344 research outputs found

    An ultra-high gain and efficient amplifier based on Raman amplification in plasma

    Get PDF
    Raman amplification arising from the excitation of a density echelon in plasma could lead to amplifiers that significantly exceed current power limits of conventional laser media. Here we show that 1-100 J pump pulses can amplify picojoule seed pulses to nearly joule level. The extremely high gain also leads to significant amplification of backscattered radiation from "noise", arising from stochastic plasma fluctuations that competes with externally injected seed pulses, which are amplified to similar levels at the highest pump energies. The pump energy is scattered into the seed at an oblique angle with 14 J sr(-1), and net gains of more than eight orders of magnitude. The maximum gain coefficient, of 180 cm(-1), exceeds high-power solid-state amplifying media by orders of magnitude. The observation of a minimum of 640 J sr(-1) directly backscattered from noise, corresponding to approximate to 10% of the pump energy in the observation solid angle, implies potential overall efficiencies greater than 10%

    Particle-in-cell simulation of plasma-based amplification using a moving window

    Get PDF
    Current high-power laser amplifiers use chirped-pulse amplification to prevent damage to their solid-state components caused by intense electromagnetic fields. To increase laser power further requires ever larger and more expensive devices. The Raman backscatter instability in plasma facilitates an alternative amplification strategy without the limitations imposed by material damage thresholds. Plasma-based amplification has been experimentally demonstrated, but only with relatively low efficiency. Further progress requires extensive use of numerical simulations, which usually need significant computational resources. Here we present particle-in-cell (PIC) simulation techniques for accurately simulating Raman amplification using a moving window with suitable boundary conditions, reducing computational cost. We show that an analytical model for matched pump propagation in a parabolic plasma channel slightly overestimates amplification as pump laser intensity is increased. However, a method for loading data saved from separate pump-only simulations demonstrates excellent agreement with full PIC simulation. The reduction in required resources will enable parameter scans to be performed to optimize amplification, and stimulate efforts toward developing viable plasma-based laser amplifiers. The methods may also be extended to investigate Brillouin scattering, and for the development of laser wakefield accelerators. Efficient, compact, low-cost amplifiers would have widespread applications in academia and industry

    Experimental Demonstration of Superradiant Amplification of Ultra-Short Laser Pulses in a Plasma

    Get PDF
    A novel amplifications scheme for 20-30-fs laser pulses has been demonstrated. The signal pulses are amplified in a plasma by few picosecond long, counterpropagating pump pulses. The signal and pump pulses arrange the plasma electrons to a density grating reflecting the pump light back into the signal pulse. In the superradiant regime, the plasma electrons scatter the pump pulse coherently. By an intrinsic mechanism a further shortening of the signal pulse to less than 10 fs is possible. The experiment was set up at the "Max-Planck-Institut für Quantenoptik", using the ATLAS laser system as source for the pump and input signal pulses. Both a regime with pump and signal pulse at the same initial wavelength and with a input signal shifted towards longer wavelengths with respect to the pump pulse were investigated. The unshifted signal pulse showed some initial amplification but further amplification was frustrated by the onset of Brillouin scattering. The superradiant regime was observed for the red-shifted input signal pulse. It is proven by 20 times energy amplification, the spectral broadening indicating the pulse shortening, and the breakup of the 80-fs long signal pulse caused by the very mechanism responsible also for the pulse shortening. An outlook is given for improved amplification in non-planar geometries

    An ultra-high gain and efficient amplifier based on Raman amplification in plasma

    Get PDF
    Raman amplification arising from the excitation of a density echelon in plasma could lead to amplifiers that significantly exceed current power limits of conventional laser media. Here we show that 1-100 J pump pulses can amplify picojoule seed pulses to nearly joule level. The extremely high gain also leads to significant amplification of backscattered radiation from "noise", arising from stochastic plasma fluctuations that competes with externally injected seed pulses, which are amplified to similar levels at the highest pump energies. The pump energy is scattered into the seed at an oblique angle with 14 J sr(-1), and net gains of more than eight orders of magnitude. The maximum gain coefficient, of 180 cm(-1), exceeds high-power solid-state amplifying media by orders of magnitude. The observation of a minimum of 640 J sr(-1) directly backscattered from noise, corresponding to approximate to 10% of the pump energy in the observation solid angle, implies potential overall efficiencies greater than 10%. © The Author(s) 20174

    Slowly varying envelope kinetic simulations of pulse amplification by Raman backscattering

    Get PDF
    A numerical code based on an eikonal formalism has been developed to simulate laser-plasma interactions, specifically Raman backscatter(RBS). In this code, the dominant laser modes are described by their wave envelopes, avoiding the need to resolve the laser frequency; appropriately time-averaged equations describe particle motion. The code is fully kinetic, and thus includes critical physics such as particle trapping and Landau damping which are beyond the scope of the commonly used fluid three-wave equations. The dominant forces on the particles are included: the ponderomotive force resulting from the beat wave of the forward and backscattered laser fields and the self-consistent plasma electric field. The code agrees well, in the appropriate regimes, with the results from three-wave equations and particle-in-cell simulations. The effects of plasma temperature on RBS amplification are studied. It is found that increasing the plasma temperature results in modification to particle trapping and the saturation of RBS, even before the onset of Landau damping of the plasma wave. This results in a reduction in the coupling efficiency compared to predictions based on the three-wave equations.open192

    Plasma modulator for high-power intense lasers

    Get PDF
    A type of plasma-based optical modulator is proposed for the generation of broadband high-power laser pulses. Compared with normal optical components, plasma-based optical components can sustain much higher laser intensities. Here we illustrate via theory and simulation that a high-power sub-relativistic laser pulse can be self-modulated to a broad bandwidth over 100% after it passes through a tenuous plasma. In this scheme, the self-modulation of the incident picoseconds sub-relativistic pulse is realized via stimulated Raman forward rescattering in the quasi-linear regime, where the stimulated Raman backscattering is heavily dampened. The optimal laser and plasma parameters for this self-modulation have been identified. For a laser with asub-relativistic intensity of I ∼ 1017W/cm2, the time scale for the development of self-modulation is around 103 light periods when stimulated Raman forward scattering has been fully developed. Consequently, the spatial scale required for such a self-modulation is in the order of millimeters. For a tenuous plasma, the energy conversion efficiency of this self-modulation is around 90%. Theoretical predictions are verified by both one-dimensional and two-dimensional particle-in-cell simulations

    Effects of the frequency detuning in Raman backscattering of infinitely long laser pulses in plasmas

    Get PDF
    Raman backscattering (RBS) in an infinite homogeneous laser-plasma system was investigated with the three-wave fluid model and averaged particle-in-cell (aPIC) simulations in the nonrelativistic and low temperature regime. It was found that the periodic boundary condition for the electrostatic potential, which is commonly used in an infinite homogeneous plasma, induces a numerical frequency shift of the plasma wave. The initial frequency detuning between the three waves is modified by the frequency shift, leading to a significantly wrong result in the RBS system. An alternative boundary condition based on the Maxwell equation is presented. The aPIC simulations with the modified boundary condition show that the pump depletion level depends sensitively on the frequency mismatch between the three waves. This sensitivity is closely related with the erroneous RBS: the numerical frequency shift is very minor (a few percent of the plasma frequency or less than that) but RBS can be greatly affected even by such a small frequency change. Analytic formulas for the pump depletion time and level is derived and compared to the aPIC simulations with the modified boundary condition, showing an excellent agreement.open2
    corecore