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Abstract 

 

Directed Acyclic Graphs (DAGs), which offer systematic representations of causal 

relationships, have become an established framework for the analysis of causal 

inference in epidemiology; often being used to determine covariate adjustment sets 

for minimizing confounding bias.  DAGitty is a popular web application for drawing and 

analysing DAGs.  Here we introduce the R package ‘dagitty’, which provides access to 

all of the capabilities of the DAGitty web application within the R platform for 

statistical computing, and also offers several new functions.  We describe how the R 

package ‘dagitty’ can be used to: evaluate whether a DAG is consistent with the 

dataset it is intended to represent; enumerate ‘statistically equivalent’ but causally 

different DAGs; and identify exposure-outcome adjustment sets that are valid for 

causally different but statistically equivalent DAGs.  This functionality enables 

epidemiologists to detect causal misspecifications in DAGs and make robust inferences 

that remain valid for a range of different DAGs. 

 

Availability 

 

The R package ‘dagitty’ is available through the comprehensive R archive network 

(CRAN) at https://cran.r-project.org/web/packages/dagitty/.  The source code is 

available on github at https://github.com/jtextor/dagitty.  The web application 

‘DAGitty’ is free software, licensed under the GNU general public license (GPL) version 

2 and is available at http://dagitty.net/. 

 

Introduction 

 

Greenland et al.’s seminal article (1), in which they describe a range of systematic 

representations of causal relationships that facilitate the specification of statistical 

analyses, is widely credited with introducing directed acyclic graphs (DAGs) to the 

field of epidemiology.  Since then, DAGs have grown in popularity and have been 

included in popular epidemiology textbooks (2).  One of the most attractive features 

of DAGs is that they provide principled procedures for identifying suitable sets of 

covariates for removing structural confounding bias through adjustment (1,3,4), using 

graphical criteria such as the so-called ‘back-door’ criterion (5) and its extensions (6–

8).  While these criteria are intuitive to apply in DAGs containing few variables, they 

become cumbersome to use in those with larger numbers of variables – a situation 

that is not uncommon in many epidemiological studies.  The challenge of working with 

larger DAGs containing more than a handful of variables is what motivated the 

development of the web application DAGitty (9).  This application contains graphical 



tools for drawing DAGs and automated algorithms capable of rapidly specifying all 

minimal sufficient adjustment sets.  To-date the DAGitty application has been cited by 

more than 100 empirical studies to support causal inference analyses of observational 

data, including a recent article published in this journal which used DAGitty to explore 

the possible role of serum bilirubin levels in the development of hypertension (10). 

 

The decision to develop DAGitty as a web application was based primarily on 

accessibility considerations and a desire to facilitate its use across a range of different 

computing platforms.  However, most quantitative epidemiological research involves 

analyses performed using dedicated statistical software (such as Stata, SAS or R).  

Situating DAGitty as a web application therefore requires epidemiologists to use 

separate software for analysing models generated using DAGs – as was the case in a 

recent study reported in the European Psychiatry Journal (11), which used the 

DAGitty web application and the SAS software package.  For these analyses it would 

be more efficient to have DAGitty’s functionality embedded within the statistical 

software used.  Indeed, the lack of integration between the DAGitty web application 

and standard statistical software may have discouraged researchers from using DAGs. 

 

DAGs are often viewed as purely qualitative causal path diagrams, which only make 

claims about the presence and absence of causal effects, not about the strength of 

such effects. Yet, most DAGs actually impose implicit quantitative restrictions on the 

probability distributions of the datasets with which they are compatible. These 

restrictions emerge as a consequence of the “d-separation” property (a more detailed 

explanation of d-separation is available as Supplementary data at IJE online).  As 

these restrictions are open to statistical evaluation, it is possible to assess formally 

whether the restrictions imposed by any given DAG hold in the dataset(s) the DAG is 

intended to represent.  In other words, provided the graphical criteria used to identify 

covariate adjustment sets have been correctly applied, the appropriateness of these 

will depend on whether the DAG itself has been correctly specified – thus formal 

statistical evaluation of DAG-dataset consistency is a potentially powerful tool for 

identifying many of the errors in the way a DAG has been specified. 

