-based Performance Evaluation

We build a live streaming testbed by deploying 20 computers (peers) in a local area network

and run LStream, the P2P live streaming system developed by Henan Education and Re-

search Network [34] on each of these nodes. For a convenient reference, we tabulate these

network parameters in Table 6.2. The source video streamingrate is set to be 400 Kbps

in our experiments. The outgoing bandwidth of each node is configured to be a random

quantity in a range from 200 Kbps to 800 Kbps in the granularity of 20 Kbps. We run three

109

Table 6.4: Network parameters for performance comparison betweenk-DC, greedy, LBSF,
and LABF algorithms

Index of problem size 1 2 3 4 5 6 7 8 9 10
Number of nodes 20 40 60 80 100 120 140 160 180 200
Number of links 60 120 180 240 300 360 420 480 540 600

algorithms in comparison to compute three trees in each of 9 overlay networks with dif-

ferent numbers of nodes varying from 4 to 20 at an interval of 2nodes. We then construct

the tree topology accordingly for streaming experiments and collect their minimum node

throughput performance measurements as tabulated in Table6.3, where the corresponding

simulation results are also provided in pair for comparison. We observe that the experimen-

tal results match well with the simulation results, which indicates the accuracy of our cost

models and also validates our assumptions on the location ofthe bandwidth bottleneck.

6.3.2 Simulation-based Performance Evaluation

To account for the lack of network and system resources, we further conduct simulation-

based performance comparison among these three algorithmsusing a large set of simulated

networks. For a given number of nodes and links, each simulated network is created with

a randomly generated network topology, and a random outgoing bandwidth within a range

from 0 to 32767 Kbps is assigned to each node.

6.3.2.1 Scalability

In the first set of simulations, we test the scalability of these three algorithms based on a

series of 10 simulated networks, indexed from 1 to 10, with a varying number of nodes

from 20 to 200 at an interval of 20 nodes, and a varying number of links from 60 to 600 at

an interval of 60 links, respectively. For a convenient reference, we tabulate these network

parameters in Table 6.4. The capacity or outgoing bandwidthof each node is randomly

110

assigned. The capacity or outgoing bandwidth of each node israndomly assigned.

[h]

Figure 6.15: Minimum node throughput performance comparison (mean and standard de-
viation) among three algorithms based on a series of 10 simulated networks of various sizes
ranging from small to large scales.

For each given network size, we create 10 random instances with different network

topologies. We run three algorithms in each of these 10 network instances and compute

the minimum node throughput of three resultant trees. The mean and standard deviation

of the minimum node throughput measurements in 10 instancesfor each network size are

plotted in Fig. 6.15. We also plot in Fig. 6.16 the performance speedups of LBSF over the

k-DC and Greedy algorithms defined asLBSF−kDC or Greedy)
(kDC or Greedy) , which shows that the LBSF

algorithm achieves at least 90% higher minimum node throughput than thek-DC algorithm

and up to 5 times improvement over the Greedy algorithm.

6.3.2.2 Robustness

We conduct a second set of simulations to study the robustness of these three algorithms

based on 10 simulated networks of 400 nodes and a varying number of links from 1000

to 10000 at an interval of 1000 links. Similarly, for each given number of links (note that

the number of nodes is fixed to be 400), we create 10 random instances with different

111

[h]

Figure 6.16: Performance speedups of LBSF over DC and Greedybased on a series of 10
simulated networks of various sizes ranging from small to large scales.

Figure 6.17: SMinimum node throughput performance comparison (mean and standard
deviation) among three algorithms based on a series of 10 simulated networks of 400 nodes
and a varying number of links from 1000 to 10000 at an intervalof 1000 links.

112

Figure 6.18: Performance speedups of LBSF overk-DC and Greedy based on a series of
10 simulated networks of 400 nodes and a varying number of links from 1000 to 10000 at
an interval of 1000 links.

network topologies. The mean and standard deviation of the minimum node throughput

measurements obtained by each of these three algorithms in 10 instances for each number

of links are plotted in Fig. 6.17 and the corresponding performance speedups of LBSF over

the other two algorithms are plotted in Fig. 6.18. We also observe that LBSF consistently

achieves at least 100% higher minimum node throughput than the k-DC algorithm and

almost 60 times improvement over the Greedy algorithm because LBSF approaches the

optimum as the number of links increases.

Both the Greedy and k-DC algorithm select the pair of currentnode and child node only

based on the nodes outgoing bandwidth without considering the available splitting outgoing

bandwidths. Note again that the minimum node throughput on apath from the root node

to any other node is determined by the bottleneck splitting outgoing bandwidth. Therefore,

a node with a large outgoing bandwidth but a relatively smallavailable splitting outgoing

bandwidth degrades the performance of all its downstream nodes. But LBSF always picks

up the node with the largest value off (v) which considers both nodes available splitting

outgoing bandwidths and outgoing bandwidths which resultsin a much higher minimum

113

node throughput than the other two methods.

6.4 Performance Evaluation for TSP Based on Simulations

and Experiments

6.4.1 Simulation-based Performance Evaluation

Figure 6.19: Simulation setup for TSP stabilization.

We first evaluate TSP’s performance in a controlled simulation environment using the

NS3 simulator. As shown in Fig. 6.19, we create a network topology that consists of 4 com-

puter nodes in two separate local-area networks connected through fully duplex network

links. All the local network links have a bandwidth of 1 Gbps and a link delay of 6560 ns

while the wide-area network link between routers r0 and r1 has a bandwidth of 1 Gbps and

a link delay of 200 ms. We deploy a TSP sender on n1, which is connected to a TSP sink

on n3.

