152 research outputs found

    Maf/ham1-like pyrophosphatases of noncanonical nucleotides are host-specific partners of viral RNA-dependent RNA polymerases.

    Get PDF
    Cassava brown streak disease (CBSD), dubbed the “Ebola of plants”, is a serious threat to food security in Africa caused by two viruses of the family Potyviridae: cassava brown streak virus (CBSV) and Ugandan (U)CBSV. Intriguingly, U/CBSV, along with another member of this family and one secoviridae, are the only known RNA viruses encoding a protein of the Maf/ham1-like family, a group of widespread pyrophosphatase of non-canonical nucleotides (ITPase) expressed by all living organisms. Despite the socio-economic impact of CDSD, the relevance and role of this atypical viral factor has not been yet established. Here, using an infectious cDNA clone and reverse genetics, we demonstrate that UCBSV requires the ITPase activity for infectivity in cassava, but not in the model plant Nicotiana benthamiana. HPLC-MS/MS experiments showed that, quite likely, this host-specific constraint is due to an unexpected high concentration of non-canonical nucleotides in cassava. Finally, protein analyses and experimental evolution of mutant viruses indicated that keeping a fraction of the yielded UCBSV ITPase covalently bound to the viral RNA-dependent RNA polymerase (RdRP) optimizes viral fitness, and this seems to be a feature shared by the other members of the Potyviridae family expressing Maf/ham1-like proteins. All in all, our work (i) reveals that the over-accumulation of non-canonical nucleotides in the host might have a key role in antiviral defense, and (ii) provides the first example of an RdRP-ITPase partnership, reinforcing the idea that RNA viruses are incredibly versatile at adaptation to different host setups.post-print2435 K

    Field evaluation of selected cassava genotypes for cassava brown streak disease based on symptom expression and virus load

    Get PDF
    Background Production of cassava (Manihot esculenta Crantz), a food security crop in sub-Saharan Africa, is threatened by the spread of cassava brown streak disease (CBSD) which manifests in part as a corky necrosis in the storage root. It is caused by either of two virus species, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), resulting in up to 100% yield loss in susceptible varieties. Methods This study characterized the response of 11 cassava varieties according to CBSD symptom expression and relative CBSV and UCBSV load in a field trial in Uganda. Relative viral load was measured using quantitative RT-PCR using COX as an internal housekeeping gene. Results A complex situation was revealed with indications of different resistance mechanisms that restrict virus accumulation and symptom expression. Four response categories were defined. Symptom expression was not always positively correlated with virus load. Substantially different levels of the virus species were found in many genotypes suggesting either resistance to one virus species or the other, or some form of interaction, antagonism or competition between virus species. Conclusions A substantial amount of research still needs to be undertaken to fully understand the mechanism and genetic bases of resistance. This information will be useful in informing breeding strategies and restricting virus spread.Background Production of cassava (Manihot esculenta Crantz), a food security crop in sub-Saharan Africa, is threatened by the spread of cassava brown streak disease (CBSD) which manifests in part as a corky necrosis in the storage root. It is caused by either of two virus species, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), resulting in up to 100% yield loss in susceptible varieties. Methods This study characterized the response of 11 cassava varieties according to CBSD symptom expression and relative CBSV and UCBSV load in a field trial in Uganda. Relative viral load was measured using quantitative RT-PCR using COX as an internal housekeeping gene. Results A complex situation was revealed with indications of different resistance mechanisms that restrict virus accumulation and symptom expression. Four response categories were defined. Symptom expression was not always positively correlated with virus load. Substantially different levels of the virus species were found in many genotypes suggesting either resistance to one virus species or the other, or some form of interaction, antagonism or competition between virus species. Conclusions A substantial amount of research still needs to be undertaken to fully understand the mechanism and genetic bases of resistance. This information will be useful in informing breeding strategies and restricting virus spread.Background Production of cassava (Manihot esculenta Crantz), a food security crop in sub-Saharan Africa, is threatened by the spread of cassava brown streak disease (CBSD) which manifests in part as a corky necrosis in the storage root. It is caused by either of two virus species, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), resulting in up to 100% yield loss in susceptible varieties. Methods This study characterized the response of 11 cassava varieties according to CBSD symptom expression and relative CBSV and UCBSV load in a field trial in Uganda. Relative viral load was measured using quantitative RT-PCR using COX as an internal housekeeping gene. Results A complex situation was revealed with indications of different resistance mechanisms that restrict virus accumulation and symptom expression. Four response categories were defined. Symptom expression was not always positively correlated with virus load. Substantially different levels of the virus species were found in many genotypes suggesting either resistance to one virus species or the other, or some form of interaction, antagonism or competition between virus species. Conclusions A substantial amount of research still needs to be undertaken to fully understand the mechanism and genetic bases of resistance. This information will be useful in informing breeding strategies and restricting virus spread.Background Production of cassava (Manihot esculenta Crantz), a food security crop in sub-Saharan Africa, is threatened by the spread of cassava brown streak disease (CBSD) which manifests in part as a corky necrosis in the storage root. It is caused by either of two virus species, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), resulting in up to 100% yield loss in susceptible varieties. Methods This study characterized the response of 11 cassava varieties according to CBSD symptom expression and relative CBSV and UCBSV load in a field trial in Uganda. Relative viral load was measured using quantitative RT-PCR using COX as an internal housekeeping gene. Results A complex situation was revealed with indications of different resistance mechanisms that restrict virus accumulation and symptom expression. Four response categories were defined. Symptom expression was not always positively correlated with virus load. Substantially different levels of the virus species were found in many genotypes suggesting either resistance to one virus species or the other, or some form of interaction, antagonism or competition between virus species. Conclusions A substantial amount of research still needs to be undertaken to fully understand the mechanism and genetic bases of resistance. This information will be useful in informing breeding strategies and restricting virus spread

