

3rd international software language engineering conference
(SLE) : pre-proceedings, October 12-13, 2010, Eindhoven, the
Netherlands
Citation for published version (APA):
Brand, van den, M. G. J., Malloy, B., & Staab, S. (Eds.) (2010). 3rd international software language engineering
conference (SLE) : pre-proceedings, October 12-13, 2010, Eindhoven, the Netherlands. (Computer science
reports; Vol. 1012). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/bc47bee0-c2f7-4fbe-9bae-6e325dd91918

Eindhoven University of Technology

Department of Mathematics and Computer Science

3rd International Software Language Engineering Conference

 Pre-Proceedings

 October 12-13, 2010

Eindhoven, the Netherlands

2

Preface

We are pleased to present the proceedings of the Third International Conference on Software

Language Engineering (SLE 2010). The conference will be held in Eindhoven, the Netherlands during

October 12-13, 2010 and will be co-located with The Ninth International Conference on Generative

Programming and Component Engineering (GPCE'10), and The Workshop on Feature-Oriented

Software Development (FOSD).

An important goal of SLE is to integrate the different sub-communities of the software-language-

engineering community to foster cross-fertilization and strengthen research overall. The Doctoral

Symposium at SLE 2010 contributes towards these goals by providing a forum for both early and

late-stage PhD students to present their research and get detailed feedback and advice from other

researchers.

The SLE conference series is devoted to a wide range of topics related to artificial languages in

software engineering. SLE is an international research forum that brings together researchers and

practitioners from both industry and academia to expand the frontiers of software language

engineering.

SLE's foremost mission is to encourage and organize communication between communities that

have traditionally looked at software languages from different, more specialized, and yet

complementary perspectives. SLE emphasizes the fundamental notion of languages as opposed to

any realization in specific technical spaces. In this context, the term "software language" comprises

all sorts of artificial languages used in software development including general-purpose

programming languages, domain-specific languages, modeling and meta-modeling languages, data

models, and ontologies. Software language engineering is the application of a systematic,

disciplined, quantifiable approach to the development, use, and maintenance of these languages.

The SLE conference is concerned with all phases of the lifecycle of software languages; these include

the design, implementation, documentation, testing, deployment, evolution, recovery, and

retirement of languages. Of special interest are tools, techniques, methods, and formalisms that

support these activities. In particular, tools are often based on, or automatically generated from, a

formal description of the language. Hence, the treatment of language descriptions as software

artifacts, akin to programs, is of particular interest - while noting the special status of language

descriptions, and the tailored engineering principles and methods for modularization, refactoring,

refinement, composition, versioning, co-evolution, and analysis that can be applied to them.

The response to the call for papers for SLE 2010 was very enthusiastic. We received 79 full

submissions from 108 initial abstract submissions. From these submissions, the Program Committee

(PC) selected 25 papers: 17 full papers, five short papers, and two tool demonstration papers,

resulting in an acceptance rate of 32%. To ensure the quality of the accepted papers, each submitted

paper was reviewed by at least three PC members. Each paper was discussed in detail during the

electronic PC meeting. A summary of this discussion was prepared by members of the PC and

provided to the authors along with the reviews.

3

SLE 2010 would not have been possible without the significant contributions of many individuals and

organizations. We are grateful to the organizers of GPCE 2010 and FOSD 2010 for their close

collaboration and management of many of the logistics. This will allow us to offer SLE participants

the opportunity to take part in three high-quality research events in the domain of software

engineering. We also wish to thank our sponsors, ASML, InfoSupport, Jacquard, NWO, Software

Improvement Group and Sogeti.

The SLE 2010 Organizing Committee, the Local Chairs, and the SLE Steering Committee provided

invaluable assistance and guidance. We are also grateful to the PC members and the additional

reviewers for their dedication in reviewing the large number of submissions. We also thank the

authors for their efforts in writing and then revising their papers and we thank Springer for

publishing the papers and the post-proceedings.