We conduct two sets of transport experiments in this simulated network environment.

In the first case, the sending rate of two TCP flows is set to be 5 Mbps, and hence the

peak available bandwidth of the network connection is about10 Mbps. We set the target

goodput of TSP to be 7 Mbps, and set the parametersa = 0.8 andα = 0.8. In the second

case, we increase the link bandwidth between r0 and r1 to 40 Mbps and the sending rate

114

Figure 6.20: Goodput stabilization at a target rate = 7 Mbps with a = 0.8 andα = 0.8,
adjustment made on sleep time.

Figure 6.21: Goodput stabilization at a target rate = 15 Mbpswith a = 0.8 andα = 0.8,
adjustment made on sleep time.

of both TCP flows to 10 Mbps, while all other network and transport settings remain the

same as in the previous case. The peak available bandwidth ofthe network connection in

this case is about 20 Mbps. We set the desired goodput of TSP tobe 15 Mbps. We collect

instantaneous goodput measurements at an interval of 100 msin both cases and plot TSP’s

goodput stabilization performance in Fig. 6.20 and Fig. 6.21, respectively. We observe

that TSP is able to stabilize at the target level with a low level of transport dynamics. The

stabilization performance of TSP in other simulation settings is qualitatively similar.

115

6.4.2 Experiment-based Performance Evaluation

6.4.2.1 Implementation Details and Network Settings

We implemented the TSP transport method in C++ on Linux operating system. The TSP

sender consists of two child threads, one for sending the datagrams, and the other for re-

ceiving the acknowledgements. The source rate control related activities such as RTT es-

timation, packet loss detection, goodput and loss rate calculation, are carried out in the

receiving thread upon the arrival of each acknowledgement.The source rate is controlled

by the transport dynamics defined in Eq. 5.2.7 or 5.2.13 through the adjustment made on

either congestion window or sleep time. Besides the thread for receiving datagrams, a sep-

arate child thread in the receiver stores or forwards in-order datagrams to user applications.

TSP provides reliable data transfer by assigning a sequencenumber to each packet and

retransmitting those lost ones. We consider four differenttypes of acknowledgment at the

receiver: NXT (Next), RXM (Retransmission), TNT (Timeout Next), and TMO (Timeout

Retransmission). For every normal ACK control period, if all datagrams received so far

are in continuity, an NXT ACK is generated and sent to the sender; otherwise if there are

lost datagrams (i.e., holes in the datagram checklist), thereceiver compiles a list of lost

datagram sequence numbers and sends them with a RXM ACK. If nodatagram is received

within a certain period of time, a timeout event is triggeredwhere the receiver sends either

a TNT ACK if all datagrams received so far are in continuity, or a TMO ACK enclosing

the lost datagram sequence number list if there are holes in the datagram checklist.

We tested the TSP transport method over one Internet connection: UM (University of

Memphis)-LSU. The Internet connection is of low bandwidth over few thousand network

miles with high LAN traffic at both ends. For each set of experiments on the Internet con-

nection, we run concurrent control traffic as well as on-hostand LAN background network

traffic such as HTTP, FTP, and SSH, during the experiments to test the robustness of our

method. The source rate is controlled through eitherWC(·) or TS(·) to stabilize at a giveng∗.

116

Sinceg∗ is lower than the available bandwidth, the target source rate matches the desired

goodput level with very little packet loss. Therefore, we use Eq. 5.2.1 to determine the

initial values of congestion window and sleep time. We achieved qualitatively similar sta-

bilization between several other nodes connected over wide-area networks, and the above

results are typical.

6.4.2.2 Performance Comparison with TCP and DCCP on UM-LSU Connection

We first conduct TSP transport experiments on UM-LSU connection and compare its per-

formance with that of two widely deployed transport protocols, TCP and DCCP [81]. Both

end hosts, cow.cs.memphis.edu and robot.rrl.lsu.edu, areregularly configured Linux work-

stations with 2.6.25 kernel and are connected to their corresponding local campus network

through one GigE network interface card (NIC). To closely examine the microscopic be-

haviors of these three protocols in comparison, we collect instantaneous goodput measure-

ments at an interval of 100 ms, which is about 2-3 times the round trip time (RTT) of this

wide-area connection.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
7

0

5

10

15

20

25

30

35

40

Time (microseconds)

In
st

an
ta

ne
ou

s
go

od
pu

t (
M

bp
s)

 s
am

pl
ed

 a
t a

n
in

te
rv

al
 o

f 1
00

 m
s

DCCP

TCP

TSP

Figure 6.22: Performance comparison of instantaneous goodput sampled at an interval of
100 ms using TCP, DCCP, and TSP targeting 5 Mbps.

117

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
7

0

5

10

15

20

25

30

35

40

Time (microseconds)

In
st

an
ta

ne
ou

s
go

od
pu

t (
M

bp
s)

sa
m

pl
ed

 a
t a

n
in

te
rv

al
 o

f 1
00

 m
s

DCCP

TCP

TSP

Figure 6.23: Performance comparison of instantaneous goodput sampled at an interval of
100 ms using TCP, DCCP, and TSP targeting 10 Mbps.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
7

0

5

10

15

20

25

30

35

40

Time (microseconds)

In
st

an
ta

ne
ou

s
go

od
pu

t (
M

bp
s)

sa
m

pl
ed

 a
t a

n
in

te
rv

al
 o

f 1
00

 m
s

DCCP

TSP

TCP

Figure 6.24: Performance comparison of instantaneous goodput sampled at an interval of
100 ms using TCP, DCCP, and TSP targeting 15 Mbps.

