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Abstract

We develop a new active learning algorithm for the streaming setting satisfying
three important properties: 1) It provably works for any classifier representation
and classification problem including those with severe noise. 2) It is efficiently
implementable with an ERM oracle. 3) It is more aggressive than all previous
approaches satisfying 1 and 2. To do this, we create an algorithm based on a
newly defined optimization problem and analyze it. We also conduct the first ex-
perimental analysis of all efficient agnostic active learning algorithms, evaluating
their strengths and weaknesses in different settings.

1 Introduction

Given a label budget, what is the best way to learn a classifier?

Active learning approaches to this question are known to yield exponential improvements over su-
pervised learning under strong assumptions [7]. Under much weaker assumptions, streaming-based
agnostic active learning [2, 4, 5, 9, 18] is particularly appealing since it is known to work for any
classifier representation and any label distribution with an i.i.d. data source.1 Here, a learning al-
gorithm decides for each unlabeled example in sequence whether or not to request a label, never
revisiting this decision. Restated then: What is the best possible active learning algorithm which
works for any classifier representation, any label distribution, and is computationally tractable?

Computational tractability is a critical concern, because most known algorithms for this setting [e.g.,
2, 16, 18] require explicit enumeration of classifiers, implying exponentially-worse computational
complexity compared to typical supervised learning algorithms. Active learning algorithms based
on empirical risk minimization (ERM) oracles [4, 5, 13] can overcome this intractability by using
passive classification algorithms as the oracle to achieve a computationally acceptable solution.

Achieving generality, robustness, and acceptable computation has a cost. For the above methods [4,
5, 13], a label is requested on nearly every unlabeled example where two empirically good classifiers
disagree. This results in a poor label complexity, well short of information-theoretic limits [6] even
for general robust solutions [18]. Until now.

In Section 3, we design a new algorithm called ACTIVE COVER (AC) for constructing query prob-
ability functions that minimize the probability of querying inside the disagreement region—the set
of points where good classifiers disagree—and never query otherwise. This requires a new algo-
rithm that maintains a parsimonious cover of the set of empirically good classifiers. The cover is
a result of solving an optimization problem (in Section 4) specifying the properties of a desirable

1See the monograph of Hanneke [11] for an overview of the existing literature, including alternative settings
where additional assumptions are placed on the data source (e.g., separability) [8, 3, 1].
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query probability function. The cover size provides a practical knob between computation and label
complexity, as demonstrated by the complexity analysis we present in Section 4.

Also in Section 3, we prove that AC effectively maintains a set of good classifiers, achieves good
generalization error, and has a label complexity bound tighter than previous approaches. The label
complexity bound depends on the disagreement coefficient [10], which does not completely capture
the advantage of the algorithm. In the end of Section 3 we provide an example of a hard active
learning problem where AC is substantially superior to previous tractable approaches. Together,
these results show that AC is better and sometimes substantially better in theory.

Do agnostic active learning algorithms work in practice? No previous works have addressed this
question empirically. Doing so is important because analysis cannot reveal the degree to which ex-
isting classification algorithms effectively provide an ERM oracle. We conduct an extensive study in
Section 5 by simulating the interaction of the active learning algorithm with a streaming supervised
dataset. Results on a wide array of datasets show that agnostic active learning typically outperforms
passive learning, and the magnitude of improvement depends on how carefully the active learning
hyper-parameters are chosen.

More details (theory, proofs and empirical evaluation) are in the long version of this paper [14].

2 Preliminaries

Let P be a distribution over X × {±1}, and let H ⊆ {±1}X be a set of binary classifiers, which
we assume is finite for simplicity.2 Let EX [·] denote expectation with respect to X ∼ PX , the
marginal of P over X . The expected error of a classifier h ∈ H is err(h) := Pr(X,Y )∼P(h(X) 6=
Y ), and the error minimizer is denoted by h∗ := arg minh∈H err(h). The (importance weighted)
empirical error of h ∈ H on a multiset S of importance weighted and labeled examples drawn from
X × {±1} × R+ is err(h, S) :=

∑
(x,y,w)∈S w · 1(h(x) 6= y)/|S|. The disagreement region for a

subset of classifiersA ⊆ H is DIS(A) := {x ∈ X | ∃h, h′ ∈ A such that h(x) 6= h′(x)}. The regret
of a classifier h ∈ H relative to another h′ ∈ H is reg(h, h′) := err(h)− err(h′), and the analogous
empirical regret on S is reg(h, h′, S) := err(h, S) − err(h′, S). When the second classifier h′ in
(empirical) regret is omitted, it is taken to be the (empirical) error minimizer inH.

