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Abstract We identify two classes of machine scheduling
problems with time lags that possess Polynomial-Time Ap-
proximation Schemes (PTASs). These classes together, one
for minimizing makespan and one for minimizing total com-
pletion time, include many well-studied time lag schedul-
ing problems. The running times of these approximation
schemes are polynomial in the number of jobs, but expo-
nential in the number of machines and the ratio between the
largest time lag and the smallest positive operation time.

These classes constitute the first PTAS results for sched-
uling problems with time lags.

Keywords Machine scheduling · Time lags ·
Approximability · Polynomial-Time Approximation
Scheme (PTAS)

1 Introduction

1.1 Problem description

Machine scheduling problems with time lags can arise both
in multi-stage and single-stage processing environments as
long as the jobs to be processed consist of multiple opera-
tions. A time lag, after all, specifies a minimum delay be-
tween the execution of two consecutive operations of the
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same job. Time lags can model the transportation times be-
tween machines when the number of vehicles is not restric-
tive or when the jobs travel by themselves, for example, like
barges sailing between container terminals along the river
bank and trucks traveling between pick up and delivery de-
pots. Time lags can also model activities that require no
limited resources, for instance, cooling-down times. These
practical justifications explain why time lags are sometimes
also referred to in the literature as transportation times or
delays.

We assume that there are m machines M1, . . . ,Mm avail-
able from time zero onwards for processing a set of n jobs
J1, . . . , Jn, each consisting of o operations (O1j , . . . ,Ooj ).
Every operation Oij (i = 1, . . . , o; j = 1, . . . , n) needs to be
processed during an uninterrupted processing time pij ≥ 0
on a dedicated machine μij ∈ {M1, . . . ,Mm} and the oper-
ations of the same job cannot be processed simultaneously.
Each machine can handle only one operation at a time. Each
job Jj (j = 1, . . . , n) may have a release time rj before
which no operation of Jj can be started.

We consider only the basic (and most common) time lag
scheduling models with exactly one machine per stage. We
consider three such multi-stage scheduling environments
with o = m: an open shop problem, where the operations
of a job can be processed in any order; a job shop problem,
where the operations of every job Jj (j = 1, . . . , n) need to
processed in the order O1j → O2j → ·· · → Ooj ; and a flow
shop, which is essentially a job shop with the special condi-
tion that μij = Mi for each operation Oij (i = 1, . . . ,m; j =
1, . . . , n). Hence in a flow shop, all jobs pass through the
machines in the same order M1 → M2 → ·· · → Mm.

In the single-stage scheduling environment with time lags
that we consider, there is only a single machine M1 avail-
able for processing jobs J1, . . . , Jn, each of which con-
sists of a chain of two operations (O1j ,O2j ) that need to
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be processed in the order O1j → O2j for each j (j =
1, . . . , n). Hence, in this environment we have m = 1, o = 2,
and μ1j = μ2j = M1 for each j (j = 1, . . . , n). These
problems are commonly referred to as single machine cou-
pled operations scheduling problems (Potts and Whitehead
2007).

In an open shop environment, time lags take the form
lhij (j = 1, . . . , n;h, i = 1, . . . ,m), specifying the mini-
mum required delay between the completion of operation
Ohj and the start of operation Oij . If lhij = lihj for all jobs
Jj (j = 1, . . . , n) and all operations Ohj and Oij (h, i =
1, . . . ,m;h �= i), then the time lags are called symmetrical.
In flow shops, job shops, and single machine shops with
coupled operations, the order of the operations is fixed for
every job, and hence the given time lags are of the form lij ,
specifying the required minimum time lag between opera-
tion Oij and Oi+1,j . Special time lag cases include the sit-
uation where the time lags between operations of job Jj are
of the form lj for each j = 1, . . . , n and the situation where
all time lags equal a given positive constant l.

