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Raman backscattering �RBS� in an infinite homogeneous laser-plasma system was investigated with
the three-wave fluid model and averaged particle-in-cell �aPIC� simulations in the nonrelativistic
and low temperature regime. It was found that the periodic boundary condition for the electrostatic
potential, which is commonly used in an infinite homogeneous plasma, induces a numerical
frequency shift of the plasma wave. The initial frequency detuning between the three waves is
modified by the frequency shift, leading to a significantly wrong result in the RBS system. An
alternative boundary condition based on the Maxwell equation is presented. The aPIC simulations
with the modified boundary condition show that the pump depletion level depends sensitively on the
frequency mismatch between the three waves. This sensitivity is closely related with the erroneous
RBS: the numerical frequency shift is very minor �a few percent of the plasma frequency or less
than that� but RBS can be greatly affected even by such a small frequency change. Analytic
formulas for the pump depletion time and level is derived and compared to the aPIC simulations
with the modified boundary condition, showing an excellent agreement. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2222327�
I. INTRODUCTION

Raman scattering of laser pulses in a plasma is an im-
portant physical process in laser-plasma systems and their
applications. Spectroscopy utilizing Raman scattering1–3 is a
powerful diagnostic of the plasma density and plasma wave
amplitude �by coupling with Thomson scattering�. Unexpect-
edly high Raman backscattering was one of the major ob-
stacles to the fast ignition in the inertial fusion, which moti-
vated a series of intensive experimental, theoretical, and
numerical studies of Raman backscattering �RBS�.4,5

Recently a novel scheme of the laser pulse amplification
�Raman backward amplification �RBA�� using RBS has been
proposed6 and intensively studied theoretically and
experimentally.7,8 Among the important issues in RBS there
are kinetic effects such as electron trapping and Landau
damping. From the reduced particle-in-cell simulations and
analysis, it was found that electron trapping enhances RBS
over the naive prediction based on the linear Landau damp-
ing theory in a high temperature plasma.4 A kinetic term
which describes the trapping effect was found by Hur et al.9

From the analysis of the kinetic term, it was shown that the
trapping suppresses RBS in a low temperature plasma, where
the linear Landau damping is negligible. This effect is im-
portant in RBA as the efficiency of the amplification can be
significantly deteriorated in some parameter regimes.9,10

In this article, we focus on the spatially homogeneous
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RBS in a nontrapping regime, which was not covered in
previous work.9 Using the averaged particle-in-cell �aPIC�
simulation11 and a simple analytic theory, the effects of the
initial pump and seed amplitudes and the frequency mis-
match are studied. The homogeneous RBS, where the spatial
modulation is neglected, can frequently occur when a very
long laser pulse propagates through a plasma. For a long
pump laser, Raman backscattering is more dominant than
other instabilities such as Raman forward scattering or the
modulation because of its higher growth rate. Thus, it is im-
portant to investigate the characteristics of the homogeneous
RBS. The most popular model for the homogeneous RBS is
the three-wave equations without spatial derivatives, which
have been investigated analytically.12–14 Those equations can
be used to describe interactions between light waves and
general dielectric materials, not only the plasma.13 However,
in the previous works9–11 and other literatures,15,16 it was
shown that the three-wave model is not valid in the kinetic
regime where particle trapping and wave breaking are in-
volved. Even below the wave-breaking limit, the kinetic ap-
proach is important because RBS is, as it turns out, ex-
tremely sensitive to any possible detuning mechanism which
is not included self-consistently in the three-wave model. In
this article, we address the homogeneous RBS by the aPIC
simulations,11 focusing on the effect of frequency detuning
between the three waves. The simulations show that a very
small frequency mismatching leads to a significant change in
the pump depletion level. It will be shown that RBS charac-

teristics are seriously distorted when the common periodic
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boundary condition of the electrostatic potential is used in
the PIC simulations because of the unrealistic frequency shift
induced by the �numerical� Doppler shift. The erroneous fre-
quency shift was pointed out theoretically for the beat-wave-
driven plasma wave.17,18 In that system, the relativistic mass
increase is the origin of the frequency shift. In RBS, the
operation regime is nonrelativistic �no relativistic frequency
shift� and RBS can be easily affected by any small frequency
mismatch. Thus, it is important to study the issue with first-
principle simulations �i.e., PIC simulations�. The analytic
forms of the pump depletion time and level were compared
with a series of aPIC11 simulations.