 

There is therefore a compelling case for developing a single platform that combines 

graphical tools for drawing DAGs with statistical tools for evaluating the restrictions 

these DAGs impose on the datasets they are intended to represent.  To address this, 

the R package ‘dagitty’ was created. This package not only provides direct access to 

all the features of the original DAGitty web application from within R, but also contains 

several novel features that are not (yet) available in the web application.  Rather than 

describing all of these new features here, the present report will instead focus on 

those features that are relevant to covariate adjustment sets – this currently being 

one of the most attractive features of DAGs within epidemiology.  To this end, in 

addition to explaining how the package helps evaluate DAG-dataset consistency, the 

present report will demonstrate how the package can also be used to identify 

covariate adjustment sets that are robust to a number of common misspecifications of 

causal paths within DAGs (such as causal paths that, as specified, are actually 

operating in the wrong direction). 

 

Implementation 

 

The R package ‘dagitty’ uses the same library of software routines that underlies the 

original DAGitty web application.  This library is written in JavaScript and it is 

integrated into R by means of the package ‘V8’ by Jeroen Ooms (12), together with a 

set of wrapper routines written in R.  This setup was chosen because the DAGitty 

library has been under continual development since 2010 and, as such, has achieved 



a higher level of quality than could be expected from re-implementation in an 

alternative programming language.  This setup is also intended to ensure that the web 

application and the R package can remain synchronized without the need to port 

features back and forth.  As such, these advantages outweigh any potential limitations 

of non-native implementation. Importantly, from a user perspective, this architectural 

choice has no negative consequences for utility or function, since communication 

between R and the JavaScript library is handled internally by the package and is 

invisible to the user.  The JavaScript library handles all tasks related to graph 

analysis, such as identification of adjustment sets.  The data analysis functions, such 

as the statistical testing of DAG-implied restrictions, are implemented purely in R. 

 

Usage 

 

To demonstrate some of the more important functions of the R package ‘dagitty’ it is 

worth considering an example that reflects the way the DAGitty web application is 

typically used in epidemiology: a researcher drawing a DAG to determine which 

covariate adjustment set(s) are required to remove structural confounding bias 

(4,13); and therefore which covariates should be measured/included (see Figure 1A).  

Once these variables have been identified, and data on these collected, the R package 

‘dagitty’ can then be used to evaluate whether the DAG (as specified a priori) is 

consistent with the dataset.  

 

The R package ‘dagitty’ represents graphs by means of simple textual syntax, which 

strongly resembles the syntax of the software “graphviz” (14).  This syntax has 

several features that allow graphs to be generated comprehensively so that most 

simple DAGs, with five or fewer variables, can be written in a single line of code.  For 

example, consider the relatively simple DAG X→M→Y (a DAG known as the “full 

mediation model” because the causal effect of variable X on variable Y only occurs via 

the “mediation variable” M).  In the textual syntax used by the R package ‘dagitty’, 

this DAG would simply be written as “dag { X -> M -> Y }”.  Furthermore, instead of 

typing the syntax of a DAG into the R package ‘dagitty’ by hand, it is possible to build 

the DAG using the DAGitty web application and then copy and paste (or download 

directly) the resulting syntax directly into an R script. 

 

Evaluating DAG-dataset consistency 

 

As alluded to earlier, the evaluation of DAG-dataset consistency draws on the 

statistically testable restrictions that emerge as a consequence of the so-called “d-

separation” property. Testable restrictions can be found in any DAG that contains 

pairs of variables with no direct causal path between them (though not, unfortunately, 

in those DAGs where all the variables are pairwise linked by arrows – a phenomenon 

that may be common in some contexts, such as purely social or biosocial pathways). 