Mark van den Brand Brian Malloy Steffen Staab
General chair Program co-chair Program co-chair

Eindhoven University of
Technology

Clemson University University of Koblenz-
Landau

The Netherlands USA Germany

4

Table of Contents

Martin Erwig: A Language for Software Variation Research .. 6

Emma Söderberg and Görel Hedin: Automated Selective Caching for Reference Attribute

Grammars ... 7

Christoff Bürger, Sven Karol, Christian Wende and Uwe Aßmann: Reference Attribute Grammars

for Metamodel Semantics... 8

Adrian Johnstone and Elizabeth Scott: Modelling GLL parser implementations 9

Markus Herrmannsdoerfer, Daniel Ratiu and Maximilian Koegel: Metamodel Usage Analysis for

Identifying Metamodel Improvements ... 10

Benjamin Braatz and Christoph Brandt: Domain-Specific Modelling Languages with Algebraic

Graph Transformations on RDF .. 11

Kacper Bąk, Krzysztof Czarnecki and Andrzej Wąsowski: Feature and Meta-Models in Clafer:

Mixed, Specialized, and Coupled .. 12

Peter Pirkelbauer, Damian Dechev and Bjarne Stroustrup: Support for the Evolution of C++

Generic Functions ... 13

Davide Di Ruscio, Ralf Lämmel and Alfonso Pierantonio: Automated co-evolution of GMF editor

models ... 14

Markus Herrmannsdoerfer, Sander D. Vermolen and Guido Wachsmuth: An Extensive Catalog of

Operators for the Coupled Evolution of Metamodels and Models .. 15

Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio: JTL: a bidirectional

and change propagating transformation language .. 16

Abraham Bernstein: Software Engineering and the Semantic Web: A match made in heaven or in

hell? ... 17

Vadim Zaytsev and Ralf Lämmel: A Unified Format for Language Documents 18

Einar W. Høst and Bjarte M. Østvold: Canonical method names for Java .. 19

Sebastián González, Nicolás Cardozo, Kim Mens, Alfredo Cádiz, Jean-Christophe Libbrecht and

Julien Goffaux: Subjective-C: Bringing Context to Mobile Platform Programming 20

Colin Atkinson, Bastian Kennel and Björn Goß: The Level-agnostic Modeling Language 21

Raphael Mannadiar and Hans Vangheluwe: Debugging in Domain-Specific Modelling 22

5

Markus Herrmannsdoerfer: COPE - A Workbench for the Coupled Evolution of Metamodels and

Models .. 23

Bruno Barroca, Levi Lucio, Vasco Amaral, Roberto Felix and Vasco Sousa: DSLTrans: A Turing

Incomplete Transformation Language .. 24

Adrian Johnstone and Elizabeth Scott: Translator generation using ART... 25

Jean-Marie Favre, Dragan Gasevic, Ralf Lämmel, and Ekaterina Pek: Empirical language analysis in

software linguistics ... 26

Lennart C. L. Kats, Karl T. Kalleberg and Eelco Visser: Interactive Disambiguation of Meta Programs

with Concrete Object Syntax .. 27

Arnaud Hubaux, Quentin Boucher, Herman Hartmann, Raphaël Michel and Patrick Heymans:

Evaluating a Textual Feature Modelling Language: Four Industrial Case Studies 28

Nils Bandener, Christian Soltenborn, and Gregor Engels: Extending DMM Behavior Specifications

for Visual Execution and Debugging ... 29

Nicolas Genon, Patrick Heymans and Daniel Amyot: Analysing the Cognitive Effectiveness of the

BPMN 2.0 Visual Notation .. 30

Sebastian Thore Erdweg and Klaus Ostermann: Featherweight TeX and Parser Correctness 31

6

Martin Erwig: A Language for Software Variation Research

Managing variation is an important problem in software engineering that takes different forms,

ranging from version control and configuration management to software product lines. In this paper,

I present our recent work on the choice calculus, a fundamental representation for software

variation that can serve as a common language of discourse for variation research, filling a role

similar to lambda calculus in programming language research. After motivating the design of the

choice calculus and sketching its semantics, I will discuss several potential application areas.