This article is organized as follows: The basic equations
of the aPIC model are reviewed in Sec. II with a useful
discussion on the boundary condition of the electrostatic po-
tential. The RBS simulations and analysis are presented in
Sec. III. The summary is given in Sec. IV.

II. THE AVERAGED PARTICLE-IN-CELL MODEL
FOR RBS

The kinetic effects on RBS can be modeled self-
consistently by PIC simulations. However, full PIC codes,
which solve the Maxwell equations and the equation of mo-
tion for plasma particles, are computationally expensive. As
a compromise of the PIC’s self-consistency in describing the
kinetic features and the fast computation of the three-wave
fluid model, Shvets et al. used the envelope-kinetic model,
where he studied for the first time the laser amplification in a
highly kinetic regime.19,20 That concept was extended to the
aPIC code,11 which couples the envelope-kinetic equations
of the lasers with the conventional PIC scheme for plasmas.

A. Basic equations

The spatially homogeneous version of the envelope-
kinetic equations for lasers used in Refs. 11 and 20 are

da1

dt
= i

�p
2

2�1
a2� ei�j

� j
� , �1a�

da2

dt
= i

�p
2

2�2
a1� e−i�j

� j
� , �1b�

where a1,2 are the seed and the pump envelopes, �1��2 the
frequencies of the seed and the pump, and � j the pondero-
motive phase of the jth particle. For the system to be non-
kinetic, no electron trapping or wave breaking should occur
and the driving laser amplitude should be small, i.e.,
a1,2�1. To keep the plasma wave amplitude under the wave-
breaking limit, every particle’s velocity should be less
than the phase velocity vp of the plasma wave. The plasma
wave is driven by the beat of the two counterpropagating
lasers with ��1,2 ,k1,2�. Thus vp for nearly resonant frequency
matching ��2−�1��p� is given by vp /c= ��2−�1� /
c�k1+k2���p /2�, where �= ��1+�2� /2. A typical value of
�p /� for a tenuous plasma is less than 0.1. Therefore, as
long as the driving lasers are weak enough to keep the

plasma wave amplitude under the wave-breaking limit, all
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the electrons are nonrelativistic. Hence, the relativistic factor
in Eq. �1� can be removed.

The electrostatic plasma wave is treated in an exactly
same way as in the conventional electrostatic PIC codes. The
spatially homogeneous equation of motion for the jth elec-
tron is

duj

dt
= −

e

mc
Es +

ckb

2
Re�ia1

*a2ei�j� , �2�

where uj =� jv j /c�v j /c, kb the beat wave number, and Es the
electrostatic field. To obtain Es, the simulation domain �typi-
cally one beat wavelength� is divided into meshes, to which
the charge from the simulation particles is allocated with
some weighting �we used linear weighting�. The ions are
assumed to be fixed in the time scale of RBS.

B. Boundary condition

The one-dimensional electric field can be obtained from
the Poisson equation ��x

2�=−� /�0, −�x�=E�. In an infinite
homogeneous system, the periodic boundary condition is
commonly used for the electric potential, which enforces the
spatial dc component of the electric field to disappear. In
principle, however, there is no physical mechanism prohibit-
ing the temporally alternating dc electric field. On the
contrary, the time-varying dc electric field is essential to can-
cel any spatially constant current induced by noise or any
external driving. Otherwise, the system cannot satisfy the
Maxwell equation

�0
�Ex

�t
+ Jx = 0. �3�

This was pointed out previously in another context18 without
detailed description on the numerical boundary condition or
evidences from PIC simulations. We present the numerical
condition for the electric field, which satisfies Eq. �3�. The
infinite homogeneous system can be simulated by consider-
ing just one wavelength of the plasma wave. The motion of
particles and the electric field are periodically repeated. The
wavelength is divided by N meshes and the discretized
plasma densities nj’s are computed on the grid points from
the simulation particles with a proper weighting �linear
weighting was used in our simulations�. Then the electric
field Ej+1/2 is calculated at the center of the meshes from

Ej+1/2 − Ej−1/2 = −
enj

�0
�x , �4�

where �x is the mesh size. To close Eq. �4�, either the bound-
ary value, E1/2 or EN−1/2, should be specified. The spatial dc
component of any discretized quantity Qj is represented by
Qdc= �1/N�� j=0