A schedule specifies for every operation when it is exe-
cuted such that all constraints are satisfied; in other words,
it specifies for every operation Oij a starting time Sij and
a completion time Cij such that all conditions are met
(i = 1, . . . , o; j = 1, . . . , n). In this paper, we consider two
scheduling objectives; the minimization of the makespan, or
length, Cmax of the schedule, and the minimization of the
sum of the job completion times or total flow time

∑
Cj ,

where Cj denotes the completion time of the last processed
operation of job Jj (j = 1, . . . , n). Throughout this paper,
we follow the standard three-field α|β|γ | scheduling nota-
tion (Graham et al. 1979). For instance, F2|lj |Cmax denotes
the problem of minimizing makespan in a two-machine flow
shop with job-dependent time lags; J2|oj ≤ 2|∑Cj de-
notes the problem of minimizing total completion time in
the two-machine job shop where oj ≤ 2 denotes that each
job consists of no more than two operations; O3|lhij =
l|Cmax denotes the problem of minimizing makespan in the
three-machine open shop with equal time lags; and 1|oj =
2, lj |Cmax denotes the single-machine problem of schedul-
ing jobs with exactly two coupled operations to minimize
makespan subject to job-dependent time lags.

1.2 Complexity

Scheduling problems with time lags are strongly N P -
hard in their most general forms, and hence it is very un-
likely that they can be solved to optimality in polynomial
time. For makespan minimization problems, for instance,
Yu et al. (2004) showed that F2|lj |Cmax and O2|lj |Cmax

are N P -hard in the strong sense, even if all processing
times are equal to 1. From the first result, it follows, of
course, that J2|lj |Cmax is N P -hard, too. Kern and Naw-
ijn (1991) showed that the problem 1|oj ≤ 2, lj |Cmax is

N P -hard; Gupta (1996) strengthened the result by prov-
ing that the problem is N P -hard in the strong sense. Fur-
ther N P -hardness results are known for even more re-
strictive problems such as O2|lhij = l|Cmax and O|pij =
1, lhij = lihj |Cmax (Rayward-Smith and Rebaine 1992), and
F2|p1j = p2j , lj ∈ {l1, l2}|Cmax, which is N P -hard in the
strong sense (Yu 1996).

As far as the total flow time objective is concerned, Garey
et al. (1976) and Achugbue and Chin (1982) proved that
F2 ‖ ∑

Cj and O2 ‖ ∑
Cj , respectively, are strongly N P -

hard. The implication is that two-machine flow shop, job
shop and open shop problems to minimize total flow subject
to time lags are N P -hard in the strong sense, too, even if all
time lags are the same. Brucker et al. (2004) have shown that
the problem F2|pij = p, rj , lj |∑Cj is N P -hard, also.

The best well-known polynomially solvable problem is
undoubtedly F2|lj |Cmax if the solution space is restricted to
permutation schedules (Mitten 1959). Other polynomially
solvable cases are more restrictive, such as F2|lj = l|Cmax,
O2|pij = p, lij |Cmax and F |pij = p, lj |∑Cj (Brucker
et al. 2004).

1.3 Approximability

In this paper, we are concerned with the approximability of
scheduling models with time lags. We define an approxima-
tion algorithm to have performance ratio or worst-case ratio
ρ, with ρ > 1, if it always produces a solution with the ob-
jective value at most ρ times the optimal solution value. If
such an algorithm runs in polynomial time, we call it a ρ-
approximation algorithm. A Polynomial-Time Approxima-
tion Scheme (PTAS) is a family of polynomial time (1 + ε)-
approximation algorithms over all ε > 0.

