6,761 research outputs found

    HybridMDSD: Multi-Domain Engineering with Model-Driven Software Development using Ontological Foundations

    Get PDF
    Software development is a complex task. Executable applications comprise a mutlitude of diverse components that are developed with various frameworks, libraries, or communication platforms. The technical complexity in development retains resources, hampers efficient problem solving, and thus increases the overall cost of software production. Another significant challenge in market-driven software engineering is the variety of customer needs. It necessitates a maximum of flexibility in software implementations to facilitate the deployment of different products that are based on one single core. To reduce technical complexity, the paradigm of Model-Driven Software Development (MDSD) facilitates the abstract specification of software based on modeling languages. Corresponding models are used to generate actual programming code without the need for creating manually written, error-prone assets. Modeling languages that are tailored towards a particular domain are called domain-specific languages (DSLs). Domain-specific modeling (DSM) approximates technical solutions with intentional problems and fosters the unfolding of specialized expertise. To cope with feature diversity in applications, the Software Product Line Engineering (SPLE) community provides means for the management of variability in software products, such as feature models and appropriate tools for mapping features to implementation assets. Model-driven development, domain-specific modeling, and the dedicated management of variability in SPLE are vital for the success of software enterprises. Yet, these paradigms exist in isolation and need to be integrated in order to exhaust the advantages of every single approach. In this thesis, we propose a way to do so. We introduce the paradigm of Multi-Domain Engineering (MDE) which means model-driven development with multiple domain-specific languages in variability-intensive scenarios. MDE strongly emphasize the advantages of MDSD with multiple DSLs as a neccessity for efficiency in software development and treats the paradigm of SPLE as indispensable means to achieve a maximum degree of reuse and flexibility. We present HybridMDSD as our solution approach to implement the MDE paradigm. The core idea of HybidMDSD is to capture the semantics of particular DSLs based on properly defined semantics for software models contained in a central upper ontology. Then, the resulting semantic foundation can be used to establish references between arbitrary domain-specific models (DSMs) and sophisticated instance level reasoning ensures integrity and allows to handle partiucular change adaptation scenarios. Moreover, we present an approach to automatically generate composition code that integrates generated assets from separate DSLs. All necessary development tasks are arranged in a comprehensive development process. Finally, we validate the introduced approach with a profound prototypical implementation and an industrial-scale case study.Softwareentwicklung ist komplex: ausführbare Anwendungen beinhalten und vereinen eine Vielzahl an Komponenten, die mit unterschiedlichen Frameworks, Bibliotheken oder Kommunikationsplattformen entwickelt werden. Die technische Komplexität in der Entwicklung bindet Ressourcen, verhindert effiziente Problemlösung und führt zu insgesamt hohen Kosten bei der Produktion von Software. Zusätzliche Herausforderungen entstehen durch die Vielfalt und Unterschiedlichkeit an Kundenwünschen, die der Entwicklung ein hohes Maß an Flexibilität in Software-Implementierungen abverlangen und die Auslieferung verschiedener Produkte auf Grundlage einer Basis-Implementierung nötig machen. Zur Reduktion der technischen Komplexität bietet sich das Paradigma der modellgetriebenen Softwareentwicklung (MDSD) an. Software-Spezifikationen in Form abstrakter Modelle werden hier verwendet um Programmcode zu generieren, was die fehleranfällige, manuelle Programmierung ähnlicher Komponenten überflüssig macht. Modellierungssprachen, die auf eine bestimmte Problemdomäne zugeschnitten sind, nennt man domänenspezifische Sprachen (DSLs). Domänenspezifische Modellierung (DSM) vereint technische Lösungen mit intentionalen Problemen und ermöglicht die Entfaltung spezialisierter Expertise. Um der Funktionsvielfalt in Software Herr zu werden, bietet der Forschungszweig der Softwareproduktlinienentwicklung (SPLE) verschiedene Mittel zur Verwaltung von Variabilität in Software-Produkten an. Hierzu zählen Feature-Modelle sowie passende Werkzeuge, um Features auf Implementierungsbestandteile abzubilden. Modellgetriebene Entwicklung, domänenspezifische Modellierung und eine spezielle Handhabung von Variabilität in Softwareproduktlinien sind von entscheidender Bedeutung für den Erfolg von Softwarefirmen. Zur Zeit bestehen diese Paradigmen losgelöst voneinander und müssen integriert werden, damit die Vorteile jedes einzelnen für die Gesamtheit der Softwareentwicklung entfaltet werden können. In dieser Arbeit wird ein Ansatz vorgestellt, der dies ermöglicht. Es wird das Multi-Domain Engineering Paradigma (MDE) eingeführt, welches die modellgetriebene Softwareentwicklung mit mehreren domänenspezifischen Sprachen in variabilitätszentrierten Szenarien beschreibt. MDE stellt die Vorteile modellgetriebener Entwicklung mit mehreren DSLs als eine Notwendigkeit für Effizienz in der Entwicklung heraus und betrachtet das SPLE-Paradigma als unabdingbares Mittel um ein Maximum an Wiederverwendbarkeit und Flexibilität zu erzielen. In der Arbeit wird ein Ansatz zur Implementierung des MDE-Paradigmas, mit dem Namen HybridMDSD, vorgestellt