N−1Qj. This equation along with Eq. �4� gives

Edc = �
j=0

N−1

Ej+1/2 = EN−1/2 +
e�x

�0N
�
j=1

N−1

jnj . �5�

The electron current at each simulation grid can be ob-
tained by counting the number of particles passing through a

given mesh boundary divided by the simulation time step;
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the sign of the current from each electron is opposite to that
of the particle velocity. The time-discrete version of Eq. �3�
for the dc components becomes

Edc
n = Edc

o −
�t

�0
Jdc

o , �6�

where the superscripts n ,o represent the new and old steps
in time. From Eqs. �5� and �6�, the boundary value
Eb	EN−1/2 is determined by

Eb
n = Edc

o −
�t

�0
Jdc

o −
e�x

�0N
�
j=1

N−1

jnj
n. �7�

Note that periodic boundary condition for the electric poten-
tial means Edc=0 in Eq. �5�.

We discuss the discrepancy between two aPIC simula-
tions with different boundary conditions. Figure 1�a� is the
comparison between the aPIC simulation with the boundary
condition from Eq. �7� and the periodic potential, i.e.,
Edc=0. To confirm that the former produced a correct result,
the dc components of the electron current density were com-
pared for those two cases in Figs. 1�b� and 1�c�. The dc
current density was well suppressed by the induced dc elec-
tric field when Eq. �7� was used as a boundary condition,
whereas it was not in the other case. The aPIC with Eq. �7�
agrees well with the three-wave fluid calculation. The three-
wave equations and analysis will be given in the next sec-
tion.

The dc current in Fig. 1�c� originates from the coupling
between the linear perturbations in the plasma density �n1�
and the fluid velocity �v1�. These quantities are represented
by

n1 = 1 �n̂1 exp�ikx − i�t� + c.c.� , �8a�

FIG. 1. �a� Comparison of the aPIC simulations with Eq. �7� �i.e., Jdc=0,
solid line� and with Edc=0 �dotted line�. The three-wave fluid calculation
�dashed line� is shown to be in a good agreement with the Jdc=0 case. �b and
c� dc components in the current for Jdc=0 and Edc=0, respectively.
2
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v1 = 1
2 �v̂1 exp�ikx − i�t� + c.c.� . �8b�

The Poisson equation and the fluid equation of motion give
the complex amplitudes n̂1 and v̂1 as functions of the electric
field amplitude:

n̂1

n0
= − i

ck

�p
f , v̂1 = − icf , �9�

where f is the first-order complex amplitude of the electric
field normalized by f =eE /me�pc and n0 is the unperturbed
plasma density. The second order current is calculated as

J2

en0c
= −

v2

c
−

n1v1

n0c
. �10�

The second term in Eq. �10�, from Eqs. �8� and �9�, yields a
spatial dc current as well as an oscillatory component:

J2

en0c
= −

v2

c
+

ck

4�p
f2 exp�2ikx − 2i�t� + c.c. −

ck

2�p

f 
2.

�11�

The white line in Fig. 1�c� is the plot of the last term in Eq.
�11�, which exactly overlaps on the measured current. The dc
current from the coupling of n1 and v1 should be canceled by
another dc term originating from the second-order drift
vd /c=0.5ck
f 
2 /�p of the fluid plasma.17,18 However, when
the boundary condition of Edc=0 is used, there is no driving
to invoke vd. To satisfy the Maxwell equation �3�, the PIC
simulation will take an alternative way: the moving frame
with a velocity −vd. In this frame, the ion background will
generate a current which cancels the dc term in Eq. �11�. In
the PIC simulation, there is no distinction between the mov-
ing and fixed ion backgrounds, because, as long as there is
no spatial modulation in the ion density, the moving ions do
not make any change in solving the Poisson equation. Thus
the cancelling ion current intervenes only implicitly. Instead,
taking a moving frame results in an unrealistic frequency
change by the Doppler shift. Because the frame will move in
a way to cancel the last term in Eq. �11�, the shift becomes
�� /�p=kvd /�p=c2k2
f 
2 /2�p

2. The �numerical� frequency
change is always up-shift and depends on the square of the
wave amplitude. This frequency shift is a major source of the
significant discrepancy in Fig. 1. Note that a small frequency
mismatch can lead to a great difference in the pump deple-
tion level as will be shown in the next section �Fig. 2�.

