4,606 research outputs found

    Hybrid Spam Filtering using Monarch Butterfly Optimization Algorithm with Self-Adaptive Population

    Get PDF
    Spam causes bottlenecks and congestion, reducing the speed, processing power, available memory, and bandwidth. Existing spam email classification methods need to be more accurate because of the large dimensionality of hybrid spam datasets. This makes the need for a feature dimensionality reduction technique that uses only associated features of the problem instead of all features in the dataset. This paper presents a feature selection based on the monarch butterfly optimization (MBO) algorithm that emphasizes less complexity and few features. This method is efficient and produces a more accurate classification. To improve further standard MBO algorithm performance, we introduce the population size in both subpopulations 1 and 2 will experience dynamic variations as the algorithm proceeds along its linear way. As the idea of a self-adaptive and greedy strategy is modified, the self-adaptive population monarch butterfly optimization (SPMBO) method is introduced, and only newly generated SPMBO individuals are eligible for the next generations if they are better individuals earlier before. Later, this paper proposes an email classification system based on k-nearest neighbors (k-NN) based on two distance metrics, explicitly Euclidean, and Manhattan, that also uses the SPMBO technique. This method seeks to determine whether a hybrid email is a spam. The efficiency of the proposed SPMBO algorithm was compared with standard MBO based on three datasets Dredze, Image spam hunter, and Spambase. Thus, the use of SPMBO results has shown superior as related to other authors' works in relevant fields

    An Efficient feature selection algorithm for the spam email classification

    Get PDF
    The existing spam email classification systems are suffering from the problems of low accuracy due to the high dimensionality of the associated feature selection (FS) process. But being a global optimization process in machine learning, FS is mainly aimed at reducing the redundancy of dataset to create a set of acceptable and accurate results. This study presents the combination of Chaotic Particle Swarm Optimization (PSO) algorithm with Artificial Bees Colony (ABC) for the reduction of features dimensionality in a bid to improve spam emails classification accuracy. The features for each particle in this work were represented in a binary form, meaning that they were transformed into binary using a sigmoid function. The features selection was based on a fitness function that depended on the obtained accuracy using SVM. The proposed system was evaluated for performance by considering the performance of the classifier and the selected features vectors dimension which served as the input to the classifier; this evaluation was done using the Spam Base dataset and from the results, the PSO-ABC classifier performed well in terms of FS even with a small set of selected features

    Feature Selection by Multiobjective Optimization: Application to Spam Detection System by Neural Networks and Grasshopper Optimization Algorithm

    Get PDF
    Networks are strained by spam, which also overloads email servers and blocks mailboxes with unwanted messages and files. Setting the protective level for spam filtering might become even more crucial for email users when malicious steps are taken since they must deal with an increase in the number of valid communications being marked as spam. By finding patterns in email communications, spam detection systems (SDS) have been developed to keep track of spammers and filter email activity. SDS has also enhanced the tool for detecting spam by reducing the rate of false positives and increasing the accuracy of detection. The difficulty with spam classifiers is the abundance of features. The importance of feature selection (FS) comes from its role in directing the feature selection algorithm’s search for ways to improve the SDS’s classification performance and accuracy. As a means of enhancing the performance of the SDS, we use a wrapper technique in this study that is based on the multi-objective grasshopper optimization algorithm (MOGOA) for feature extraction and the recently revised EGOA algorithm for multilayer perceptron (MLP) training. The suggested system’s performance was verified using the SpamBase, SpamAssassin, and UK-2011 datasets. Our research showed that our novel approach outperformed a variety of established practices in the literature by as much as 97.5%, 98.3%, and 96.4% respectively.©2022 the Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/fi=vertaisarvioitu|en=peerReviewed

    An ontology enhanced parallel SVM for scalable spam filter training

    Get PDF
    This is the post-print version of the final paper published in Neurocomputing. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Spam, under a variety of shapes and forms, continues to inflict increased damage. Varying approaches including Support Vector Machine (SVM) techniques have been proposed for spam filter training and classification. However, SVM training is a computationally intensive process. This paper presents a MapReduce based parallel SVM algorithm for scalable spam filter training. By distributing, processing and optimizing the subsets of the training data across multiple participating computer nodes, the parallel SVM reduces the training time significantly. Ontology semantics are employed to minimize the impact of accuracy degradation when distributing the training data among a number of SVM classifiers. Experimental results show that ontology based augmentation improves the accuracy level of the parallel SVM beyond the original sequential counterpart

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41
    corecore