118

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
7

0

2

4

6

8

10

12

14

16

18

Time (microseconds)

A
ve

ra
ge

 g
oo

dp
ut

 (
M

bp
s)

TCP

DCCP

TSP

Figure 6.25: Performance comparison of average goodput using TCP, DCCP, and TSP
targeting 15 Mbps.

A test message of 100 Mbytes is created on the LSU host and transferred to the UM

host. The instantaneous transport performance measurements for TCP, DCCP, and TSP

targeting 5, 10, and 15 Mbps are plotted in Figs. 6.22, 6.23, and 6.24, respectively. The

source rate is controlled through the adjustment of the congestion window size only. For

these three target rates, we select the starting points of TSP atWc(0) = 42,Wc(0) = 84,

andWc(0) = 127 datagrams, respectively, with fixed sleep timeTs(t) = 100 ms,a = 0.8,

and α = 0.8. We observe that TSP experiences significantly less transport dynamics at

the specified target rates than the other two protocols shooting for the maximum possible

goodput. Note that the peak available bandwidth of this connection is slightly more than

15 Mbps achieved by TCP during the course of the experiments.Even at this peak rate,

TSP is able to stabilize without significantly affecting concurrent TCP traffic. We also plot

the average goodput measurements for these three protocolsin Fig. 6.25, which clearly

shows that TSP achieves the smoothest goodput among the three from a global perspective.

To produce cleaner performance curves, we use average goodputs in the rest of the TSP

119

experiments where we focus more on the robustness of TSP and investigate the effects of

parameter selection on TSP transport performance.

6.4.2.3 Effects of TSP on Concurrent TCP

Since TCP is the de facto standard for reliable end-to-end data transport and carries the

majority of the traffic in today’s Internet, any new transport protocols are generally required

to be TCP-friendly to be widely deployed in Internet environments. To study the effects of

the proposed TSP on regular TCP traffic, we conduct two transport experiments on UM-

LSU connection using the same network and control settings as in Subsection 6.4.2.2. In

the first experiment, we run a single TCP session, while in thesecond one, we run one

TCP session and one TSP session targeting 5 Mbps concurrently on both end hosts. Three

instantaneous goodput performance curves sampled at an interval of 100 ms from these two

transport experiments are plotted in Fig. 6.26 for comparison.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 10
7

0

2

4

6

8

10

12

14

16

18

Time (microseconds)

In
st

an
ta

ne
ou

s
go

od
pu

t (
M

bp
s)

sa
m

pl
ed

 a
t a

n
in

te
rv

al
 o

f 1
00

 m
s

Concurrent TCP Single TCP

Concurrent TSP

Figure 6.26: Effects of TSP on concurrent TCP traffic.

We observe that the concurrent TCP flow only experiences about 3% drop in average

goodput from 13.27 Mbps of the single TCP flow to 12.86 Mbps, which strongly indicates

120

the TCP-friendliness of TSP. We repeat these experiments onother Internet connections

with different target rates, and observe qualitatively very similar effects of TSP on TCP:

TSP does not affect the performance of concurrent TCP trafficsignificantly as long as the

target rate is controlled within a fraction of the peak available connection bandwidth, which

is in good line with the goodput requirement of control channels. The design goal of TSP

is not to aggressively grab as much bandwidth as possible by suppressing other traffic, but

to strategically utilize a small portion of the available bandwidth where one can achieve

a smooth data flow with predictable delays and dynamics for control command delivery

purposes.

6.4.2.4 Concurrent Control over UM-LSU Link

0 2 4 6 8 10
x 10

6

0

1

2

3

4

5

6

7

time (microseconds)

(M
bp

s)

goodput
sendrate
goodput
sendrate

(target = 2Mbps)

(target = 3Mbps)

Figure 6.27: UM-LSU link: concurrent control channels at 2.0 Mbps and 3.0 Mbps, re-
spectively,a = 0.8,α = 0.8, adjustment made on sleep time.

To investigate the interaction between concurrent TSP flowsthat employ the same rate

control strategy, we conduct experiments where two concurrent TSP control channels tar-

geting 2.0 Mbps and 3.0 Mbps, respectively, are establishedover the same UM-LSU Inter-

net path. The goodput and sending rate performance measurements are plotted in Fig. 6.27,

121

which shows that both flows stabilize at their correspondingtarget levels. Extensive exper-

imental results have shown that as long as the total requiredthroughput of multiple control

channels is less than the available path bandwidth, concurrent TSP transport sessions us-

ing the proposed stabilization method are able to live “peacefully” without significantly

affecting each other’s performance.

In all the above experiments, we observed that the measured TSP goodput converges to

the target rate quickly within a few seconds or less. Our experimental results show that the

TSP goodput stabilization is robust against the presence ofvarious concurrent TCP traffic

such as HTTP, FTP, and SSH.

122

Chapter 7

Conclusion and Future Work

Our research effort was focused on a rigorous analytical study of the design and perfor-

mance of transport solutions, and develop an integrated transport solution to overcome the

limitations of current methods. We have presented the integrated transport solution, which

consists of two functional components: data route planner and transport control. This ar-

chitecture enables easy implementation of new route planners, as well as easy evaluation

of new transport control protocols.