The d-separation property imposes restrictions in the form of conditional or 

unconditional independencies that must hold in any dataset that is generated by the 

causal process described by the DAG. For instance, the “full mediation model” 

(X→M→Y) implies through d-separation that X and Y must be conditionally 

independent given M (commonly written as X ⊥ Y | M).  By testing such implications 

statistically, it is possible to evaluate whether the DAG, as specified, is consistent with 

the dataset it is intended to represent.  If at least one implied independence does not 

hold in the dataset, then this means that the causal processes encoded by the DAG 

cannot have generated these data.  If, instead, we test several implied 

independencies and none are refuted by the data, then this will lend credibility to the 

hypotheses encoded in the DAG, even though (as for any statistical test) these tests 

alone cannot prove that the DAG is correct.  Moreover, it is important to recognise 



that statistical tests of d-separation implications are not tests of ‘null hypotheses’, but 

are direct tests of the restrictions imposed by the DAG.  Nonetheless, to avoid any 

potential confusion, this approach might be better described as DAG-dataset 

consistency evaluation.  

 

A relatively simple strategy for testing any given conditional independence statement 

(such as X ⊥ Y | Z) is to regress both X and Y on Z, and then test for a non-zero 

correlation between the residuals (15). Where linear regression is used, this approach 

is equivalent to a test of zero partial correlation.  For jointly normally distributed 

variables, conditional independence implies zero partial correlation.  However, for 

non-normal data, the partial correlation can be non-zero even when the variables 

examined are conditionally independent. In such instances, non-parametric regression 

techniques should be used to compute the residuals. The R package ‘dagitty’ currently 

supports both linear regression and local polynomial regression to compute residuals, 

offering both parametric and semi-parametric tests of conditional independence, 

respectively.  

 

To illustrate how this approach might be applied, Figure 1 gives an example based on 

sports medicine exploring the possible causal relationship between “performance of 

warm-up exercises” (WUE) as the exposure on “injury” (I) as the outcome (3). In this 

example, the DAG (as specified by the research team) is missing a direct arrow from 

“team motivation” (TM) to “performance of warm-up exercises” (WUE; Figure 1A).  To 

evaluate DAG-dataset consistency the DAG model code (from the DAGitty web 

application) is copied and pasted, or downloaded directly, into an R script in which the 

dataset is also uploaded (the only stipulation being that the names of variables used 

when specifying the DAG are the same as those in the dataset; Figure 1B).  The 

function ‘localTests’ is then used to apply the d-separation criterion and enumerate 

the DAG’s implied conditional independencies, followed by a formal test of zero 

(partial) correlation for each of the identified independencies. The dedicated function 

‘plotLocalTestResults’ visualizes the results of these tests using a plot of the empirical 

partial correlation coefficients and their confidence intervals (Figure 1C). As a rule, the 

farther from zero the empirical correlation, the less ‘consistent’ the corresponding 

implication with the dataset collected. 

 

While this approach is relatively straightforward for DAGs containing only a few 

variables, larger DAGs can have many testable implications (the DAG in Figure 1A, for 

example, has 64). This means that the problem of multiple testing can become an 

issue. To mitigate this problem, the p-values obtained should be corrected for multiple 

testing. Various methods for p-value correction are available in R including the Holm-

Bonferroni method (a more powerful version of the Bonferroni method, in which the 

kth smallest of m p-values is multiplied by [m+1-k]). Importantly, the Holm-

Bonferroni method does not assume independence of the hypotheses being tested. 

Example code to illustrate how the p-value correction for multiple testing is performed 

can be found in the Supplementary data at IJE online, and the results of applying this 

correction to the example considered earlier, is summarised in Figure 1C. This shows 

the three empirical correlations, each relating to separate testable implications, for 

which the corrected p-value is smaller than an arbitrary cut-off value of 0.05.  

 

In those instances where implications of the type “X and Y are independent given M” 

are found to be inconsistent with the dataset collected, several potential reasons 

might need to be considered, including: (i) misspecification of relationships amongst 

the measured (‘observed’) variables included in the DAG (such as when the direction 

of an arrow on one, or more, of the causal paths has been misspecified a priori); (ii) 

omission of an unmeasured (‘latent’) variable within the DAG that is a common cause 



of two or more other variables (such that, although there is no direct causal link 

between the two, they are nonetheless correlated); and/or (iii) measurement error in 

one or more of the variables included (whether by chance/at random, or where a 

latent variable causes measurement error in the two variables, as in (ii) above). All of 

these potential reasons require careful consideration in the light of the best available 

knowledge of established functional/causal relationships amongst the variables 

therein.  