The approximability of scheduling problems with time
lags, and in particular the design of PTASs, is largely
uncharted territory. Approximability results are limited to
makespan minimization and concern ρ-approximation re-
sults only. For the two-machine flow shop environment,
Dell’Amico (1996) provided a 2-approximation algorithm
for F2|lj |Cmax. Karuno and Nagamochi (2003) improved
on this and gave an 11

6 -approximation algorithm. Ageev
(2008) showed that the worst case ratio could be improved
to 3

2 if p1j = p2j for each job Jj (j = 1, . . . , n).
For the two-machine open shop environment, Struse-

vich and Rebaine (1995) presented a 7
4 -approximation al-

gorithm for O2|lhij = lihj |Cmax. This bound was improved
to 3

2 by Strusevich (1999). Rebaine and Strusevich (1999)
presented an 8

5 -approximation algorithm for O2|lij |Cmax.
Rebaine (2004) presented a 2-approximation algorithm for
O2|lhij |Cmax and a ( 7

4 − 1
2n

)-approximation algorithm for
O2|pij = p, lhij |Cmax.



J Sched

Table 1 Some problems in class M

Problem (P) Complexity (P) Complexity ¯(P)

F2|lj |Cmax ! (Yu 1996) P (Johnson 1954)

F2|rj , lj |Cmax ! (Yu 1996) PTAS (Hall 1994; Kovalyov and Werner 1997)

Fm|pij = 1, tree, ljkl |Cmax ! (Yu 1996) P (Bruno and Jones 1980)

O2|lhij |Cmax ! (Dell’Amico and Vaessens 1995) P (Gonzalez and Sahni 1976)

J2|oj ≤ 2, lj |Cmax ! (Yu 1996) P (Jackson 1956)

J2|pij = 1, rj , lj |Cmax ! (Yu 1996) P (Timkovsky 1997)

1|oj = 2, lj |Cmax ! (Gupta 1996) P (trivial)

Table 2 Two earlier studied
problems in class F Problem (P) Complexity (P) Complexity ¯(P)

F2|pij = 1, rj , lij |∑Cj ! (Brucker et al. 2004) P (Baptiste and Timkovsky 2004)

Fm|lij |∑Cj ! (Garey et al. 1976) PTAS (Fishkin et al. 2002)

2 Our contribution

As pointed out in the previous section, approximability of
scheduling problems with time lags is a largely unexplored
area. In this paper, we present the first PTASs for scheduling
problems with time lags, both for minimizing makespan and
minimizing total flow time. Specifically, we identify a class
M for makespan minimization problems with time lags and
a class for F for total flow time minimization problems with
time lags with the property that every scheduling problem
(P) in those classes has a PTAS.

Every problem (P) in class M and class F has the fol-
lowing properties:

(i) Problem (P) is a deterministic scheduling problem with
time lags, with one machine per manufacturing stage.

(ii) (P) is N P -hard or strongly N P -hard.
(iii) The counterpart problem without time lags, referred

to as Problem (P̄), is polynomially solvable or has a
PTAS.

(iv) All time lags are finite, that is, there exists a real μ > 0
such that

lmax ≤ μpmin, (1)

where lmax is the maximum time lag and pmin is the
smallest positive processing time of any operation. The
value μ is fixed, that is, it is not part of the problem
instance.

In addition to Properties (i)–(iv), problems in class M have
the further properties:

(v) The objective is to minimize makespan.
(vi) The scheduling environment is an m-machine flow

shop (with m fixed, that is, m is not part of the prob-
lem instance but given a priori), a two-machine open

shop, a two-machine job shop, or a single-machine
shop with at most two coupled operations.

(vii) If the scheduling environment is a flow shop, then pos-
itive release times are allowed; otherwise, rj = 0 for
each job Jj (j = 1, . . . , n).

(viii) If the scheduling environment is a flow shop with
m > 2 or positive release times, then every job has
at least one operation with a positive processing time.

Table 1 lists some problems that belong to this class M; the
sign ‘!’ indicates that the problem is N P -hard in the strong
sense, whereas P indicates that the problem is solvable in
polynomial time.

In addition to Properties (i)–(iv), problems in class F
have the following further properties:

(ix) The scheduling objective is to minimize total flow time.
(x) The scheduling environment is an m-machine flow

shop where m is fixed.
(xi) Every job has at least one operation with a positive

processing time.