This final chapter begins with a summary of the contributionsof this dissertation in

section 7.1. Section 7.2 lists some limitations as well as the guidelines for future research

work.

7.1 Contribution

Below we highlight the contributions of this dissertation:

7.1.1 Route Planner for Bulk Data Transfer in Scientific Applications

NADMA explores and composes a set of feasible route options and provides them to the

user along with performance estimations as well as specific steps and commands to au-

thorize and execute data transfer. Our work systematicallyinvestigated the design and

implementation issues of a high performance route planer for bulk data transfer. NADMA

123

identified the main challenges in the wide adoption of new networking and storage tech-

nologies and proposed appropriate solutions. As a result, application users can accomplish

their data-centric tasks by following specific steps and commands to authorize and execute

data transfer.

7.1.2 Peak Link Utilization Transport

PLUT incorporates a performance-adaptive flow control mechanism to regulate the activi-

ties of both the sender and receiver in response to system dynamics and automates the rate

stabilization for throughput maximization using stochastic approximation methods. Para-

PLUT identified the problems associated with PLUT and further improved the performance

of PLUT. To the best of our knowledge, Para-PLUT is the first transport protocol that at-

tempts to use parallel UDP connections to take advantage of the full power of multi-core

processors in maximizing application throughput.

7.1.3 Route Planner for Streaming Media Delivery

We formulated a novel tree construction problem max-minTC.We proposed an efficient

heuristic algorithm named LBSF to solve max-minTC problem.The goal of LBSF is to

optimize the system’s stream rate by constructing a spanning tree whose minimum node

throughput is maximized among all possible spanning trees of the overlay network. LBSF

addresses both scalability and robustness.

7.1.4 Transport Stabilization Protocol

We identified the difficulty of goodput stabilization over wide-area networks. TSP explic-

itly accounts for the randomness inherent in wide-area networks to stabilize the goodput at

destination. While TSP is highly efficient, it is not necessarily aggressive. It is friendly to

concurrent TCP flows.

124

The superior and robust performance of the proposed transport solutions is extensively

evaluated in a simulated environment and further verified through real-life implementations

and deployments over both Internet and dedicated connections under disparate network

conditions in comparison with existing transport methods.

7.2 Limitations and Future Work

Although Para-PLUT employs an parallel mechanism to improve the application goodput

and resources utilization, it didn’t account for the impactof the background workloads,

which vary during the data transfer period. The parallelismtuning mechanism employed

in Para-PLUT needs to be adjusted to achieve the maximal bottleneck rate by taking the

varying background workloads into consideration. Thus, new flow control approaches in

the context of multiple parallel connections need to be developed to estimate the best rate

at which the end system can consume packets coming from the network. This best rate will

be sent back to the sender for source rate control.

The depletion of a fixed buffer results in the drop of the data,even there might be

plenty of free memory on the receiving end host. It is necessary to design an automatic

buffer adaption mechanism to decide whether the receive buffer needs to be resized and to

what extent the receiver needs to be adjusted. Furthermore,as the number of competing

workloads increases or decreases, the number of parallel connection should decrease or

increase correspondingly. It is critical to design an automatically mechanism to adjust the

number of parallel connections in response to the end host dynamics to achieve the maxi-

mum goodput. We will design an integrated dynamic control mechanism to automatically

adjust buffer size and the number of parallel streams and findthe optimal values for those

parameters.

125

Bibliography

[1] NSF Grand Challenges in eScience Workshop, 2001.

http://www2.evl.uic.edu/NSF/index.html.

[2] Large Hadron Collider (LHC). http://lhc.web.cern.ch/lhc.

[3] http://www.jamstec.go.jp/esc/.

[4] Spallation Neutron Source. http://www.sns.gov.

[5] User Controlled LightPath Provisioning. http://phi.badlab.crc.ca/uclp.

[6] Dynamic Resource Allocation via GMPLS Optical Networks.

http://dragon.maxgigapop.net.

[7] JGN II: Advanced Network Testbed for Research and Development.

http://www.jgn.nict.go.jp.

[8] Geant2. http://www.geant2.net.

[9] On-demand Secure Circuits and Advance Reservation System.

http://www.es.net/oscars.

[10] https://plone3.fnal.gov/P0/ESCPS/.

[11] HOPI: Hybrid Optical and Packet Infrastructure. http://networks.internet2.edu/hopi.

[12] Advance Network Initiative. http://www.es.net/RandD/advanced-networking-

initiative/.

[13] PPLive. http://www.pplive.com.

126

[14] PPStream. http://www.ppstream.com.

[15] Storage Resource Management (SRM). https://sdm.lbl.gov/srm-wg/.

[16] http://dev.globus.org/wiki/GridFTP.

[17] https://www.racf.bnl.gov/terapaths/.

[18] GENI: Global Environment for Network Innivations. http://www.geni.net.

[19] Internet2 Interoperable On-Demand Network (ION) Service.

http://www.internet2.edu/ion.

[20] http://www.es.net/.

[21] Internet2. http://www.internet2.edu.

[22] http://en.wikipedia.org/wiki/StorageResourceManager.

[23] https://sdm.lbl.gov/bestman/.

[24] http://www.gridpp.ac.uk/wiki/RALTier1 CASTOR SRM.

[25] http://www.dcache.org/.

[26] http://www.gridpp.ac.uk/wiki/DiskPool Manager.

[27] http://storm.forge.cnaf.infn.it/home.

[28] http://www.slac.stanford.edu/ abh/bbcp/.