 

In the example DAG summarised in Figure 1, all three of the testable implications that 

were found to be inconsistent with the dataset relate to the same two variables: 

“team motivation” (TM); and “warm-up exercises” (WUE) – as a result of the missing 

direct arrow from the former to the latter. In this instance, the research team should 

therefore reconsider whether their decision to omit this direct arrow was correct, and 

where there is no compelling substantive theory to support the omission of this causal 

path, the DAG should be revised with the arrow between the two included. In this 

instance, the inclusion of the arrow between TM and WUE would change the 

adjustment sets applicable to the exposure-outcome of interest (i.e. the relationship 

between WUE and “injury” (I); Figure 1D), and reduce the number of minimal 

adjustment sets from four to three. Note, however, that all three minimal adjustment 

sets for the relationship between WUE and I in the revised DAG are also valid (though 

not necessarily minimal) for the original (i.e. unrevised) DAG. 

 

Valid adjustment sets for statistically equivalent DAGs 

 

It is worth restating that, while consistency between any given DAG and the dataset it 

is intended to represent might bolster confidence in the hypotheses encoded therein, 

this in itself does not amount to ‘proof’ that the DAG is correct.  Indeed, an important 

limitation of this approach is that different DAGs can have exactly the same testable 

implications.  For example, the DAG for the “full mediation model” described earlier 

(X→M→Y) has exactly the same testable implication (X ⊥ Y | M) as both: the DAG in 

which X←M←Y (i.e. the symmetrically opposite scenario, where Y causes X entirely 

mediated through M); and the DAG in which X←M→Y (i.e. where there is no causal 

path in either direction between X or Y, but instead both are caused by M).  All three 

of these DAGs imply that X and Y are independent given M, even though their 

functional/causal interpretations are very different.  For this reason, the R package 

‘dagitty’ includes additional functions that help to identify and evaluate different DAGs 

that have exactly the same testable implications.  

 

The function ‘equivalentDAGs’ generates a list of all possible DAGs that are 

statistically equivalent to the DAG originally specified. For example, as shown in 

Figure 1E, there are five other DAGs that are equivalent to the DAG shown in Figure 

1A (a so-called “equivalence class” of DAGs).  Equivalence classes are purely based on 

the testable implications, and therefore, they are not dependent on the exposure(s) 

and outcome(s) for which the DAG was originally intended.  However, adjustment sets 

do depend upon the exposure and outcome specified.  For example, only five of the 

six DAGs in the equivalence class shown in Figure 1E share the same minimal 

sufficient adjustment sets as the original DAG for the relationship between WUE and I. 

 

In those instances where the same minimal sufficient adjustment sets apply to an 

exposure-outcome relationship in all of the DAGs in an equivalence class, this greatly 

strengthens confidence that these sets are valid (especially if the DAG has also 

undergone DAG-dataset consistency evaluation, as described earlier).  The R package 

‘dagitty’ can identify such cases using a recently published generalized version of the 

back-door criterion (8,16).  To demonstrate this feature within a real world example, 



this has been applied to a DAG derived from the recently published 

bilirubin/hypertension study (10).  This fairly complex DAG (see Figure 2A) has a total 

of 41 arrows, and its equivalence class contains 40 DAGs.  The ‘equivalenceClass’ 

function provides a useful graphical summary of such large equivalence classes, in 

which any arrows that have the same direction in all of the different DAGs are 

displayed normally (i.e. “←” or “→”), while arrows with different directions in different 

DAGs are displayed without arrowheads (i.e. “−”; Figure 2B). There are 30 arrows in 

the bilirubin DAG whose direction is the same in the entire equivalence class; 

therefore, an error in the direction of any of these arrows would lead to a change in 

the testable implications, and is therefore potentially detectable using DAG-dataset 

consistency evaluation (as described earlier).  In contrast, errors in the direction of 

any of the remaining 11 arrows may or may not lead to a change in the testable 

implications, depending on whether the resulting DAG is still in the equivalence class.  