Table 2 lists two earlier studied problems belonging to
class F .

3 PTAS for makespan problems in class M

Consider any makespan minimization scheduling problem
(P) belonging to class M. We start by introducing some no-
tation. Let C∗

max denote the optimal makespan for Problem
(P), and let Cmax(π) denote the minimum makespan of a
feasible schedule π for Problem (P). Finally, let ε > 0 be
any positive real number.

Define Pk = ∑
1≤j≤n,1≤i≤o|μij =Mk

pij as the work con-
tent for machine Mk , for k = 1, . . . ,m. Clearly, we must
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have that

Pk ≤ C∗
max, for k = 1, . . . ,m. (2)

Next, we divide the n × o operations Oij (i = 1, . . . , o; j =
1, . . . , n) into 3m subsets in the following way:

• Zk = {Oij |μij = Mk and pij = 0} for k = 1, . . . ,m;
these are the zero operations.

• Sk = {Oij |μij = Mk and 0 < pij ≤ ε
μ(o−1)

Pk} for k =
1, . . . ,m; these are the small operations.

• Lk = {Oij |μij = Mk and pij > ε
μ(o−1)

Pk} for k =
1, . . . ,m; these are the large operations.

Note that all zero operations need to be scheduled and exe-
cuted, although the duration of their processing is zero. The
number of large operations per machine is bounded from
above; indeed, we have that

|Lk| ≤ μ(o − 1)

ε
, for each k = 1, . . . ,m. (3)

To see that this is true, assume the opposite, that is, |Lk| >
μ(o−1)

ε
for some k (k = 1, . . . ,m). The work content in-

duced by the large operations on machine Mk would then
be at least

∑

i,j |Oij ∈Lk

pij ≥ |Lk| ε

μ(o − 1)
Pk > Pk,

which would imply that the total processing time of the large
operations on Mk exceeds the total processing time of all op-
erations on Mk , which is a contradiction. We now differen-
tiate between two cases:

∑m
k=1 |Sk| = 0 and

∑m
k=1 |Sk| > 0.

If
∑m

k=1 |Sk| = 0, then we have jobs with large and zero
operations only, and we can find an optimal solution for this
case in time polynomial in n but exponential in μ(o−1)m

ε

in the following way. First, we use explicit enumeration
to schedule all the jobs with at least one large operation,
of which there are at most

∑m
k=1 |Lk| ≤ μ(o−1)m

ε
by virtue

of Inequality (3). For m-machine flow shop problems with
m > 2 or flow shop problems where jobs have positive re-
lease times, we are then done since, by definition of class
M and in particular by Property (viii), no job has zero oper-
ations only. For any other type of problem in class M, there
may be jobs with zero operations only, and we insert those
jobs into the intermediate schedule in such a way that feasi-
bility and optimality of the schedule is maintained; this can
easily be achieved, for instance, by scheduling all first oper-
ations as early as possible and all second operations as late
as possible.

Alternatively, if
∑m

k=1 |Sk| > 0, then we have at least one
operation Oij with μij = Mk and 0 < pij ≤ ε

μ(o−1)
Pk , for

some i, j , and k. Using (1) and (2), we have

lmax ≤ μ

(
ε

μ(o − 1)
Pk

)

≤ ε

o − 1
Pk ≤ ε

o − 1
C∗

max. (4)

Let now Problem ¯(P) be the counterpart problem of (P) with-
out given time lags; by definition of class M, ¯(P) is either
solvable in polynomial time or has a PTAS. If ¯(P) is solvable
in polynomial time, then let σ̄ ∗ denote an optimal sched-
ule for this problem. Otherwise, that is, if ¯(P) is N P -hard
but has a PTAS, let σ̄ ε denote a feasible schedule for ¯(P)
with makespan at most (1 + ε)C̄∗

max, where C̄∗
max is the op-

timal makespan for problem ¯(P). Of course, we have that
C̄∗

max ≤ C∗
max.