[29] Tsunami. http://newsinfo.iu.edu/news/page/normal/588.html.

[30] http://www.globus.org/rls/.

[31] http://linux.maruhn.com/sec/bing.html.

[32] Libgtop. ftp://ftp.gnome.org/pub/GNOME/sources/libgtop/2.0.

[33] http://www.linuxfoundation.org/collaborate/workgroups/networking/netem.

[34] HERNET. http://web.ha.edu.cn/jianjiee.aspx.

127

[35] Enlightened computing: An architecture for co-allocating network, compute, and

other grid resources for high-end applications. InProc. of IEEE Honet, Dubai, UAE,

Nov. 2007.

[36] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu, and

I. Foster. The globus striped GridFTP framework and server.In Proc. of Supercom-

puting, 2005.

[37] E. Altman and D. Barman. Parallel TCP sockets: Simple model, throughput and

validation. InProc. of IEEE INFOCOM, 2006.

[38] L. Andersson, P. Doolan, N. Feldman, A. Fredette, and B.Thomas. Rfc3036: Ldp

specification. InIETF RFC, Jan. 2001.

[39] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow. Rfc3209:

Rsvp-te: Extensions to rsvp for lsp tunnels. InIETF RFC, Dec. 2001.

[40] A. Banerjee, W. Feng, B. Mukherjee, and D. Ghosal. Rapid: An end-system

aware protocol for intelligent data transfer over lambda grids. In Proc. of the 20th

IEEE/ACM Int. Parallel and Distributed Processing Symp., Rhodes Island, Greece,

Apr. 25-29 2006.

[41] A. Banerjee, B. Mukherjee, and D. Ghosal. Modeling and analysis to estimate the

end system performance bottleneck rate for high-speed datatransfer. InProc. of

the 5th Int. Workshop on Protocols for FAST Long-Distance Networks, Los Angeles,

CA, Feb. 7-9 2007.

[42] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application layer mul-

ticast. InProc. of the ACM SIGCOMM, pages 205–217, 2002.

[43] Marta Beltran and Antonio Guzman. A new cpu availability prediction model for

time-shared systems.IEEE Transaction 2009, 57:865–875, 2009.

[44] A. Benveniste, M. Metivier, and P. Priouret.Adaptive Algorithms and Stochastic

Approximation. Springer-Verlag, New York, 1990.

128

[45] U. Bhat. An Introduction to Queueing Theory. Birkhauser Boston Publications,

2008.

[46] P.P. Bocharov, C. D’Apice, A.V. Pechinkin, and S. Salerno. Queueing Theory. Wal-

ter de Gruyter, 2004.

[47] G. Bolch, S. Greiner, H. Meer, and K.S. Trivedi.Queueing Networks and Markov

Chains. Wiley-Interscience, 2006.

[48] L.S. Brakmo and S.W. O’Malley. Tcp vegas: new techniques for congestion de-

tection and avoidance. InSIGCOMM ’94 Conf. on Comm. Arch. and Proto., pages

24–35, London, United Kingdom, Oct. 1994.

[49] L.S. Brakmo, S.W. O’Malley, and L. Peterson. TCP Vegas:new techniques for

congestion detection and avoidance. InSIGCOMM’94 Conf. on Communications

Architectures and Protocols, pages 24–35, London, United Kingdom, Oct. 1994.

[50] M. Castro, P. Druschel, A.M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh.

Splitstream: high-bandwidth multicast in cooperative environments. InProc. of the

19th ACM Symp. on Oper. Sys. Prin., pages 298–313, 2003.

[51] CHEETAH: Circuit-switched High-speed End-to-End Transport ArcHitecture,

http://www.ece.virginia.edu/cheetah.

[52] K.T. Chen, C.Y. Huang, P. Huang, and C.L. Lei. An empirical evaluation of TCP

performance in online games. InProc. of ACM SIGCHI ACE06, Los Angeles, USA,

June 2006.

[53] Y. Chu, S. Rao, and H. Zhang. A case for end system multicast. IEEE J. on Selected

Areas in Communication, 20(8):1456–1471, Oct. 2002.

[54] J. Crowcroft and P. Oechslin. Diferentiated end-to-end internet services using a

weighted proportional fair sharing tcp. InSIGCOMM Computer Communication

Review, pages 28(3):53–69, 1998.

129

[55] Y. Cui, Y. Xue, and K. Nahrstedt. Max-min overlay multicast: Rate allocation and

tree construction. In12th IEEE Int. Workshop on Quality of Service (IwQoS 04),

pages 7–9, 2004.

[56] J.N. Daigle. Queueing Theory with Applications to Packet Telecommunication.

Springer, 2005.

[57] P. Datta, W. Feng, and S. Sharma. End-system aware, rate-adaptive protocol for

network transport in lambdagrid environments. InProc. of the 2006 ACM/IEEE

conference on Supercomputing, Tampa, FL, Nov. 11-17 2006.

[58] P. Datta, S. Sharma, and W. Feng. A feedback mechanism for network scheduling in

lambdagrids. InProc. of the 6th International Symposiumon on Cluster Computing

and the Grid, Singapore, May 16-19 2006.

[59] High-performance networks for high-impact science, Aug. 13-15

2002. Report of the High-Performance Network Planning Workshop,

http://DOECollaboratory.pnl.gov/meetings/hpnpw.

