1,422 research outputs found

    Spatial-temporal data modelling and processing for personalised decision support

    Get PDF
    The purpose of this research is to undertake the modelling of dynamic data without losing any of the temporal relationships, and to be able to predict likelihood of outcome as far in advance of actual occurrence as possible. To this end a novel computational architecture for personalised ( individualised) modelling of spatio-temporal data based on spiking neural network methods (PMeSNNr), with a three dimensional visualisation of relationships between variables is proposed. In brief, the architecture is able to transfer spatio-temporal data patterns from a multidimensional input stream into internal patterns in the spiking neural network reservoir. These patterns are then analysed to produce a personalised model for either classification or prediction dependent on the specific needs of the situation. The architecture described above was constructed using MatLab© in several individual modules linked together to form NeuCube (M1). This methodology has been applied to two real world case studies. Firstly, it has been applied to data for the prediction of stroke occurrences on an individual basis. Secondly, it has been applied to ecological data on aphid pest abundance prediction. Two main objectives for this research when judging outcomes of the modelling are accurate prediction and to have this at the earliest possible time point. The implications of these findings are not insignificant in terms of health care management and environmental control. As the case studies utilised here represent vastly different application fields, it reveals more of the potential and usefulness of NeuCube (M1) for modelling data in an integrated manner. This in turn can identify previously unknown (or less understood) interactions thus both increasing the level of reliance that can be placed on the model created, and enhancing our human understanding of the complexities of the world around us without the need for over simplification. Read less Keywords Personalised modelling; Spiking neural network; Spatial-temporal data modelling; Computational intelligence; Predictive modelling; Stroke risk predictio

    Spatial-temporal data modelling and processing for personalised decision support

    Get PDF
    The purpose of this research is to undertake the modelling of dynamic data without losing any of the temporal relationships, and to be able to predict likelihood of outcome as far in advance of actual occurrence as possible. To this end a novel computational architecture for personalised ( individualised) modelling of spatio-temporal data based on spiking neural network methods (PMeSNNr), with a three dimensional visualisation of relationships between variables is proposed. In brief, the architecture is able to transfer spatio-temporal data patterns from a multidimensional input stream into internal patterns in the spiking neural network reservoir. These patterns are then analysed to produce a personalised model for either classification or prediction dependent on the specific needs of the situation. The architecture described above was constructed using MatLab© in several individual modules linked together to form NeuCube (M1). This methodology has been applied to two real world case studies. Firstly, it has been applied to data for the prediction of stroke occurrences on an individual basis. Secondly, it has been applied to ecological data on aphid pest abundance prediction. Two main objectives for this research when judging outcomes of the modelling are accurate prediction and to have this at the earliest possible time point. The implications of these findings are not insignificant in terms of health care management and environmental control. As the case studies utilised here represent vastly different application fields, it reveals more of the potential and usefulness of NeuCube (M1) for modelling data in an integrated manner. This in turn can identify previously unknown (or less understood) interactions thus both increasing the level of reliance that can be placed on the model created, and enhancing our human understanding of the complexities of the world around us without the need for over simplification. Read less Keywords Personalised modelling; Spiking neural network; Spatial-temporal data modelling; Computational intelligence; Predictive modelling; Stroke risk predictio

    Efficient heuristics for the hybrid flow shop scheduling problem with missing operations

    Get PDF
    In this paper, we address the hybrid flowshop scheduling problem for makespan minimisation. More specifically, we are interested in the special case where there are missing operations, i.e. some stages are skipped, a condition inspired in a realistic problem found in a plastic manufacturer. The main contribution of our paper is twofold. On the one hand we carry out a computational analysis to study the hardness of the hybrid flowshop scheduling problem with missing operations as compared to the classical hybrid flowshop problem. On the other hand, we propose a set of heuristics that captures some special features of the missing operations and compare these algorithms with already existing heuristics for the classical hybrid flowshop, and for the hybrid flowshop problem with missing operations. The extensive computational experience carried out shows that our proposal outperforms existing methods for the problem, indicating that it is possible to improve the makespan by interacting with the jobs with missing operations.Ministerio de Ciencia e Innovación DPI2016-80750-

    Efficiency of the solution representations for the hybrid flow shop scheduling problem with makespan objective

    Get PDF
    In this paper we address the classical hybrid flow shop scheduling problem with makespan objective. As this problem is known to be NP-hard and a very common layout in real-life manufacturing scenarios, many studies have been proposed in the literature to solve it. These contributions use different solution representations of the feasible schedules, each one with its own advantages and disadvantages. Some of them do not guarantee that all feasible semiactive schedules are represented in the space of solutions –thus limiting in principle their effectiveness– but, on the other hand, these simpler solution representations possess clear advantages in terms of having consistent neighbourhoods with well-defined neighbourhood moves. Therefore, there is a trade-off between the solution space reduction and the ability to conduct an efficient search in this reduced solution space. This trade-off is determined by two aspects, i.e. the extent of the solution space reduction, and the quality of the schedules left aside by this solution space reduction. In this paper, we analyse the efficiency of the different solution representations employed in the literature for the problem. More specifically, we first establish the size of the space of semiactive schedules achieved by the different solution representations and, secondly, we address the issue of the quality of the schedules that can be achieved by these representations using the optimal solutions given by several MILP models and complete enumeration. The results obtained may contribute to design more efficient algorithms for the hybrid flow shop scheduling problem.Ministerio de Ciencia e Innovación DPI2016-80750-

    Scheduling MapReduce Jobs under Multi-Round Precedences

    Full text link
    We consider non-preemptive scheduling of MapReduce jobs with multiple tasks in the practical scenario where each job requires several map-reduce rounds. We seek to minimize the average weighted completion time and consider scheduling on identical and unrelated parallel processors. For identical processors, we present LP-based O(1)-approximation algorithms. For unrelated processors, the approximation ratio naturally depends on the maximum number of rounds of any job. Since the number of rounds per job in typical MapReduce algorithms is a small constant, our scheduling algorithms achieve a small approximation ratio in practice. For the single-round case, we substantially improve on previously best known approximation guarantees for both identical and unrelated processors. Moreover, we conduct an experimental analysis and compare the performance of our algorithms against a fast heuristic and a lower bound on the optimal solution, thus demonstrating their promising practical performance

    Polynomial-time approximation schemes for scheduling problems with time lags

    Get PDF
    We identify two classes of machine scheduling problems with time lags that possess Polynomial-Time Approximation Schemes (PTASs). These classes together, one for minimizing makespan and one for minimizing total completion time, include many well-studied time lag scheduling problems. The running times of these approximation schemes are polynomial in the number of jobs, but exponential in the number of machines and the ratio between the largest time lag and the smallest positive operation time. These classes constitute the first PTAS results for scheduling problems with time lags
    • …
    corecore