    A time series transcriptome analysis of cassava (Manihot esculenta Crantz) varieties challenged with Ugandan cassava brown streak virus

    Get PDF
    Open Access Journal; Published online: 29 August 2017A time-course transcriptome analysis of two cassava varieties that are either resistant or susceptible to cassava brown streak disease (CBSD) was conducted using RNASeq, after graft inoculation with Ugandan cassava brown streak virus (UCBSV). From approximately 1.92 billion short reads, the largest number of differentially expressed genes (DEGs) was obtained in the resistant (Namikonga) variety at 2 days after grafting (dag) (3887 DEGs) and 5 dag (4911 DEGs). At the same time points, several defense response genes (encoding LRR-containing, NBARC-containing, pathogenesis-related, late embryogenesis abundant, selected transcription factors, chaperones, and heat shock proteins) were highly expressed in Namikonga. Also, defense-related GO terms of ‘translational elongation’, ‘translation factor activity’, ‘ribosomal subunit’ and ‘phosphorelay signal transduction’, were overrepresented in Namikonga at these time points. More reads corresponding to UCBSV sequences were recovered from the susceptible variety (Albert) (733 and 1660 read counts per million (cpm)) at 45 dag and 54 dag compared to Namikonga (10 and 117 cpm respectively). These findings suggest that Namikonga’s resistance involves restriction of multiplication of UCBSV within the host. These findings can be used with other sources of evidence to identify candidate genes and biomarkers that would contribute substantially to knowledge-based resistance breeding

    Cassava brown streak disease: a threat to food security in Africa

    Get PDF
    Published Online: 01/05/2015Cassava brown streak disease (CBSD) has emerged as the most important viral disease of cassava (Manihot esculenta) in Africa and is a major threat to food security. CBSD is caused by two distinct species of ipomoviruses, Cassava brown streak virus and Ugandan cassava brown streak virus, belonging to the family Potyviridae. Previously, CBSD was reported only from the coastal lowlands of East Africa, but recently it has begun to spread as an epidemic throughout the Great Lakes region of East and Central Africa. This new spread represents a major threat to the cassava-growing regions of West Africa. CBSD-resistant cassava cultivars are being developed through breeding, and transgenic RNA interference-derived field resistance to CBSD has also been demonstrated. This review aims to provide a summary of the most important studies on the aetiology, epidemiology and control of CBSD and to highlight key research areas that need prioritization

    Cassava Brown Streak Viruses express second 6-kilodalton (6K2) protein with varied polarity and three dimensional (3D) structures: Basis for trait discrepancy between the virus species

    Get PDF
    Cassava Brown Streak Virus (CBSV) and Ugandan Cassava Brown Streak Virus (UCBSV) are the two among six virus species speculated to cause the most catastrophic Brown Streak Disease of Cassava (CBSD) in Africa and Asia. Cassava Brown Streak Virus (CBSV) is hard to breed resistance for compared to Ugandan Cassava Brown Streak Virus (UCBSV) species. This is exemplified by incidences of CBSV species rather than UCBSV species in elite breeding line, KBH 2006/0026 at Bagamoyo, Tanzania. It is not yet understood as to why CBSV species could breakdown CBSD-resistance in the KBH 2006/0026 unlike the UCBSV species. This marks the first in silico study conducted to understand molecular basis for the trait discrepancy between CBSV and UCBSV species from structural biology view point. Following ab initio modelling and analysis of physical-chemical properties of second 6-kilodalton (6K2) protein encoded by CBSV and UCBSV species, using ROBETTA server and Protein Parameters tool, respectively we report that; three dimensional (3D) structures and polarity of the protein differs significantly between the two virus species. (95% and 5%) and (85% and 15%) strains of 20 CBSV and 20 UCBSV species respectively, expressed the protein in homo-trimeric and homo-tetrameric forms, correspondingly. 95% and 85% of studied strain population of the two virus species expressed hydrophilic and hydrophobic 6K2, respectively. Based on findings of the curent study, we hypothesize that; (i) The hydrophilic 6K2 expressed by the CBSV species, favour its faster systemic movement via vascular tissues of cassava host and hence result into higher tissue titres than the UCBSV species encoding hydrophobic form of the protein. t and (ii) The hydrophilic 6K2 expressed byCBSV species have additional interaction advantage with Nuclear Inclusion b protease domain (NIb) and Viral genome-linked protein (VPg), components of Virus Replication Complex (VRC) and hence contributing to faster replication of viral genome than the hydrophobic 6K2 expressed by the UCBSV species. Experimental studies are needed to resolve the 3D structures of the 6K2, VPg and NIb and comprehend complex molecular interactions between them. We suggest that, the 6K2 gene should be targeted for improvement of RNA interference (RNAi)-directed transgenesis of virus-resistant cassava as a more effective way to control the CBSD besides breeding
    corecore