[60] Network provisioning and portocols for DOE large-science applications,

Aug. 10-11 2003. Report of DOE Workshop on Ultra High-Speed

Transport Protocol and Dynamic Provisioning for Large-Scale Applications,

http://www.csm.ornl.gov/ghpn/wk2003.html.

[61] T. Dunigan, M. Mathis, and B. Tierney. A tcp tuning daemon. In Proc. of Super-

computing: High-Performance Networking and Computing, Nov. 2002.

[62] B. EcKart, X. He, and Q. Wu. Performance adaptive UDP forhigh-speed bulk data

transfer on dedicated links. InProc. of the 22nd IEEE Int. Parallel and Distributed

Processing Symp., Miami, Florida, Apr. 14-18 2008.

[63] S. Floyd. Highspeed tcp for large congestion windows. Request for Comments:

3649, Dec. 2003.

[64] Y. Gu and R. L. Grossman. Udt: Udp-based data transfer for high-speed wide area

networks.Computer Networks, 51:1777–1799, May 2007.

130

[65] R. Guerin, A. Orda, and D. Williams. QoS routing mechanisms and OSPF exten-

sions. InProc. of Global Telecommunications Conf., pages 1903–1908, 1996.

[66] M. Guo and M. Ammar. Scalable live video streaming to cooperative clients using

time shifting and video patching. InProc. of IEEE INFOCOM, volume 3, pages

1501–1511, March 2004.

[67] T. Hacker, B. Athey, and B. Noble. The end-to-end performance effects of parallel

tcp sockets on a lossy wide-area metwork. InThe 16th IEEECS/ACM International

Parallel and Distributed Processing Symposium, Ft. Lauderdale, FL, Apr. 2002.

[68] T. J. Hacker, B. D. Noble, and B. D. Athey. Adaptive data block scheduling for par-

allel tcp streams. InThe 14th IEEE International Symposium on High Performance

Distributed Computing, 2005.

[69] T.J. Hacker and B.D. Athey. The end-to-end performanceeffects of parallel TCP

sockets on a lossy wide-area network. InProc. of the IEEE/ACM Int. Parallel and

Distributed Processing Symp., 2002.

[70] T.J. Hacker, B.D. Noble, and B.D. Athey. Improving throughput and maintaining

fairness using parallel TCP. InProc. of IEEE INFOCOM, March 2004.

[71] E. He, J. Leigh, O. Yu, and T.A. DeFanti. Reliable blast UDP: predictable high

performance bulk data transfer. InIEEE Int. Conf. on Cluster Computing, Chicago,

Illinois, Sep. 23-26 2002.

[72] E. He, P. V. Primet, and M. Welzl. A survey of tranport protocols other than “stan-

dard” tcp. Technical report, Global Grid Form Report, 2005.

[73] X. Hei, C. Liang, J. Liang, Y. Liu, and K.W. Ross. A measurement study of a large-

scale P2P IPTV system.IEEE Tran. on Multimedia, 2(8):1283–1292, March 2003.

[74] V. Jacobson. Congestion avoidance and control. InProc. of SIGCOMM, pages 314–

329, 1988.

131

[75] S. Jarvis, G. Tan, D. Spooner, and G. Nudd. Constructingreliable and efficient

overlays for P2P live media streaming.Int. J. of Simulation, 7(2):54–63, March

2006.

[76] C. Jin, D.X. Wei, and S.H. Low. FAST TCP: motivation, architecture, algorithms,

performance. InProc. of INFOCOM, 2004.

[77] D. Katabi, M. Handley, and C. Rohrs. Internet congestion control

for future high-bandwidth-delay product environments. InProceedings of

ACM SIGCOMM’02, Pittsburgh, PA, August 19-21 2002. Also see:

www.acm.org/sigcomm/sigcomm2002/papers/xcp.pdf.

[78] D. Katz, K.Kompella, and D. Yeung. Rfc2370: Traffic engineering (te) extensions

to ospf version 2. InIETF RFC, Sept. 2006.

[79] T. Kelly. Scalable tcp: Improving performance in highspeed wide area networks. In

PFLDnets, Feb. 2003.

[80] M. Kim, S. Lam, and D. Lee. Optimal distribution tree forinternet streaming media.

In Proc. of the 23rd Int. Conf. on Dist. Comp. Sys., page 116, 2003.

[81] E. Kohler, M. Handley, and S. Floyd. Designing dccp: Congestion control without

reliability. In Proc. of ACM SIGCOMM, 2006.

[82] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High bandwidth data

dissemination using an overlay mesh. InProc. of the 19th ACM symposium on

Operating Systems Principles, 2003.

[83] F. Kuo and X. Fu. Probe-aided multcp: an aggregate congestion control mechanism.

In SIGCOMM Computer Communication Review, pages 38(1):17–28, 2008.

[84] James F. Kurose and Keith W. Ross.Computer Networking: A Top-Down Approach,

4/E. Addison-Wesley, 2008.

[85] H. J. Kushner and D. S. Clark.Stochastic Approximation Methods for Constrained

and Unconstrained Systems. Springer-Verlag, 1978.

132

[86] H. J. Kushner and C. G. Yin.Stochastic Approximation and Recursive Algorithms

and Applications. Springer-Verlag, 2003. Second Edition.

[87] A. Kuzmanovic, E. Knightly, and R. L. Cottrell. Hstcp-lp: A protocol for low-

priority bulk data transfer in high-speed high-rtt networks. InPFLDnets, Feb. 2004.

[88] A. Kuzmanovic and E. W. Knightly. Tcp-lp: A distributedalgorithm for low priority

data transfer. InProceedings of IEEE INFOCOM 2003, San Francisco, CA, April

2003.