7

Emma Söderberg and Görel Hedin: Automated Selective Caching for

Reference Attribute Grammars

Reference attribute grammars (RAGs) can be used to express semantics as super-imposed graphs on

top of abstract syntax trees (ASTs). A RAG-based AST can be used as the in-memory model providing

semantic information for software language tools such as compilers, refactoring tools, and meta-

modeling tools. RAG performance is based on dynamic attribute evaluation with caching.

Caching all attributes gives optimal performance in the sense that each attribute is evaluated at

most once. However, performance can be further improved by a selective caching strategy, avoiding

caching overhead where it does not pay off. In this paper we present a profiling-based technique for

automatically finding a good caching configuration. The technique has been evaluated on a

generated Java compiler, compiling programs from the Jacks test suite and the DaCapo benchmark

suite.

8

Christoff Bürger, Sven Karol, Christian Wende and Uwe Aßmann:

Reference Attribute Grammars for Metamodel Semantics

While current metamodelling languages are well-suited for the structural definition of abstract

syntax and metamodelling platforms like the Eclipse Modelling Framework (EMF) provide various

means for the specification of a textual or graphical concrete syntax, techniques for the specification

of model semantics are not as matured. Therefore, we propose the application of reference

attribute grammars (RAGs) to alleviate the lack of support for formal semantics specification in

metamodelling. We contribute the conceptual foundations to integrate metamodelling languages

and RAGs, and present JastEMF --- a tool for the specification of EMF metamodel semantics using

JastAdd RAGs. The presented approach is exemplified by an integrated metamodelling example. Its

advantages, disadvantages and limitations are discussed and related to metamodelling, attribute

grammars (AGs) and other approaches for metamodel semantics.

9

Adrian Johnstone and Elizabeth Scott: Modelling GLL parser

implementations

We describe the development of space-efficient implementations of GLL parsers, and the process by

which we refine a set-theoretic model of the algorithm into a practical parser generator that creates

practical parsers. GLL parsers are recursive descent-like, in that the structure of the parser's code

closely mirrors the grammar rules, and so grammars (and their parsers) may be debugged by tracing

the running parser in a debugger. While GLL recognisers are straightforward to describe, full GLL

parsers present technical traps and challenges for the unwary. In particular, naïve implementations

based closely on the theoretical description of GLL can result in data structures that are not practical

for grammars for real programming language grammars such as ANSI-C. We develop an equivalent

formulation of the algorithm as a high-level set-theoretic model supported by table-based indices, in

order to then explore a set of alternative implementations which trade space for time in ways which

preserve the cubic bound.

10

Markus Herrmannsdoerfer, Daniel Ratiu and Maximilian Koegel:

Metamodel Usage Analysis for Identifying Metamodel Improvements

Modeling languages raise the abstraction level at which software is built by providing a set of

constructs tailored to the needs of their users. Metamodels define their constructs and thereby

reflect the expectations of the language developers about the use of the language. In practice,

language users often do not use the constructs provided by a metamodel as expected by language

developers. In this paper, we advocate that insights about how constructs are used can offer

language developers useful information for improving the metamodel. We define a set of usage and

improvement patterns to characterize the use of the metamodel by the built models. We present

our experience with the analysis of the usage of seven metamodels (EMF, GMF, UNICASE) and a

large corpus of models. Our empirical investigation shows that we identify mismatches between the

expected and actual use of a language that are useful for metamodel improvements.

11

Benjamin Braatz and Christoph Brandt: Domain-Specific Modelling

Languages with Algebraic Graph Transformations on RDF

Domain-specific modelling langugages (DSMLs), which are tailored to the requirements of their

users, can significantly increase the acceptance of formal (or at least semi-formal) modelling in

scenarios where informal drawings and natural language descriptions are predominant today. We

show in this paper how the Resource Description Framework (RDF), which is a standard for the

fundamental data structures of the Semantic Web, and algebraic graph transformations on these

data structures can be used to realise the abstract syntax of such DSMLs. We examine a small DSML

for IT infrastructures as an application scenario. From this scenario, we derive distributed modelling,

evolution of language definitions, migration of legacy models and integration of modelling languages

as key requirements for a DSML framework. RDF and transformation rules are then used to provide

a solution, which meets these requirements, where all kinds of modifications—from simple editing

steps via model migration to language integration—are realised by the single, uniform formalism of

algebraic graph transformation.