A streaming-based active learner receives i.i.d. labeled examples (X1, Y1), (X2, Y2), . . . from P one
at a time; each label Yi is hidden unless the learner decides on the spot to query it. The goal is to
produce a classifier h ∈ H with low error err(h), while querying as few labels as possible. In the
IWAL framework [4], a decision whether or not to query a label is made randomly: the learner
picks a probability p ∈ [0, 1], and queries the label with that probability. Whenever p > 0, an
unbiased error estimate can be produced using inverse probability weighting [12]. Specifically, for
any classifier h, an unbiased estimator E of err(h) based on (X,Y ) ∼ P and p is as follows: if Y
is queried, then E = 1(h(X) 6= Y )/p; else, E = 0. It is easy to check that E(E) = err(h). Thus,
when the label is queried, we produce the importance weighted labeled example (X,Y, 1/p).3

3 Algorithm and Statistical Guarantees

Our new algorithm, shown as Algorithm 1, breaks the example stream into epochs. The algorithm
admits any epoch schedule so long as the epoch lengths satisfy τm−1 ≤ 2τm. For technical reasons,
we always query the first 3 labels to kick-start the algorithm. At the start of epoch m, AC computes
a query probability function Pm : X → [0, 1] which will be used for sampling the data points to
query during the epoch. This is done by maintaining a few objects of interest during each epoch
in Step 4: (1) the best classifier hm+1 on the sample Z̃m collected so far, where Z̃m has a mix of
queried and predicted labels; (2) a radius ∆m, which is based on the level of concentration we want
various empirical quantities to satisfy; and (3) the set Am+1 consisting of all the classifiers with
empirical regret at most ∆m on Z̃m. Within the epoch, Pm determines the probability of querying
an example in the disagreement region for this set Am of “good” classifiers; examples outside this

2The assumption that H is finite can be relaxed to VC-classes using standard arguments.
3If the label is not queried, we produce an ignored example of weight zero; its only purpose is to maintain

the correct count of querying opportunities. This ensures that 1/|S| is the correct normalization in err(h, S).
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Algorithm 1 ACTIVE COVER (AC)
input: Constants c1, c2, c3, confidence δ, error radius γ, parameters α, β, ξ for (OP), epoch schedule

0 = τ0 < 3 = τ1 < τ2 < τ3 < . . . < τM satisfying τm+1 ≤ 2τm for m ≥ 1.
initialize: epoch m = 0, Z̃0 := ∅, ∆0 := c1

√
ε1 + c2ε1 log 3, where εm := 32 log(|H|τm/δ)/τm.

1: Query the labels {Yi}3i=1 of the first three unlabeled examples {Xi}3i=1, and set A1 := H,
P1 ≡ Pmin,i = 1, and S = {(Xj , Yj , 1)}3j=1.

2: for i = 4, . . . , n, do
3: if i = τm + 1 then
4: Set Z̃m = Z̃m−1 ∪ S, and S = ∅. Let

hm+1 := arg min
h∈H

err(h, Z̃m), ∆m := c1

√
εmerr(hm+1, Z̃m) + c2εm log τm, and

Am+1 := {h ∈ H | err(h, Z̃m)− err(hm+1, Z̃m) ≤ γ∆m}.

5: Compute the solution Pm+1(·) to the problem (OP) and increment m := m+ 1.
6: end if
7: if next unlabeled point Xi ∈ Dm := DIS(Am), then
8: Toss coin with bias Pm(Xi); add example (Xi, Yi, 1/Pm(Xi)) to S if outcome is heads,

otherwise add (Xi, 1, 0) to S (see Footnote 3).
9: else

10: Add example with predicted label (Xi, hm(Xi), 1) to S.
11: end if
12: end for
13: Return hM+1 := arg minh∈H err(h, Z̃M ).

region are not queried but given labels predicted by hm (so error estimates are not unbiased). AC
computes Pm by solving the optimization problem (OP), which is further discussed below.