    A Pattern-based Foundation for Language-Driven Software Engineering

    Get PDF
    This work brings together two fundamental ideas for modelling, programming and analysing software systems. The first idea is of a methodological nature: engineering software by systematically creating and relating languages. The second idea is of a technical nature: using patterns as a practical foundation for computing. The goal is to show that the systematic creation and layering of languages can be reduced to the elementary operations of pattern matching and instantiation and that this pattern-based approach provides a formal and practical foundation for language-driven modelling, programming and analysis. The underpinning of the work is a novel formalism for recognising, deconstructing, creating, searching, transforming and generally manipulating data structures. The formalism is based on typed sequences, a generic structure for representing trees. It defines basic pattern expressions for matching and instantiating atomic values and variables. Horizontal, vertical, diagonal and hierarchical operators are different ways of combining patterns. Transformations combine matching and instantiating patterns and they are patterns themselves. A quasiquotation mechanism allows arbitrary levels of meta-pattern functionality and forms the basis of pattern abstraction. Path polymorphic operators are used to specify fine-grained search of structures. A range of core concepts such as layering, parsing and pattern-based computing can naturally be defined through pattern expressions. Three language-driven tools that utilise the pattern formalism showcase the applicability of the pattern-approach. Concat is a self-sustaining (meta-)programming system in which all computations are expressed by matching and instantiation. This includes parsing, executing and optimising programs. By applying its language engineering tools to its own meta-language, Concat can extend itself from within. XMF (XML Modeling Framework) is a browser-based modelling- and meta-modelling framework that provides flexible means to create and relate modelling languages and to query and validate models. The pattern functionality that makes this possible is partly exposed as a schema language and partly as a JavaScript library. CFR (Channel Filter Rule Language) implements a language-driven approach for layered analysis of communication in complex networked systems. The communication on each layer is visible in the language of an “abstract protocol” that is defined by communication patterns

    3rd international software language engineering conference (SLE) : pre-proceedings, October 12-13, 2010, Eindhoven, the Netherlands

    Get PDF
    We are pleased to present the proceedings of the Third International Conference on Software Language Engineering (SLE 2010). The conference will be held in Eindhoven, the Netherlands during October 12-13, 2010 and will be co-located with The Ninth International Conference on Generative Programming and Component Engineering (GPCE'10), and The Workshop on Feature-Oriented Software Development (FOSD). An important goal of SLE is to integrate the different sub-communities of the software-language-engineering community to foster cross-fertilization and strengthen research overall. The Doctoral Symposium at SLE 2010 contributes towards these goals by providing a forum for both early and late-stage PhD students to present their research and get detailed feedback and advice from other researchers. The SLE conference series is devoted to a wide range of topics related to artificial languages in software engineering. SLE is an international research forum that brings together researchers and practitioners from both industry and academia to expand the frontiers of software language engineering. SLE's foremost mission is to encourage and organize communication between communities that have traditionally looked at software languages from different, more specialized, and yet complementary perspectives. SLE emphasizes the fundamental notion of languages as opposed to any realization in specific technical spaces. In this context, the term "software language" comprises all sorts of artificial languages used in software development including general-purpose programming languages, domain-specific languages, modeling and meta-modeling languages, data models, and ontologies. Software language engineering is the application of a systematic, disciplined, quantifiable approach to the development, use, and maintenance of these languages. The SLE conference is concerned with all phases of the lifecycle of software languages; these include the design, implementation, documentation, testing, deployment, evolution, recovery, and retirement of languages. Of special interest are tools, techniques, methods, and formalisms that support these activities. In particular, tools are often based on, or automatically generated from, a formal description of the language. Hence, the treatment of language descriptions as software artifacts, akin to programs, is of particular interest - while noting the special status of language descriptions, and the tailored engineering principles and methods for modularization, refactoring, refinement, composition, versioning, co-evolution, and analysis that can be applied to them. The response to the call for papers for SLE 2010 was very enthusiastic. We received 79 full submissions from 108 initial abstract submissions. From these submissions, the Program Committee (PC) selected 25 papers: 17 full papers, five short papers, and two tool demonstration papers, resulting in an acceptance rate of 32%. To ensure the quality of the accepted papers, each submitted paper was reviewed by at least three PC members. Each paper was discussed in detail during the electronic PC meeting. A summary of this discussion was prepared by members of the PC and provided to the authors along with the reviews