12

Kacper Bąk, Krzysztof Czarnecki and Andrzej Wąsowski: Feature and

Meta-Models in Clafer: Mixed, Specialized, and Coupled

We present Clafer, a meta-modeling language with first-class support for feature modeling. We

designed Clafer as a concise notation for meta-models, feature models, mixtures of meta- and

feature models (such as components with options), and models that couple feature models and

meta-models via constraints (such as mapping feature configurations to component configurations

or model templates). Clafer also allows arranging models into multiple specialization and extension

layers via constraints and inheritance. We identify four key mechanisms allowing a meta-modeling

language to express feature models concisely and show that Clafer meets its design objectives using

a sample product line. We evaluated Clafer and how it lends itself to analysis on sample feature

models, meta-models, and model templates of an E-Commerce platform.

13

Peter Pirkelbauer, Damian Dechev and Bjarne Stroustrup: Support for

the Evolution of C++ Generic Functions

The choice of requirements for an argument of a generic type or algorithm is a central design issue in

generic programming. In the context of C++, a specification of requirements for a template

argument or a set of template arguments is called a concept.

In this paper, we present a novel tool, TACE1, designed to help programmers understand the

requirements that their code de facto imposes on arguments and help simplify and generalize those

through comparisons with libraries of well-defined and precisely-specified concepts. TACE

automatically extracts requirements from the body of template functions. These requirements are

expressed using the notation and semantics developed by the ISO C++ standards committee. TACE

converts implied requirements into concept definitions and compares them against concepts from a

repository. Components of a well-defined library exhibit commonalities that allow us to detect

problems by comparing requirements from many components: Design and implementation

problems manifest themselves as minor variations in requirements. TACE points to source code that

cannot be constrained by concepts and to code where small modifications would allow the use of

less constraining concepts. For people who use a version of C++ with concept support, TACE can

serve as a core engine for automated source code rejuvenation.

1
 template analysis and concept extraction

14

Davide Di Ruscio, Ralf Lämmel and Alfonso Pierantonio: Automated co-

evolution of GMF editor models

The Eclipse Graphical Modeling (GMF) Framework provides the major approach for implementing

visual languages on top of the Eclipse platform. GMF relies on a family of modeling languages to

describe abstract syntax, concrete syntax as well as other aspects of the visual language and its

implementation in an editor. GMF uses a model-driven approach to map the different GMF models

to Java code. The framework, as it stands, lacks support for evolution. In particular, there is no

support for propagating changes from the domain model (i.e., the abstract syntax of the visual

language) to other editor models. We analyze the resulting co-evolution challenge, and we provide a

solution by means of GMF model adapters, which automate the propagation of domain-model

changes. These GMF model adapters are special model-to-model transformations that are driven by

difference models for domain-model changes.

15

Markus Herrmannsdoerfer, Sander D. Vermolen and Guido Wachsmuth:

An Extensive Catalog of Operators for the Coupled Evolution of

Metamodels and Models

Modeling languages and thus their metamodels are subject to change. When a metamodel is

evolved, existing models may no longer conform to it. Manual migration of these models in response

to metamodel evolution is tedious and error-prone. To significantly automate model migration,

operator-based approaches provide reusable coupled operators that encapsulate both metamodel

evolution and model migration. The success of an operator-based approach highly depends on the

library of reusable coupled operators it provides. In this paper, we thus present an extensive catalog

of coupled operators that is based both on a literature survey as well as real-life case studies. The

catalog is organized according to a number of criteria to ease assessing the impact on models as well

as selecting the right operator for a metamodel change at hand.

16

Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso

Pierantonio: JTL: a bidirectional and change propagating

transformation language

In Model Driven Engineering bidirectional transformations are considered a core ingredient for

managing both the consistency and synchronization of two or more related models. However, while

non-bijectivity in bidirectional transformations is considered relevant, current languages still lack of

a common understanding of its semantic implications hampering their applicability in practice.

In this paper, the Janus Transformation Language (JTL) is presented, a bidirectional model

transformation language specifically designed to support non-bijective transformations and change

propagation. In particular, the language propagates changes occurring in a model to one or more

related models according to the specified transformation regardless of the transformation direction.