[89] M. Lasserre and V. Kompella. Rfc:4762, virtual privatelan service (vpls) using label

distribution protocol (ldp) signaling. InIETF RFC, Jan. 2007.

[90] R. Li, C. Guo, M. Fa, and Z. Wang. AHLSS: A hierarchical, adaptive, extendable

P2P live streaming system. InInt. Symp. on Advances in Computer and Sensor

Networks and Systems, pages 178–184, Apr. 2008.

[91] R. Love. Linux Kernel Development, chapter The Linux Process Scheduler. Sams

Publishing, 2003.

[92] R. Love. Linux Kernel Development, 3rd Edition. Addison-Wesley Professional,

2010.

[93] S.H. Low, L.L. Peterson, and L. Wang. Understanding Vegas: a duality model.J. of

the ACM, 49(2):207–235, Mar. 2002.

[94] S.H. Low, L.L. Peterson, and L. Wang. Understanding vegas: a duality model.

Journal of the ACM, 49(2):207–235, March 2002.

[95] D. Lu, Y. Qiao, P. A. Dinda, and F. E. Bustamante. Modeling and taming parallel

tcp on the wide area network. InIPDPS, 2005.

[96] X. Lu, Q. Wu, N. S. V. Rao, and Z. Wang. On performance-adaptive flow control

for large data transfer in high speed networks. InProc. of the 28th IEEE Int. Perfor-

mance Computing and Communications Conf., Phoenix, AZ, Dec. 14-16 2009.

133

[97] X. Lu, Q. Wu, N. S. V. Rao, and Z. Wang. Performance-adaptive prediction-based

transport control over dedicated links. InProc. of the 6th Int. ICST Conf. on Hetero-

geneous Networking for Quality, Reliability, Security andRobustness, Spain, Nov.

23-25 2009.

[98] Q. Ma, P. Steenkiste, and H. Zhang. Routing high bandwidth traffic in max min fair

share networks. InProc. of ACM SIGCOMM, pages 206–217, 1996.

[99] N. Magharei, R. Rejaie, and Y. Guo. Mesh or multiple-tree: A comparative study of

p2p live streaming. InProc. of IEEE Infocom, 2007.

[100] P. Merz and S. Wolf. TreeOpt: Self-organizing, evolving P2P overlay topologies

based on spanning trees. InProc. of KiVS, page 12, Feb. 2007.

[101] K. Nichols, S. Blake, F. Baker, and D. Black. Rfc2474: Definition of the differenti-

ated services field. InIETF RFC, Dec. 1998.

[102] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. Almi: an application level

multicast infrastructure. InProc. of the 3rd Conf. on USENIX Symp. on Internet

Tech. and Sys. (USITS’01), page 5, 2001.

[103] R. Prasad, M. Jain, and C. Dovrolis. Socket buffer auto-sizing for high-performance

data transfers.Journal of Grid Computing, 1(4):361–376, 2004.

[104] N. S. V. Rao and L. O. Chua. On dynamics of network transport protocols. InProc.

of Workshop on Signal Processing, 2002.

[105] N. S. V. Rao, Q. Wu, and S. S. Iyengar. On throughput stabilization of network

transport.IEEE Communications Letters, 8(1):66–68, 2004.

[106] N.S.V. Rao, W. R. Wing, Q. Wu, N. Ghani, T. Lehman, and E.Dart. Measurements

on hybrid dedicated bandwidth connections. InINFOCOM2007 Workshop on High

Speed Networks, 2007.

[107] N.S.V. Rao, W.R. Wing, , S.M. Carter, and Q. Wu. Ultrascience net: Network testbed

for large-scale science applications.IEEE Communications Magazine, 43(11):s12–

s17, 2005. An expanded version available at www.csm.ornl.gov/ultranet.

134

[108] N.S.V. Rao, Q. Wu, S.M. Carter, and W.R. Wing. High-speed dedicated channels

and experimental results with hurricane protocol.Annals of Telecommunications,

61(1-2):21–45, 2006.

[109] I. Rhee and L. Xu. CUBIC: a new TCP-friendly high-speedTCP variant. InWork-

shop on Protocols for Fast Long-Distance Networks, Lyon, France, Feb. 2005.

[110] M. Rio. A map of the networking code in Linux kernel 2.4.20. Technical Report

DataTAG-2004-1, March 2004.

[111] Todd L.Montgomery Robert A.Van Valzah and Eric Bowden. Topics In High-

Performance Messaging. 29West, Inc., 2009.

[112] E. Rosen, A. Viswanathan, and R. Callon. Rfc3031: Multiprotocol label switching

architecture. InIETF RFC, Jan. 2001.

[113] J. Semke, J. Madhavi, and M. Mathis. Automatic tcp buffer tuning. InProceedings

of ACM SIGCOMM, August 1998.

[114] M. Singh, P. Pradhan, and P. Francis. Mpat: Aggregate tcp congestion management

as a building block for internet qos. InIn Proceedings of the 12th IEEE International

Conference on Network Protocols, pages 129–138, Berlin, Germany, 2004.

[115] H. Sivakumar, S. Bailey, and R. L. Grossman. Psockets:the case for application-

level network striping for data intensive applications using high speed wide area

networks. InProc. of Supercomputing, 2000.

[116] T. Small, B. Li, and B. Liang. On optimal peer-to-peer topology construction with

maximum peer bandwidth contributions. InProc. of the 23rd Biennial Symposium

on Communications, pages 157–160, 2006.

