20 research outputs found

    Detecting (Un)Important Content for Single-Document News Summarization

    Full text link
    We present a robust approach for detecting intrinsic sentence importance in news, by training on two corpora of document-summary pairs. When used for single-document summarization, our approach, combined with the "beginning of document" heuristic, outperforms a state-of-the-art summarizer and the beginning-of-article baseline in both automatic and manual evaluations. These results represent an important advance because in the absence of cross-document repetition, single document summarizers for news have not been able to consistently outperform the strong beginning-of-article baseline.Comment: Accepted By EACL 201

    Robust causal inference using directed acyclic graphs: the R package ‘dagitty’

    Get PDF
    Directed acyclic graphs (DAGs), which offer systematic representations of causal relationships, have become an established framework for the analysis of causal inference in epidemiology, often being used to determine covariate adjustment sets for minimizing confounding bias. DAGitty is a popular web application for drawing and analysing DAGs. Here we introduce the R package ‘dagitty’, which provides access to all of the capabilities of the DAGitty web application within the R platform for statistical computing, and also offers several new functions. We describe how the R package ‘dagitty’ can be used to: evaluate whether a DAG is consistent with the dataset it is intended to represent; enumerate ‘statistically equivalent’ but causally different DAGs; and identify exposure outcome adjustment sets that are valid for causally different but statistically equivalent DAGs. This functionality enables epidemiologists to detect causal misspecifications in DAGs and make robust inferences that remain valid for a range of different DAGs. The R package ‘dagitty’ is available through the comprehensive R archive network (CRAN) at [https://cran.r-project.org/web/packages/dagitty/]. The source code is available on github at [https://github.com/jtextor/dagitty]. The web application ‘DAGitty’ is free software, licensed under the GNU general public licence (GPL) version 2 and is available at [http:// dagitty.net/]

    Probabilistic Riemannian submanifold learning with wrapped Gaussian process latent variable models

    Full text link
    Latent variable models (LVMs) learn probabilistic models of data manifolds lying in an \emph{ambient} Euclidean space. In a number of applications, a priori known spatial constraints can shrink the ambient space into a considerably smaller manifold. Additionally, in these applications the Euclidean geometry might induce a suboptimal similarity measure, which could be improved by choosing a different metric. Euclidean models ignore such information and assign probability mass to data points that can never appear as data, and vastly different likelihoods to points that are similar under the desired metric. We propose the wrapped Gaussian process latent variable model (WGPLVM), that extends Gaussian process latent variable models to take values strictly on a given ambient Riemannian manifold, making the model blind to impossible data points. This allows non-linear, probabilistic inference of low-dimensional Riemannian submanifolds from data. Our evaluation on diverse datasets show that we improve performance on several tasks, including encoding, visualization and uncertainty quantification

    Probabilistic Riemannian submanifold learning with wrapped Gaussian process latent variable models

    Full text link
    Latent variable models (LVMs) learn probabilistic models of data manifolds lying in an \emph{ambient} Euclidean space. In a number of applications, a priori known spatial constraints can shrink the ambient space into a considerably smaller manifold. Additionally, in these applications the Euclidean geometry might induce a suboptimal similarity measure, which could be improved by choosing a different metric. Euclidean models ignore such information and assign probability mass to data points that can never appear as data, and vastly different likelihoods to points that are similar under the desired metric. We propose the wrapped Gaussian process latent variable model (WGPLVM), that extends Gaussian process latent variable models to take values strictly on a given ambient Riemannian manifold, making the model blind to impossible data points. This allows non-linear, probabilistic inference of low-dimensional Riemannian submanifolds from data. Our evaluation on diverse datasets show that we improve performance on several tasks, including encoding, visualization and uncertainty quantification

    Efficient and Parsimonious Agnostic Active Learning

    Get PDF
    Abstract We develop a new active learning algorithm for the streaming setting satisfying three important properties: 1) It provably works for any classifier representation and classification problem including those with severe noise. 2) It is efficiently implementable with an ERM oracle. 3) It is more aggressive than all previous approaches satisfying 1 and 2. To do this, we create an algorithm based on a newly defined optimization problem and analyze it. We also conduct the first experimental analysis of all efficient agnostic active learning algorithms, evaluating their strengths and weaknesses in different settings

    An Adaptive Resilience Testing Framework for Microservice Systems

    Full text link
    Resilience testing, which measures the ability to minimize service degradation caused by unexpected failures, is crucial for microservice systems. The current practice for resilience testing relies on manually defining rules for different microservice systems. Due to the diverse business logic of microservices, there are no one-size-fits-all microservice resilience testing rules. As the quantity and dynamic of microservices and failures largely increase, manual configuration exhibits its scalability and adaptivity issues. To overcome the two issues, we empirically compare the impacts of common failures in the resilient and unresilient deployments of a benchmark microservice system. Our study demonstrates that the resilient deployment can block the propagation of degradation from system performance metrics (e.g., memory usage) to business metrics (e.g., response latency). In this paper, we propose AVERT, the first AdaptiVE Resilience Testing framework for microservice systems. AVERT first injects failures into microservices and collects available monitoring metrics. Then AVERT ranks all the monitoring metrics according to their contributions to the overall service degradation caused by the injected failures. Lastly, AVERT produces a resilience index by how much the degradation in system performance metrics propagates to the degradation in business metrics. The higher the degradation propagation, the lower the resilience of the microservice system. We evaluate AVERT on two open-source benchmark microservice systems. The experimental results show that AVERT can accurately and efficiently test the resilience of microservice systems
    corecore