Additionally, whenever manual modifications let a model be non reachable anymore by a

transformation, the closest model which approximate the ideal source one is inferred. The language

semantics is also presented and its expressivity and applicability are validated against a reference

benchmark. JTL is embedded in a framework available on the Eclipse platform which aims to

facilitate the use of the approach, especially in the definition of model transformations.

17

Abraham Bernstein: Software Engineering and the Semantic Web: A

match made in heaven or in hell?

The Semantic Web provides models and abstractions for the distributed processing of knowledge

bases. In Software Engineering endeavors such capabilities are direly needed, for ease of

implementation, maintenance, and software analysis.

Conversely, software engineering has collected decades of experience in engineering large

application frameworks containing both inheritance and aggregation. This experience could be of

great use when, for example, thinking about the development of ontologies.

These examples---and many others---seem to suggest that researchers from both fields should have

a field day collaborating: On the surface this looks like a match made in heaven. But is that the case?

This talk will explore the opportunities for cross-fertilization of the two research fields by presenting

a set of concrete examples. In addition to the opportunities it will also try to identify cases of fools

gold (pyrite), where the differences in method, tradition, or semantics between the two research

fields may lead to a wild goose chase.

18

Vadim Zaytsev and Ralf Lämmel: A Unified Format for Language

Documents

We have analyzed a substantial number of language documentation artifacts, including language

standards, language specifications, language reference manuals, as well as internal documents of

standardization bodies. We have reverse-engineered their intended internal structure, and

compared the results. The Language Document Format (LDF), was developed to specifically support

the documentation domain. We have also integrated LDF into an engineering discipline for language

documents including tool support, for example, for rendering language documents, extracting

grammars and samples, and migrating existing documents into LDF. The definition of LDF, tool

support for LDF, and LDF applications are freely available through SourceForge.

19

Einar W. Høst and Bjarte M. Østvold: Canonical method names for Java

Programmers rely on the conventional meanings of method names when writing programs.

However, these conventional meanings are implicit and vague, leading to various forms of

ambiguity. This is problematic since it hurts the readability and maintainability of programs. Java

programmers would benefit greatly from a more well-defined vocabulary. Identifying synonyms in

the vocabulary of verbs used in method names is a step towards this goal. By rooting the meaning of

verbs in the semantics of a large number of methods taken from real-world Java applications, we

find that such synonyms can readily be identified. To support our claims, we demonstrate automatic

identification of synonym candidates. This could be used as a starting point for a manual

canonicalisation process, where redundant verbs are eliminated from the vocabulary.

20

Sebastián González, Nicolás Cardozo, Kim Mens, Alfredo Cádiz, Jean-

Christophe Libbrecht and Julien Goffaux: Subjective-C: Bringing Context

to Mobile Platform Programming

Thanks to steady advances in hardware, mobile computing platforms are nowadays much more

connected to their physical and logical environment than ever before. To ease the construction of

adaptable applications that are smarter with respect to their execution environment, the context-

oriented programming paradigm has emerged. However, up until now there has been no proof that

this emerging paradigm can be implemented and used effectively on mobile devices, probably the

kind of platform which is most subject to dynamically changing contexts. In this paper we study how

to effectively realise core context-oriented abstractions on top of Objective-C, a mainstream

language for mobile device programming. The result is Subjective-C, a language which goes beyond

currently existing context-oriented languages by providing a rich encoding of context

interdependencies. Our initial validation cases and efficiency benchmarks make us confident that

context-oriented programming can become mainstream in mobile application development.

21

Colin Atkinson, Bastian Kennel and Björn Goß: The Level-agnostic

Modeling Language

As an alternative modeling infrastructure and paradigm, multi-level modeling addresses many of the

conceptual weaknesses found in the four level modeling infrastructure that underpins traditional

modeling approaches like UML and EMF. It does this by explicitly distinguishing between linguistic

and ontological forms of classification and by allowing the influence of classifiers to extend over

more than one level of instantiation. Multi-level modeling is consequently starting to receive

attention from a growing number of research groups. However, there has never been a concrete

definition of a language designed from the ground-up for the specific purpose of representing multi-

level models. Some authors have informally defined the “look and feel” of such a language, but to

date there has been no systematic or fully elaborated definition of its concrete syntax. In this paper

we address this problem by introducing the key elements of a language, known as the Level-Agnostic

Modeling Language (LML) designed to support multi-level modeling.

