46 research outputs found

    System characterization and reception techniques for two-dimensional optical storage

    Get PDF

    Minimum latency tracking of rapid variations in two-dimensional storage systems

    Get PDF
    The trend of increasing storage densities results in growing sensitivity of system performance to variations of storage channel parameters. To counteract these variations, more adaptivity is needed in the data receiver. Accurate tracking of rapid variations is limited by latencies in the adaptation loops. These latencies are largely governed by delays of the bit detector. In two-dimensional storage systems, data are packaged in a group of adjacent tracks or rows, and for some of the rows the detection delays can increase dramatically with respect to one-dimensional systems. As a result, the effective latencies in the adaptation loops preclude the tracking of rapid variations and really limit the performance of the system. In this paper, a scheme is proposed that overcomes this problem and that can be used for timing recovery, automatic gain control, and other adaptive circuits. Rapid variations for all the rows are tracked using control information from rows for which detector latency is smallest. This works properly if rapid variations are common across the rows as is the case, for example, for the two-dimensional optical storage (TwoDOS) system. Experimental results for TwoDOS confirm that the scheme yields improved performance with respect to conventional adaptation scheme

    Minimum-Latency Tracking of Rapid Variations in Two-Dimensional Storage Systems

    Full text link

    Cancellation of linear intersymbol interference for two-dimensional storage systems

    Get PDF
    This paper discusses the cancellation of linear intersymbol interference (ISI) in two-dimensional (2-D) systems. It develops a theory for the error rate of receivers that use tentative decisions to cancel ISI. It also formulates precise conditions under which such ISI cancellation can be applied effectively. For many 2-D systems, these conditions are easily met, and therefore the application of ISI cancellation is of significant interest. The theory and the conditions are validated by simulation results for a 2-D channel model. Furthermore, results for an experimental 2-D optical storage system show that, for a single-layer disk with a capacity of 50 GB, a substantial performance improvement may be obtained by applying ISI cancellation

    Cancellation of linear intersymbol interference for two-dimensional storage systems

    Full text link

    Contributions to adaptive equalization and timing recovery for optical storage systems

    Get PDF
    no abstrac

    Other Computational Technique for Estimation of Lower Bound on Capacity of Two-Dimensional Diamond-1 Constrained Channel

    Get PDF
    Computational technique for lower bound on Two-dimensional Diamond-1 constrained channel capacity is presented in this paper. It is basically an amalgamation of Matrix Fractal Grow Method (MFGM) and a new Matrix Fractal Reduction Method both applicable to state transition matrices of the corresponding constrained channels and Rayleigh Quotient Iteration method. Also other programming tricks are presented which improve its implementation. Estimation of lower bound values on the mentioned capacity is made using it. The results are in good alignment with known exact results, which is a verification of the new method. The method could be generalized for other constraints which are restricted only on one neighbor symbol in 2D constrained channel such as for example Square-1 and Hexagonal-1
    corecore