The objective function of (OP) encourages small query probabilities in order to minimize the label
complexity. The constraints (1) in (OP) bound the variance in our importance-weighted regret esti-
mates for every h ∈ H. This is key to ensuring good generalization as we will later use Bernstein-
style bounds which rely on our random variables having a small variance. More specifically, the
LHS of the constraints measures the variance in our empirical regret estimates for h, measured only
on the examples in the disagreement regionDm. This is because the importance weights in the form
of 1/Pm(X) are only applied to these examples; outside this region we use the predicted labels with
an importance weight of 1. The RHS of the constraint consists of three terms. The first term ensures
the feasibility of the problem, as P (X) ≡ 1/(2α2) for X ∈ Dm will always satisfy the constraints.
The second empirical regret term makes the constraints easy to satisfy for bad hypotheses—this is
crucial to rule out large label complexities in case there are bad hypotheses that disagree very often
with hm. A benefit of this is easily seen when −hm ∈ H, which might have a terrible regret, but
would force a near-constant query probability on the disagreement region if β = 0. Finally, the
third term will be on the same order as the second one for hypotheses in Am, and is only included
to capture the allowed level of slack in our constraints which will be exploited for the efficient im-
plementation in Section 4. In addition to controlled variance, good concentration also requires the
random variables of interest to be appropriately bounded. This is ensured through the constraints (2),
which impose a minimum query probability on the disagreement region. Outside the disagreement
region, we use the predicted label with an importance weight of 1, so that our estimates will always
be bounded (albeit biased) in this region. Note that this optimization problem is written with respect
to the marginal distribution of the data points PX , meaning that we might have infinitely many of
the latter constraints. In Section 4, we describe how to solve this optimization problem efficiently,
and using access to only unlabeled examples drawn from PX .

Algorithm 1 requires several input parameters, which must satisfy:

α ≥ 1, ξ ≤ 1

8nεM log n
, β2 ≤ 1

γnεM log n
, γ ≥ 216, c1 ≥ 2α

√
6, c2 ≥ 216c21, c3 ≥ 1.

The first three parameters, α, β and ξ control the tightness of the variance constraints (1). The next
three parameters γ, c1 and c2 control the threshold that defines the set of empirically good classifiers;
c3 is used in the minimum probability (4) and can be simply set to 1.
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Optimization Problem (OP) to compute Pm

min
P

EX
[

1

1− P (X)

]
s.t. ∀h ∈ H EX

[
1(h(x) 6= hm(x) ∧ x ∈ Dm)

P (X)

]
≤ bm(h), (1)

∀x ∈ X 0 ≤ P (x) ≤ 1, and ∀x ∈ Dm P (x) ≥ Pmin,m (2)

where Imh (X) = 1(h(x) 6= hm(x) ∧ x ∈ Dm),

bm(h) = 2α2EX [Imh (X)] + 2β2γreg(h, hm, Z̃m−1)τm−1∆m−1 + ξτm−1∆2
m−1,

(3)

Pmin,m = min

 c3√
τm−1err(hm,Z̃m−1)

nεM
+ log τm−1

,
1

2

 . (4)

Epoch Schedules: The algorithm takes an arbitrary epoch schedule subject to τm < τm+1 ≤ 2τm.
Two natural extremes are unit-length epochs, τm = m, and doubling epochs, τm+1 = 2τm. The
main difference lies in the number of times (OP) is solved, which is a substantial computational
consideration. Unless otherwise stated, we assume the doubling epoch schedule where the query
probability and ERM classifier are recomputed only O(log n) times.

Generalization and Label Complexity. We present guarantees on the generalization error and
label complexity of Algorithm 1 assuming a solver for (OP), which we provide in the next section.
Our first theorem provides a bound on generalization error. Define

errm(h) :=
1

τm

m∑
j=1

(τj − τj−1)E(X,Y )∼P[1(h(X) 6= Y ∧X ∈ DIS(Aj))],

∆∗0 := ∆0 and ∆∗m := c1
√
εmerrm(h∗) + c2εm log τm for m ≥ 1.

Essentially ∆∗m is a population counterpart of the quantity ∆m used in Algorithm 1, and crucially
relies on errm(h∗), the true error of h∗ restricted to the disagreement region at epoch m. This quan-
tity captures the inherent noisiness of the problem, and modulates the transition between O(1/

√
n)

to O(1/n) type error bounds as we see next.