    Abmash: Mashing Up Legacy Web Applications by Automated Imitation of Human Actions

    Get PDF
    Many business web-based applications do not offer applications programming interfaces (APIs) to enable other applications to access their data and functions in a programmatic manner. This makes their composition difficult (for instance to synchronize data between two applications). To address this challenge, this paper presents Abmash, an approach to facilitate the integration of such legacy web applications by automatically imitating human interactions with them. By automatically interacting with the graphical user interface (GUI) of web applications, the system supports all forms of integrations including bi-directional interactions and is able to interact with AJAX-based applications. Furthermore, the integration programs are easy to write since they deal with end-user, visual user-interface elements. The integration code is simple enough to be called a "mashup".Comment: Software: Practice and Experience (2013)

    A pattern-based foundation for language-driven software engineering

    Get PDF
    This work brings together two fundamental ideas for modelling, programming and analysing software systems. The first idea is of a methodological nature: engineering software by systematically creating and relating languages. The second idea is of a technical nature: using patterns as a practical foundation for computing. The goal is to show that the systematic creation and layering of languages can be reduced to the elementary operations of pattern matching and instantiation and that this pattern-based approach provides a formal and practical foundation for language-driven modelling, programming and analysis. The underpinning of the work is a novel formalism for recognising, deconstructing, creating, searching, transforming and generally manipulating data structures. The formalism is based on typed sequences, a generic structure for representing trees. It defines basic pattern expressions for matching and instantiating atomic values and variables. Horizontal, vertical, diagonal and hierarchical operators are different ways of combining patterns. Transformations combine matching and instantiating patterns and they are patterns themselves. A quasiquotation mechanism allows arbitrary levels of meta-pattern functionality and forms the basis of pattern abstraction. Path polymorphic operators are used to specify fine-grained search of structures. A range of core concepts such as layering, parsing and pattern-based computing can naturally be defined through pattern expressions. Three language-driven tools that utilise the pattern formalism showcase the applicability of the pattern-approach. Concat is a self-sustaining (meta-)programming system in which all computations are expressed by matching and instantiation. This includes parsing, executing and optimising programs. By applying its language engineering tools to its own meta-language, Concat can extend itself from within. XMF (XML Modeling Framework) is a browser-based modelling- and meta-modelling framework that provides flexible means to create and relate modelling languages and to query and validate models. The pattern functionality that makes this possible is partly exposed as a schema language and partly as a JavaScript library. CFR (Channel Filter Rule Language) implements a language-driven approach for layered analysis of communication in complex networked systems. The communication on each layer is visible in the language of an “abstract protocol” that is defined by communication patterns.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Parsing K definitions

    Get PDF
    AbstractThis paper describes our approach in parsing a K definition. The difficulty of the problem is given by the nature of the K-framework, where the user can define the operational semantics of a language by inserting pieces of concrete syntax in the K code in a natural way. Our main contribution shows how to make use of SDF and the disambiguation mechanisms in the context of K-framework

    Model Transformation Languages with Modular Information Hiding

    Get PDF
    Model transformations, together with models, form the principal artifacts in model-driven software development. Industrial practitioners report that transformations on larger models quickly get sufficiently large and complex themselves. To alleviate entailed maintenance efforts, this thesis presents a modularity concept with explicit interfaces, complemented by software visualization and clustering techniques. All three approaches are tailored to the specific needs of the transformation domain
    corecore