However, by combining the functions ‘equivalenceClass’ and ‘adjustmentSets’ it is 

possible to determine that, in this DAG, the same minimal sufficient adjustment set 

would remain valid for the entire equivalence class for the exposure-outcome 

relationship under investigation  (i.e. between bilirubin and hypertension; see Figure 

2C).  Therefore, for this DAG, the issue of statistical equivalence would not be a 

concern for the validity of the adjustment set determined.  The same conclusion would 

be drawn for 51 out of 136 possible exposure-outcome relationships that can be 

investigated for this DAG (Figure 2D). 

 

In this way, the R package ‘dagitty’ makes it possible to identify robust minimal 

sufficient adjustment sets by combining the evaluation of DAG-dataset consistency 

with the identification of valid adjustment sets for statistically equivalent DAGs.   

 

Conclusion 

 

The present report introduced two key functions of the R package ‘dagitty’: the first, 

evaluating the consistency of DAGs with the datasets they are intended to represent; 

and the second, deriving covariate adjustment sets that are valid for whole groups of 

different (but statistically equivalent) DAGs.  Other features of the R package ‘dagitty’, 

which are related to instrumental variables and the testing of linear structural 

equation models, are described in more detail within the reference manual 

accompanying the package.  For those studying causal inference, there is also an R 

vignette (available at http://dagitty.net/primer/), which shows how to solve many of 

the exercises in the recent textbook on causality by Pearl et al. (17). 

 

While these new tools help strengthen confidence in the use of DAGs in a range of 

specific circumstances, it is important to point out that one should avoid the 

temptation to use evaluations of DAG-dataset inconsistency to generate purely data-

driven, post-hoc modifications to DAGs.  This runs the risk of ‘over-fitting’ and biased 

inference in which: the (modified) DAG is no longer specified a priori on the basis of 

established functional/causal relationships between variables; and the consistency of 

these DAG-specified relationships with the dataset the DAG was intended to represent 

can no longer be evaluated (since the DAG has been modified to ‘fit’ the dataset 

rather than specified on the basis of established functional/causal relationships). 

 

Regarding the evaluation of DAG-dataset consistency, it is worth conceding that an 

important limitation of the current approach lies in the use of partial correlations to 

evaluate conditional independencies.  This approach requires a normal distribution of 

the variables involved.  Non-normality can be mitigated to some extend by using non-

parametric regression to generate residuals (as described earlier; 15). However, non-

parametric testing of conditional independence remains challenging and, motivated by 



the growing importance of DAGs to the design of quantitative analyses, this has now 

become a research topic in its own right.  A future aspiration is therefore to 

incorporate the results of advances in this area (18,19) within the R package ‘dagitty’ 

to provide a fuller range of analytical solutions. 

 

Nevertheless, we believe that the functionality of the R package ‘dagitty’ will help 

address one key concern that has been raised about DAG methodology, namely that 

this approach “assume[s] that all … DAGs have been properly specified” (20).  While it 

is true that the validity of DAG-based analyses, as for any statistical analyses, 

depends upon the validity of any underlying assumptions, many have welcomed the 

use of DAGs precisely because they help to reveal a number of these assumptions in a 

transparent and explicit fashion, so that they are then open to scrutiny, assessment 

and critique.  The R package ‘dagitty’ takes this one step further by facilitating the 

evaluation of such assumptions against the implications they have for the datasets 

they are intended to represent.  In many instances, the package can also identify 

adjustment sets that are unaffected by misspecification in the direction of at least 

some arrows within the DAG.  It is therefore hoped that the R package ‘dagitty’ will 

help epidemiologists use DAGs and test them against their data with greater ease and 

growing confidence; and will facilitate the identification of adjustment sets that remain 

robust to potential misspecifications of the original DAG. 
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Figure Legends 

 

Figure 1: DAG consistency evaluation.  (A) Example DAG from a sports medicine 

scenario (3), lightly edited for simplicity of presentation.  In this example, the 

DAG specified by the user is considered to be missing a causal path operating 

between “team motivation” (TM) and the “performance of warm-up exercises” 

(WUE; dashed edge).  In other words, the DAG (as specified) fails to account for 

a relevant causal process in the application scenario.  (B) Example code snippet 

showing how to load the dataset and the DAG model code (the latter pre-

specified in the DAGitty web application) into an R session.  The implications of 

the DAG are then evaluated against the dataset using a single line of R code.  