III. SIMULATION RESULTS AND ANALYSIS

We used two different types of simulations: averaged
PIC simulation, which includes every kinetic feature self-
consistently, and the three-wave fluid model. The aPIC
scheme is presented in the previous section. The governing
equations of the fluid three-wave model are

�a1

�t
+ c

�a1

�x
= −

�p

2
a2f*, �12a�

�a2 − c
�a2 =

�pa1f , �12b�

�t �x 2
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�f

�t
+ i��f +

3

2

kb
2Te

me�p
f = −

�

2
a1

*a2, �12c�

where f is the envelope of the plasma wave, ��=�p−�2

+�1, Te the plasma temperature, kb the beat wave number of
the two counterpropagating lasers, me the electron rest mass,
and �= ��1+�2� /2. It will be discussed that the plasma tem-
perature has a nonnegligible effect on RBS. Note that the
spatial derivatives in Eq. �12� are neglected in an infinite
homogeneous system.

Figure 2 shows the homogeneous RBS obtained from the
three-wave fluid and aPIC simulations. The initial amplitudes
of the seed and pump were a1=0.0005 and a2=0.004,
respectively. The wavelengths were 	1=1.0 
m and
	2=0.9 
m. Two different plasma densities were used:
n=1.379�1019 and n=1.362�1019 cm−3, corresponding to
plasma frequencies of �p=2.092�1014 and �p=2.079
�1014, respectively. The former satisfies the resonance con-
dition between the lasers and plasma ���=0� and the latter is
slightly off-resonant by 0.7% �
��
 /�p=0.007�. For the ex-
act resonant case, the pump is depleted by almost 100%. The
slightly off-resonant case, though the initial growth rate of
the seed laser is almost the same as in the resonant case, the
level of the pump depletion is quite different. The pump
depletion level in the off-resonant case is similar to that from
the aPIC simulation with resonance but a wrong boundary
condition �Edc=0 case in Fig. 1�. Note that the middle value
of the numerical frequency shift in Fig. 1�c� is approximately
�� /�p�0.0005ck /�p�0.01 �1%�, which is similar to the
detuning used in Fig. 2�b�. After the energy depletion, the

FIG. 2. The temporal evolution of the pump envelopes for �a� resonant case
and �b� slightly off-resonant case ��� /�p is less than 1%�. The solid lines
are from kinetic simulations using aPIC, and the dashed lines are from the
three-wave fluid model.
pump begins to get back the energy from the seed and
ticle is copyrighted as indicated in the article. Reuse of AIP content is subje

114.70.7.203 On: Wed, 3
plasma wave. The energy depletion and restoration proce-
dure is repeated.

We investigate the effect of the detuning and the laser
intensities on the pump depletion time and depletion level.
To do this, it is useful to decompose the laser and plasma
envelopes in Eq. �12� into their �positive� magnitudes and

phases as a1,2= ã1,2 exp�i�1,2� and f = f̃ exp�i� f�. Substituting
these into Eq. �12� and neglecting the spatial derivative terms
�due to the infinite homogeneity� yield the magnitude equa-
tion

dã1

dt
= −

�p

2
ã2 f̃ cos � , �13a�

dã2

dt
=

�p

2
ã1 f̃ cos � , �13b�

df̃

dt
= −

�

2
ã1ã2 cos � , �13c�

and the phase equation

d�

dt
= K sin � − �� , �14�

where �=� f +�1−�2 is the relative phase. In Eq. �14�, K is
defined by

K =
�

2

ã1ã2

f̃
+

�p

2

ã2 f̃

ã1

−
�p

2

ã1 f̃

ã2

. �15�

Multiplying ã1 and ã2 to Eqs. �13a� and �13b� and summing
those two equations yield

ã1
2 + ã2

2 = ã10
2 + ã20

2 , �16�

where ã10,20 represent initial amplitudes of the seed and
pump. By applying the same procedure to Eqs. �13b� and

�13c�, f̃ can be represented by ã2:

ã2
2 +

�p

�
f̃2 = ã20

2 . �17�

The plasma wave starts from zero amplitude f̃ =0. Thus the
value of K at t=0 is , from which the relative phase � takes
a stable equilibrium at �=�. Until K changes its sign, �
remains there, where the driving of the pump ��cos �� is
negative. Therefore pump energy is being transferred to the
seed and the plasma wave. As ã2 becomes small, the negative
term in K becomes dominant eventually flipping the sign of
K. Even after K changes its sign, the driving of the pump still
remains negative for some time, as it takes long for � to
leave its original position to a new stable equilibrium �either
0 or 2��. Thus we roughly assume that � stays at � until the
pump is completely depleted. From aPIC simulations, this
assumption could be found to be quite valid. From Eqs.
�13b�, �16�, and �17�, and �=�, the equation of the temporal