Theorem 1. Pick any 0 < δ < 1/e such that |H|/δ >
√

192. Then recalling that h∗ =
arg minh∈H err(h), we have for all epochs m = 1, 2, . . . ,M , with probability at least 1− δ

reg(h, h∗) ≤ 16γ∆∗m for all h ∈ Am+1, and (5)

reg(h∗, hm+1, Z̃m) ≤ 216∆m. (6)

The proof is in Section 7.2.2 of [14]. Since we use γ ≥ 216, the bound (6) implies that h∗ ∈ Am for
all epochs m. This also maintains that all the predicted labels used by our algorithm are identical to
those of h∗, since no disagreement amongst classifiers in Am was observed on those examples. This
observation will be critical to our proofs, where we will exploit the fact that using labels predicted
by h∗ instead of observed labels on certain examples only introduces a bias in favor of h∗, thereby
ensuring that we never mistakenly drop the optimal classifier from Am. The bound (5) shows that
every classifier inAm+1 has a small regret to h∗. Since the ERM classifier hm+1 is always inAm+1,
this yields our main generalization error bound on the classifier hτm+1 output by Algorithm 1.
Additionally, it also clarifies the definition of the sets Am as the set of good classifiers: these are
classifiers which indeed have small population regret relative to h∗. In a realizable setting where h∗

has zero error, ∆∗m = Õ(1/τm) leading to a Õ(1/n) regret after n unlabeled examples are presented
to the algorithm. On the other extreme, if errm(h∗) is a constant, then the regret isO(1/

√
n). There

are also interesting regimes in between, where err(h∗) might be a constant, but errm(h∗) measured
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over the disagreement region decreases rapidly. More specifically, we show in Appendix E of [14]
that the expected regret of the classifier returned by Algorithm 1 achieves the optimal rate [6] under
the Tsybakov [17] noise condition.

Next, we provide a label complexity guarantee in terms of the disagreement coefficient [11]:
θ = θ(h∗) := supr>0 PX {x | ∃h ∈ H s.t.h∗(x) 6= h(x), PX {x′ | h(x′) 6= h∗(x′)} ≤ r}/r.

Theorem 2. With probability at least 1− δ, the number of label queries made by Algorithm 1 after
n examples over M epochs is 4θ errM (h∗)n+ θ · Õ(

√
nerrM (h∗) log(|H|/δ) + log(|H|/δ)).

The theorem is proved in Appendix D of [14]. The first term of the label complexity bound is
linear in the number of unlabeled examples, but can be quite small if θ is small, or if errM (h∗) ≈
0—it is indeed 0 in the realizable setting. The second term grows at most as Õ(

√
n), but also

becomes a constant for realizable problems. Consequently, we attain a logarithmic label complexity
in the realizable setting. In noisy settings, our label complexity improves upon that of predecessors
such as [5, 13]. Beygelzimer et al. [5] obtain a label complexity of θ

√
n, exponentially worse

for realizable problems. A related algorithm, Oracular CAL [13], has label complexity scaling
with

√
nerr(h∗) but a worse dependence on θ. In all comparisons the use of errM (h∗) provides a

qualitatively superior analysis to all previous results depending on err(h∗) since this captures the
fact that noisy labels outside the disagreement region do not affect the label complexity. Finally,
as in our regret analysis, we show in Appendix E of [14] that the label complexity of Algorithm 1
achieves the information-theoretically lower bound [6] under Tsybakov’s low-noise condition [17].

Section 4.2.2 of [14] gives an example where the label complexity of Algorithm 1 is significantly
smaller than both IWAL and Oracular CAL by virtue of rarely querying in the disagreement region.
The example considers a distribution and a classifier space with the following structure: (i) for most
examples a single good classifier predicts differently from the remaining classifiers; (ii) on a few
examples, half the classifiers predict one way and half the other. In the first case, little advantage is
gained from a label because it provides evidence against only a single classifier. ACTIVE COVER
queries over the disagreement region with a probability close to Pmin in case (i) and probability 1 in
case (ii), while others query with probability Ω(1) everywhere implyingO(

√
n) times more queries.

4 Efficient implementation

The computation of hm is an ERM operation, which can be performed efficiently whenever an effi-
cient passive learner is available. However, several other hurdles remain. Testing for x ∈ DIS(Am)
in the algorithm, as well as finding a solution to (OP) are considerably more challenging. The epoch
schedule helps, but (OP) is still solved O(log n) times, necessitating an extremely efficient solver.