(C) Plot of the implications whose Bonferroni-Holm-corrected p-values were 

lower than 0.05.  All three implications indicate that “team motivation” (TM) and 

the “performance of warm-up exercises” (WUE) must become independent when 

conditioned on other variables (for example, the statement “TM ⊥ WUE | FL” 

means “team motivation and the performance of warm-up exercises are 

conditionally independent given the fitness level”).  This is, however, not possible 

if a direct causal effect exists between the two variables (i.e. if the omission of 

this causal path within the DAG is, as suggested, an error), and in this instance 

the evaluation fails.  (D) Adjustment sets for the original (incorrectly specified) 

DAG compared to those for the corrected DAG. One of the adjustment sets is 

minimal and valid for both DAGs; the other two adjustment sets of the corrected 

DAG (marked with asterisks) are valid, though not minimal, for the original DAG.  

(E) R package ‘dagitty’ code used to enumerate all DAGs that have the same 

testable implications as the DAG shown in Figure 1A (i.e. without the TM→WUE 

arrow). Adjustment sets identified for all equivalent DAGs reveal that the original 

adjustment sets are also valid for all but one of the equivalent DAGs, in which 

the causal paths are changed due to several reversed directions. 

 

Figure 2: Equivalence classes and adjustment sets.  (A) Example DAG from a 

recent study exploring the potential causal relationship between bilirubin and 

hypertension (10), lightly edited for simplicity of presentation.  (B) Graphical 

representation of the set of statistically equivalent DAGs.  Bold lines indicate 

paths whose direction is not consistent in all of the equivalent DAGs.  Two of the 

equivalent DAGs cannot be distinguished using the evaluation procedure 

illustrated in Figure 1.  (C) Code snippet from the R package ‘dagitty’ illustrating 

how to compute an adjustment set for an entire equivalence class of DAGs.  In 

this example, it turns out that the same minimal adjustment set is indeed valid 

for each of the 40 DAGs in the equivalence class.  (D) Investigation of 

alternative exposure-outcome relationships for the DAG equivalence class. For 

each exposure-outcome combination consistent with the order of arrows in the 

original DAG, the number of minimal adjustment sets valid for the entire 

equivalence class is shown where such adjustment sets can be found. 
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Figure 1
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# load the R package `dagitty`

library(dagitty)

# load data from a text file

d <- read.csv("http://dagitty.net/sports.csv")

# download DAG from dagitty.net

g <- downloadGraph("dagitty.net/mN4IKjR")

# evaluate the d-separation implications of the DAG

r <- localTests(g, d)

# perform Holm-Bonferroni correction

r$p.value <- p.adjust(r$p.value)

# focus on tests with p-values below a threshold

r <- r[r$p.value<0.05,]

# plot results

plotLocalTestResults(r)

C

-0.4 -0.2 0.0 0.2 0.4

partial correlation

TM ⊥WUE | PGP

TM ⊥WUE | FL

TM ⊥WUE | C

D
Minimal adjustment sets

Without TM→WUE With TM→WUE

{ NMF, TM } { NMF, TM }

{ FL } { FL, TM }∗

{ PGP } { PGP, TM }∗

{ C, NMF }

E

# continuation of (B): enumerate the DAGs that are equivalent to (A) (without the TM->WUE arrow)

ec <- equivalentDAGs( g )

# print minimal adjustment sets for each DAG

for( i in seq_along( ec ) ){ cat(i,":\n"); print( adjustmentSets( ec[[i]], "WUE", "I" ) ) }
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Figure 2
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C

g <- downloadGraph("dagitty.net/mjjKjUe")

adjustmentSets(g, "Bilirubin", "Hypertension")

## { Age, Alcohol use, Creatinine, Education, Obesity, Serum Albumin, Uric Acid }

ga <- equivalenceClass(g)

adjustmentSets(ga, "Bilirubin", "Hypertension")

## { Age, Alcohol use, Creatinine, Education, Obesity, Serum Albumin, Uric Acid }
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