˜
evolution of a2 can be obtained as follows:
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d�

dt
= − ã20

��p�

2
�1 + �2 − �2�1 − �2, �18�

where �= ã2 / ã20 and �= ã10/ ã20. The time for � to change
from 1 to 0 is the pump depletion time T. Thus,

F��� 	 
0

1 d�

�1 + �2 − �2�1 − �2
= ã20

��p�

2
T . �19�

The pump depletion time measured from aPIC simulations is
shown in Fig. 3. For the resonant case, the measured values
show an excellent agreement with Eq. �19�. The detuned case
with the laser and plasma frequencies used in Fig. 2�b� was
simulated for various a10/a20. Even though the pump deple-
tion level was quite different from the resonant case for this
detuning, the simulations show that the pump depletion time
is not strongly dependent on it.

The pump depletion level is quite sensitive to �� as seen
in Fig. 2. Note that in Fig. 2 the pump depletion has been
reduced by 40%, when the detuning is only 0.7%. Figure 4
shows the pump depletion level as a function of the detuning
for various initial seed and pump intensities. For a very small
initial seed, ã10� ã20, it is linearly dependent on the detun-
ing. The scaling equation for the depletion level as a function
of the detuning is

am

ã20

=
��

2ã20
��p�

, �20�

where am means the minimum pump amplitude. It is found in
Eq. �20� that suppression of the pump depletion is more se-

FIG. 3. Pump depletion time as a function of the initial seed and pump ratio
�a1 /a2� for two different pump intensities, a2=0.002 and a2=0.004.

FIG. 4. Pump depletion as a function of the detuning �� and the initial
pump amplitude: the upper curve is for a2=0.002 and the lower one is for
a2=0.004. The solid lines are from scaling equation �20� and the circles and

triangles are from aPIC simulations.
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vere for weaker pump. Figure 4 shows that even when the
initial seed and pump ratio is not small �a10/a20�0.5�, there
is only a slight deviation from Eq. �20�. The complete ana-
lytic solution of Eqs. �13� and �14� can be represented by
Jacobi elliptic integrals.12–14 The rigorous derivation of scal-
ing equation �20� from the full analytic solution is under
study.

Related with the sensitivity of RBS to the frequency de-
tuning, a comment can be made on the effect of plasma
temperature. The Langmuir wave frequency is determined by
�Langmuir=�p+1.5k2Te /me�p, where the first term is the cold
plasma frequency and the second one represents the thermal
frequency shift. Though the thermal shift is negligible in
many cases, it can be an important factor in RBS system due
to the sensitivity of RBS to the frequency change. For a
typical plasma temperature 10 eV, plasma density np=1.38
�1019 cm−3, and the wavelengths 1.0 and 0.9 
m for the
seed and pump respectively, the thermal shift divided by �p

is 1.5k2Te /me�p
2 =0.01. This is large enough to make a great

reduction in the pump depletion level.

IV. SUMMARY

Raman backscattering in an infinite homogeneous sys-
tem was investigated by three-wave fluid and averaged PIC
simulations. The conventional periodic condition in the elec-
trostatic potential was found to be significantly erroneous in
the simulations of Raman backscattering. A correct boundary
condition for the dc component of the electric field was pre-
sented. The aPIC simulations with the modified boundary
condition showed an excellent agreement between the fluid
and aPIC models. From simulations and analytic theory, we
observed that the pump depletion time is governed domi-
nantly by the initial seed and pump ratio �a1 /a2� and it is not
so sensitive to the detuning between the three waves. On the
other hand, the detuning is more important in determining
the pump depletion level than ã10/ ã20. In homogeneous
cases, even a very small detuning, for example �� /�p

�0.01, can lead to a significant deterioration in the pump
depletion level. We presented the comparison between the
analytic formula and aPIC simulations for the pump deple-
tion time and level. The sensitivity of RBS to the small de-
tuning implies that a careful attention should be paid for
example in determining plasma density from Raman �back-
ward� spectroscopy.
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