22

Raphael Mannadiar and Hans Vangheluwe: Debugging in Domain-

Specific Modelling

An important obstacle to the wide-spread adoption of model-driven development approaches in

industry is the lack of proper debugging facilities. Software debugging support is provided by a

combination of language and Integrated Development Environment (IDE) features which enable the

monitoring and altering of a running program's state. In Domain-Specific Modelling (DSM),

debugging activities have a wider scope: designers debug model transformations (MTs) and

synthesized artifacts, while domain-specific modellers debug their models, unaware of generated

artifacts. This work surveys the state-of-the-art of debugging in the context of DSM and proposes a

mapping between debugging concepts (e.g., breakpoints, assertions) in the software and DSM

realms.

23

Markus Herrmannsdoerfer: COPE - A Workbench for the Coupled

Evolution of Metamodels and Models

 Model-driven software development promises to increase productivity by offering modeling

languages tailored to a problem domain. Consequently, an increasing number of modeling languages

are built using metamodel-based language workbenches. In response to changing requirements and

technologies, the modeling languages and thus their metamodels need to be adapted. Manual

migration of existing models in response to metamodel adaptation is tedious and error-prone. In this

paper, we present our tool COPE to automate the coupled evolution of metamodels and models. To

not lose the intention behind the adaptation, COPE records the coupled evolution in an explicit

history model. Based on this history model, COPE provides advanced tool support to inspect,

refactor and recover the coupled evolution.

24

Bruno Barroca, Levi Lucio, Vasco Amaral, Roberto Felix and Vasco

Sousa: DSLTrans: A Turing Incomplete Transformation Language

In this paper we present DSLTrans: a visual language and a tool for model transformations2. We aim

at tackling a couple of important challenges in model transformation languages --- transformation

termination and confluence. The contribution of this paper is the proposition of a transformation

language where all possible transformations are guaranteed to be terminating and confluent by

construction. The resulting transformation language is simple, turing incomplete and includes

transformation abstractions to support transformations in a software language engineering context.

Our explanation of DSLTrans includes a complete formal description of our visual language and its

properties.

2
 This work has been developed in the context of project BATIC3S partially funded by the Portuguese

FCT/MCTES ref. PTDC/EIA/65798/2006, the doctoral grant ref. SFRH/BD/38123/2007, the post doctoral grant

ref. SFRH/BPD/65394/2009 and the Luxembourguese FNR/CORE project MOVERE ref. C09/IS/02

25

Adrian Johnstone and Elizabeth Scott: Translator generation using ART

ART (Ambiguity Resolved Translators) is a new translator generator tool which provides fast

generalised parsing based on an extended GLL algorithm and automatic generation of tree traversers

for manipulating abstract syntax. The input grammars to ART comprise modular sets of context free

grammar rules, enhanced with regular expressions and annotations that describe disambiguation

and tree modification operations using the TIF (Tear-Insert-Fold) formalism. ART generates a GLL

parser for the input grammar along with an output grammar whose derivation trees are the abstract

trees specified by the TIF tree modification operations.

26

Jean-Marie Favre, Dragan Gasevic, Ralf Lämmel, and Ekaterina Pek:

Empirical language analysis in software linguistics

Software linguistics is the science of software languages. In this short paper, we sketch the general

discipline of software linguistics, but our focus is on one part of it: empirical analysis of software

languages. Such analysis is concerned with understanding language usage on the grounds of a

corpus. In this short paper, we sketch a survey on empirical language analysis, and we argue that the

research method of content analysis is needed for a thorough survey.