[117] James C. Spall. A one-measurement form of simultaneous perturbation stochastic

approximation.Automatica, 33(1):109–112, 1997.

[118] J.C. Spall.Introduction to Stochastic Search and Optimization: Estimation, Simula-

tion, and Control. Wiley Pub, 2003.

135

[119] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang.The feasibility of sup-

porting large-scale live streaming applications with dynamic application end-points.

In Proc. of the 4th ACM/IEEE Symp. on Architectures for Networking and Commu-

nications Systems, pages 107–120, 2004.

[120] R. Stewart and Q. Xie. Stream control transmission protocol.

www.ietf.org/rfc/rfc2960.txt, Oct. 2000. IETF RFC 2960.

[121] NSF Teragrid. http://www.teragrid.org.

[122] D. Tran, K. Hua, and T. Do. Zigzag: an efficient peer-to-peer scheme for media

streaming. InProc. of IEEE Infocom, volume 9, pages 1672–1687, Dec. 2007.

[123] A. Veres and M. Boda. The chaotic nature of tcp congestion control. InProceedings

of IEEE INFOCOM 2002, 2002.

[124] J. Wang, L. Li, S. Low, and J. Doyle. Can shortest-path routing and tcp maximize

utility. In Proc. of IEEE Infocom, pages 2049–2056, 2003.

[125] Z. Wang and J. Crowcroft. Quality of service routing for supporting multimedia

applications.IEEE J. on Selected Areas in Communications, 14(7):1228–1234, Sep.

1996.

[126] Q. Wu and N.S.V. Rao. Protocol for high-speed data transport over dedicated chan-

nels. InProc. of the 3rd Int. Workshop on Protocols for Fast Long-Distance Net-

works, pages 155–162, Feb. 3-4 2005.

[127] Q. Wu, N.S.V. Rao, and S.S. Iyengar. Statistical effects of control parameters on

throughput of window-based transport methods. InProceedings of the 12th Inter-

national Conference on Computer Communications and Networks, pages 587–590,

2003.

[128] Q. Wu, N.S.V. Rao, and S.S. Iyengar. Statistical effects of control parameters on

throughput of window-based transport methods. InProc. of the 12th Int. Conf. on

Computer Communications and Networks, pages 587–590, 2003.

136

[129] Q. Wu, N.S.V. Rao, and X. Lu. On transport methods for peak utilization of ded-

icated connections. InProc. of the 6th Int. Conf. on Broadband Communications,

Networks, and Systems, Marid, Spain, Sept. 14-17 2009.

[130] C. Xiong, J. Leigh, E. He, V. Vishwanath, and T. Murata.Lambdastream - a data

transport protocol for streaming network-intensive applications over photonic net-

wotks. In Proc. of the 3th Int. Workshop on Protocols for FAST Long-Distance

Networks, Lyon, France, Sept. 2005.

[131] L. Xu, K. Harfoush, and I. Rhee. Binary increase congestion control for fast long-

distance networks. InINFOCOM, Hongkong, China, March 2004.

[132] M. Yang and Z. Fei. A proactive approach to reconstructing overlay multicast trees.

In Proc. of IEEE Infocom, 2004.

[133] C. Yatin. Scattercast: an adaptable broadcast distribution framework.Multimedia

Syst., 9(1):104–118, 2003.

[134] C. Zhang, H. Jin, D. Deng, S. Yang, Q. Yuan, and Z. Yin. Anysee: Multicast-

based peer-to-peer media streaming service system. InProc. of Asia-Pacific Conf.

on Communications, pages 274–278, 2005.

[135] X. Zhang, J. Liu, B. Li, and T.S.P. Yum. Coolstreaming/donet: a data-driven over-

lay network for peer-to-peer live media streaming. InProc. of IEEE INFOCOM,

volume 3, pages 2102–2110, March 2005.

[136] Y. Zhang, Z.M. Mao, and J. Wang. A framework for measuring and predicting

impact of routing changes. InProc. of IEEE INFOCOM, Alaska, USA, 2007.

[137] Z.L. Zhang, Z. Duan, and Y.T. Hou. Decoupling QoS control from core routers: A

novel bandwidth broker architecture for scalable support of guaranteed services. In

Proc. of ACM SIGCOMM, 2000.

[138] X. Zheng, A.P. Mudambi, and M. Veeraraghavan. FRTP: Fixed rate transport proto-

col – a modified version of SABUL for end-to-end circuits. InProc. of Broadnets,

2004.

137

[139] X. Zheng, M. Veeraraghavan, N.S.V. Rao, Q. Wu, and M. Zhu. Cheetah: Circuit-

switched high-speed end-to-end transport architecture testbed. IEEE Communica-

tions Magazine, 43(11):s11–s17, 2005.

[140] Y. Zhu and B. Li. Overlay networks with linear capacityconstraints.IEEE Tran. on

Parallel and Distributed Systems, 19(2):159–173, Feb. 2008.

[141] Y. Zhu, B. Li, and K. Pu. Dynamic multicast in overlay networks with linear capacity

constraints.IEEE Tran. on Parallel and Distributed Systems, 20(7):925–939, July

2009.

138

	Performance Optimization and Dynamics Control for Large-scale Data Transfer in Wide-area Networks
	Recommended Citation

	Title_1
	Copyright_2
	Dedication_3
	Acknowledgements_4
	Dissertation_Lu2011.pdf