Starting with the first issue, we follow Dasgupta et al. [9] who cleverly observed that x ∈ Dm :=
DIS(Am) can be efficiently determined using a single call to an ERM oracle. Specifically, to apply
their method, we use the oracle to find4 h′ = arg min{err(h, Z̃m−1) | h ∈ H, h(x) 6= hm(x)}. It
can then be argued that x ∈ Dm = DIS(Am) if and only if the easily-measured regret of h′ (that is,
reg(h′, hm, Z̃m−1)) is at most γ∆m−1. Solving (OP) efficiently is a much bigger challenge because
it is enormous: There is one variable P (x) for every point x ∈ X , one constraint (1) for each
classifier h and bound constraints (2) on P (x) for every x. This leads to infinitely many variables
and constraints, with an ERM oracle being the only computational primitive available.

We eliminate the bound constraints using barrier functions. Notice that the objective EX [1/(1 −
P (x))] is already a barrier at P (x) = 1. To enforce the lower bound (2), we modify the objective to

EX
[

1

1− P (X)

]
+ µ2EX

[
1(X ∈ Dm)

P (X)

]
, (7)

where µ is a parameter chosen momentarily to ensure P (x) ≥ Pmin,m for all x ∈ Dm. Thus, the
modified goal is to minimize (7) over non-negative P subject only to (1). We solve the problem in
the dual where we have a large but finite number of optimization variables, and efficiently maximize
the dual using coordinate ascent with access to an ERM oracle over H. Let λh ≥ 0 denote the

4 See Appendix F of [15] for how to deal with one constraint with an unconstrained oracle.
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Algorithm 2 Coordinate ascent algorithm to solve (OP)

input Accuracy parameter ε > 0. initialize λ← 0.
1: loop
2: Rescale: λ← s · λ where s = arg maxs∈[0,1]D(s · λ).

3: Find h̄ = arg max
h∈H

EX
[
Imh (X)

Pλ(X)

]
− bm(h).

4: if EX
[
Im
h̄

(X)

Pλ(X)

]
− bm(h̄) ≤ ε then

5: return λ
6: else

7: Update λh̄ as λh̄ ← λh̄ + 2
EX [Im

h̄
(X)/Pλ(X)]− bm(h̄)

EX [Im
h̄

(X)/qλ(X)3]
.

8: end if
9: end loop

Lagrange multiplier for the constraint (1) for classifier h. Then for any λ, we can minimize the
Lagrangian over each primal variable P (X) yielding the solution

Pλ(x) =
1(x ∈ Dm)qλ(x)

1 + qλ(x)
, where qλ(x) =

√
µ2 +

∑
h∈H

λhImh (x) (8)

and Imh (x) = 1(h(x) 6= hm(x) ∧ x ∈ Dm). Clearly, µ/(1 + µ) ≤ Pλ(x) ≤ 1 for all x ∈ Dm, so
all the bound constraints (2) in (OP) are satisfied if we choose µ = 2Pmin,m. Plugging the solution
Pλ into the Lagrangian, we obtain the dual problem of maximizing the dual objective

D(λ) = EX
[
1(X ∈ Dm)(1 + qλ(X))2

]
−
∑
h∈H

λhbm(h) + C0 (9)

over λ ≥ 0. The constantC0 is equal to 1−Pr(Dm) where Pr(Dm) = Pr(X ∈ Dm). An algorithm
to approximately solve this problem is presented in Algorithm 2. The algorithm takes a parameter
ε > 0 specifying the degree to which all of the constraints (1) are to be approximated. Since D is
concave, the rescaling step can be solved using a straightforward numerical line search. The main
implementation challenge is in finding the most violated constraint (Step 3). Fortunately, this step
can be reduced to a single call to an ERM oracle. To see this, note that the constraint violation on
classifier h can be written as

EX
[
Imh (X)

P (X)

]
− bm(h) = EX

[
1(X ∈ Dm)

(
1

P (X)
− 2α2

)
1(h(X) 6= hm(X))

]
− 2β2γτm−1∆m−1(err(h, Z̃m−1)− err(hm, Z̃m−1))− ξτm−1∆2

m−1.