27

Lennart C. L. Kats, Karl T. Kalleberg and Eelco Visser: Interactive

Disambiguation of Meta Programs with Concrete Object Syntax

In meta-programming with concrete object syntax, meta programs can be written using the concrete

syntax of manipulated programs. Quotations of concrete syntax fragments and anti-quotations for

meta-level expressions and variables are used to manipulate the abstract representation of

programs. These small, isolated fragments are often ambiguous and must be explicitly

disambiguated with quotation tags or types, using names from the non-terminals of the object

language syntax. Discoverability of these names has been an open issue, as they depend on the

(grammar) implementation and are not part of the well-known concrete syntax of a language. Based

on advances in interactive development environments, we introduce interactive disambiguation to

address this issue, providing real-time feedback and proposing quick fixes in case of ambiguities.

28

Arnaud Hubaux, Quentin Boucher, Herman Hartmann, Raphaël Michel

and Patrick Heymans: Evaluating a Textual Feature Modelling

Language: Four Industrial Case Studies

Feature models are commonly used in software product line engineering as a means to document

variability. Since their introduction, feature models have been extended and formalised in various

ways. The majority of these extensions are variants of the original tree-based graphical notation. But

over time, textual dialects have also been proposed. The textual variability language (TVL) was

proposed to combine the advantages of both graphical and textual notations. However, its benefits

and limitations have not been empirically evaluated up to now. In this paper, we evaluate TVL with

four cases from companies of different sizes and application domains. The study shows that

practitioners can benefit from TVL. The participants appreciated the notation, the advantages of a

textual language and considered the learning curve to be gentle. The study also reveals some

limitations of the current version of TVL.

29

Nils Bandener, Christian Soltenborn, and Gregor Engels: Extending

DMM Behavior Specifications for Visual Execution and Debugging

Dynamic Meta Modeling (DMM) is a visual semantics specification technique targeted at behavioral

languages equipped with a metamodel defining the language's abstract syntax. Given a model and a

DMM specification, a transition system can be computed which represents the semantics of that

model. It allows for the investigation of the model's behavior, e.g. for the sake of understanding the

model's semantics or to verify that certain requirements are fulfilled. However, due to a number of

reasons such as tooling and the size of the resulting transition systems, the manual inspection of the

resulting transition system is cumbersome.

One solution would be a visualization of the model's behavior using animated concrete syntax. In

this paper, we show how we have enhanced DMM such that visual execution and debugging can be

added to a language in a simple manner.

30

Nicolas Genon, Patrick Heymans and Daniel Amyot: Analysing the

Cognitive Effectiveness of the BPMN 2.0 Visual Notation

BPMN 2.0 is an OMG standard and one of the leading process modelling notations. Although the

current language specification recognises the importance of defining a visual notation carefully, it

does so by relying on common sense, intuition and emulation of common practices, rather than by

adopting a rigorous scientific approach. This results in a number of suboptimal language design

decisions that may impede effective model-mediated communication between stakeholders. We

demonstrate and illustrate this by looking at BPMN 2.0 through the lens of the Physics of Notations,

a collection of evidence-based principles that together form a theory of notation design. This work

can be considered a first step towards making BPMN 2.0's visual notation more cognitively effective.

31

Sebastian Thore Erdweg and Klaus Ostermann: Featherweight TeX and

Parser Correctness

TeX (and its LaTeX incarnation) is a widely used document preparation system for technical and

scientific documents. At the same time, TeX is also an unusual programming language with a quite

powerful macro system. Despite the wide range of TeX users (especially in the scientific

community), and despite a widely perceived considerable level of ``pain'' in using TeX, there is

almost no research on TeX. This paper is an attempt to change that.

To this end, we present Featherweight TeX, a formal model of TeX which we hope can play a similar

role for TeX as Featherweight Java did for Java. The main technical problem which we study in terms

of Featherweight TeX is the parsing problem. As for other dynamic languages performing syntactic

analysis at runtime, the concept of ``static'' parsing and its correctness is unclear in TeX and shall be

clarified in this paper. Moreover, it is the case that parsing TeX is impossible in general, but we

present evidence that parsers for practical subsets exists.

We furthermore outline three immediate applications of our formalization of TeX and its parsing: a

macro debugger, an analysis that detects syntactic inconsistencies, and a test framework for TeX

parsers.