The second term of the right-hand expression is simply the scaled risk (classification error) of h with
respect to the actual labels. The first term is the risk of h in predicting samples which have been
labeled according to hm with importance weights of 1/P (x)−2α2 if x ∈ Dm and 0 otherwise; note
that these weights may be positive or negative. The last two terms do not depend on h. Thus, given
access to PX (or samples approximating it, discussed shortly), the most violated constraint can be
found by solving an ERM problem defined on the labeled samples in Z̃m−1 and samples drawn from
PX labeled by hm, with appropriate importance weights detailed in Appendix F.1 of [14]. When all
primal constraints are approximately satisfied, the algorithm stops. We have the following guarantee
on the convergence of the algorithm.
Theorem 3. When run on the m-th epoch, Algorithm 2 halts in at most Pr(Dm)/(8P 3

min,mε
2)

iterations and outputs a solution λ̂ ≥ 0 such that Pλ̂ satisfies the simple bound constraints in (2)
exactly, the variance constraints in (1) up to an additive factor of ε, and

EX
[

1

1− Pλ̂(X)

]
≤ EX

[
1

1− P ∗(X)

]
+ 4Pmin,mPr(Dm), (10)

where P ∗ is the solution to (OP). Furthermore, ‖λ̂‖1 ≤ Pr(Dm)/ε.

If ε is set to ξ2τm−1∆2
m−1, an amount of constraint violation tolerable in our analysis, the number

of iterations (hence the number of ERM oracle calls) in Theorem 3 is at most O(τ2
m−1). The proof

is in Appendix F.2 of [14].
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Table 1: Summary of performance metrics

OAC IWAL0 IWAL1 ORA-OAC
ORA-

IWAL0

ORA-
IWAL1

PASSIVE

AUC-GAIN∗ 0.151 0.150 0.142 0.125 0.115 0.121 0.095
AUC-GAIN 0.065 0.085 0.081 0.078 0.073 0.075 0.072

Solving (OP) with expectation over samples: So far we considered solving (OP) defined on the
unlabeled data distribution PX , which is unavailable in practice. A natural substitute for PX is an
i.i.d. sample drawn from it. In Appendix F.3 of [14] we show that solving a properly-defined sample
variant of (OP) leads to a solution to the original (OP) with similar guarantees as in Theorem 3.

5 Experiments with Agnostic Active Learning

While AC is efficient in the number of ERM oracle calls, it needs to store all past examples, resulting
in large space complexity. As Theorem 3 suggests, the query probability function (8) may need as
many as O(τ2

i ) classifiers, further increasing storage demand. Aiming at scalable implementation,
we consider an online approximation of AC, given in Section 6.1 of [14]. The main differences
from AC are: (1) instead of a batch ERM oracle, it invokes an online oracle; and (2) instead of
repeatedly solving (OP) from scratch, it maintains a fixed-size set of classifiers (and hence non-zero
dual variables), called the cover, for representing the query probability, and updates the cover with
every new example in a manner similar to the coordinate ascent algorithm for solving (OP). We
conduct an empirical comparison of the following efficient agnostic active learning algorithms:

OAC: Online approximation of ACTIVE COVER (Algorithm 3 in Section 6.1 of [14]).
IWAL0 and IWAL1: The algorithm of [5] and a variant that uses a tighter threshold.
ORA-OAC, ORA-IWAL0, and ORA-IWAL1: Oracular-CAL [13] versions of OAC, IWAL0 and IWAL1.
PASSIVE: Passive learning on a labeled sub-sample drawn uniformly at random.

Details about these algorithms are in Section 6.2 of [14]. The high-level differences among these
algorithms are best explained in the context of the disagreement region: OAC does importance-
weighted querying of labels with an optimized query probability in the disagreement region, while
using predicted labels outside; IWAL0 and IWAL1 maintain a non-zero minimum query probability
everywhere; ORA-OAC, ORA-IWAL0 and ORA-IWAL1 query labels in their respective disagreement
regions with probability 1, using predicted labels otherwise.

We implemented these algorithms in Vowpal Wabbit (http://hunch.net/˜vw/), a fast learn-
ing system based on online convex optimization, using logistic regression as the ERM oracle. We
performed experiments on 22 binary classification datasets with varying sizes (103 to 106) and di-
verse feature characteristics. Details about the datasets are in Appendix G.1 of [14]. Our goal is to
evaluate the test error improvement per label query achieved by different algorithms. To simulate the
streaming setting, we randomly permuted the datasets, ran the active learning algorithms through the
first 80% of data, and evaluated the learned classifiers on the remaining 20%. We repeated this pro-
cess 9 times to reduce variance due to random permutation. For each active learning algorithm, we
obtain the test error rates of classifiers trained at doubling numbers of label queries starting from 10
to 10240. Formally, let errora,p(d, j, q) denote the test error of the classifier returned by algorithm
a using hyper-parameter setting p on the j-th permutation of dataset d immediately after hitting the
q-th label budget, 10·2(q−1), 1 ≤ q ≤ 11. Let querya,p(d, j, q) be the actual number of label queries
made, which can be smaller than 10 · 2(q−1) when algorithm a reaches the end of the training data
before hitting that label budget. To evaluate an algorithm, we consider the area under its curve of
test error against log number of label queries:

AUCa,p(d, j) =
1

2

10∑
q=1

(
errora,p(d, j, q + 1) + errora,p(d, j, q)

)
·
(

log2

querya,p(d, j, q + 1)

querya,p(d, j, q)

)
.

A good active learning algorithm has a small value of AUC, which indicates that the test error
decreases quickly as the number of label queries increases. We use a logarithmic scale for the
number of label queries to focus on the performance with few label queries where active learning is
the most relevant. More details about hyper-parameters are in Appendix G.2 of [14].
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Figure 1: Average relative improvement in test error v.s. number of label queries

We measure the performance of each algorithm a by the following two aggregated metrics:

AUC-GAIN∗(a) := mean
d

max
p

median
1≤j≤9

{
AUCbase(d, j)−AUCa,p(d, j)

AUCbase(d, j)

}
,

AUC-GAIN(a) := max
p

mean
d

median
1≤j≤9

{
AUCbase(d, j)−AUCa,p(d, j)

AUCbase(d, j)

}
,

where AUCbase denotes the AUC of PASSIVE using a default hyper-parameter setting, i.e., a learn-
ing rate of 0.4 (see Appendix G.2 of [14]). The first metric shows the maximal gain each algorithm
achieves with the best hyper-parameter setting for each dataset, while the second shows the gain by
using the single hyper-parameter setting that performs the best on average across datasets.

Results and Discussions. Table 1 gives a summary of the performances of different algorithms.
When using hyper-parameters optimized on a per-dataset basis (top row in Table 1), OAC achieves
the largest improvement over the PASSIVE baseline, with IWAL0 achieving almost the same improve-
ment and IWAL1 improving slightly less. Oracular-CAL variants perform worse, but still do better
than PASSIVE with the best learning rate for each dataset, which leads to an average of 9.5% im-
provement in AUC over the default learning rate. When using the best fixed hyper-parameter setting
across all datasets (bottom row in Table 1), all active learning algorithms achieve less improvement
compared with PASSIVE (7% improvement with the best fixed learning rate). In particular, OAC gets
only 6.5% improvement. This suggests that careful tuning of hyper-parameters is critical for OAC
and an important direction for future work.

Figure 1(a) describes the behaviors of different algorithms in more detail. For each algorithm a we
identify the best fixed hyper-parameter setting

p∗ := arg max
p

mean
d

median
1≤j≤9

{
AUCbase(d, j)−AUCa,p(d, j)

AUCbase(d, j)

}
, (11)

and plot the relative test error improvement by a using p∗ averaged across all datasets at the 11 label
budgets: {(

10 · 2(q−1),mean
d

median
1≤j≤9

{
errorbase(d, j, q)− errora,p∗(d, j, q)

errorbase(d, j, q)

})}11

q=1

. (12)

All algorithms, including PASSIVE, perform similarly during the first few hundred label queries.
IWAL0 performs the best at label budgets larger than 80, while IWAL1 does almost as well. ORA-
OAC is the next best, followed by ORA-IWAL1 and ORA-IWAL0. OAC performs worse than PASSIVE
except at label budgets between 320 and 1280. In Figure 1(b),we plot results obtained by each
algorithm a using the best hyper-parameter setting for each dataset d:

p∗d := arg max
p

median
1≤j≤9

{
AUCbase(d, j)−AUCa,p(d, j)

AUCbase(d, j)

}
. (13)

As expected, all algorithms perform better, but OAC benefits the most from using the best hyper-
parameter setting per dataset. Appendix G.3 of [14] gives more detailed results, including test error
rates obtained by all algorithms at different label query budgets for individual datasets.

In sum, when using the best fixed hyper-parameter setting, IWAL0 outperforms other algorithms.
When using the best hyper-parameter setting tuned for each dataset, OAC and IWAL0 perform equally
well and better than other algorithms.
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