Let now σ be the schedule obtained from either σ̄ ∗ or
σ̄ ε , whichever is appropriate, by inserting as little idle time
as possible between the different operations to ensure that
σ is a feasible schedule for Problem (P). How much idle
time needs to be inserted, and subsequently, how good is
Cmax(σ )?

First, suppose that ¯(P) is an m-machine flow shop prob-
lem. Then we need to insert no more than lmax idle time on
each machine M2, . . . ,Mm to transform either σ̄ ∗ or σ̄ ε into
a feasible solution σ for Problem (P). Accordingly, we have

Cmax(σ ) ≤ Cmax
(
σ̄ ∗) + (m − 1)lmax ≤ (1 + ε)C∗

max,

if σ has been obtained from σ̄ ∗,

and

Cmax(σ ) ≤ Cmax
(
σ̄ ε

) + (m − 1)lmax ≤ (1 + 2ε)C∗
max,

if σ has been obtained from σ̄ ε.

Now suppose that ¯(P) is any other type of problem than
a flow shop problem, that is, suppose it is a two-machine
job shop, two-machine open shop, or a single machine shop
with at most two coupled operations. We will first show that
no operation in schedule σ̄ ∗ or σ̄ ε , whichever is appropri-
ate, needs to be delayed by more than lmax time units to
obtain a feasible schedule σ for Problem (P). First, sup-
pose that ¯(P) is a two-machine job shop problem. Then we
may assume, without loss of generality, that in σ̄ ∗ or σ̄ ε ,
whichever is appropriate, either machine processes all first
operations O1j before any second operation O2k ; if σ̄ ∗ or
σ̄ ε is no such schedule we can easily transform it into an
equivalent schedule with the stated property. This property
implies that we need to insert no more than lmax idle time
on either machine to transform σ̄ ∗ or σ̄ ε into a feasible so-
lution σ for Problem (P). Second, suppose that ¯(P) is a two-
machine open shop problem. An argument similar to the one
used for the two-machine job shop problem applies; we may
assume without loss of generality that in σ̄ ∗ or σ̄ ε all first
operations precede all second operations on either machine.
Accordingly, the second operations need to be delayed by at
most lmax time to transform σ̄ ∗ or σ̄ ε into a feasible solution
σ for Problem (P). Finally, let ¯(P) be a single-machine prob-
lem where jobs have at most two coupled operations. Again,
we may assume that all first operations precede all second
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operations, and hence we need to insert at most lmax time in
between to guarantee that the resulting schedule σ is feasi-
ble for Problem (P). So indeed, if ¯(P) is any other problem
than an m-machine flow shop problem, we need to insert no
more than lmax idle time per machine to obtain a feasible
schedule σ for Problem (P). This means that

Cmax(σ ) ≤ Cmax
(
σ̄ ∗) + lmax ≤ (1 + ε)C∗

max,

if σ has been obtained from σ̄ ∗,

and

Cmax(σ ) ≤ Cmax
(
σ̄ ε

) + lmax ≤ (1 + 2ε)C∗
max,

if σ has been obtained from σ̄ ε.

In conclusion, if
∑m

k=1 |Sk| > 0, then any makespan mini-
mization Problem (P) in class M has a PTAS, also. Now,
we are ready to give a description of our algorithm.

Algorithm I PTAS for any Problem (P) in class M

Step 1. If
∑m

k=1 |Sk| > 0, go to Step 2; otherwise go to
Step 3.

Step 2. Find a schedule σ , to be obtained either from σ̄ ∗, if
¯(P) is polynomially solvable, or from σ̄ ε , if ¯(P) has

a PTAS. Stop.
Step 3. Explicitly enumerate all possible sequences for the

jobs with at least one large operation. For jobs with
zero operations only, we schedule those jobs by
scheduling all first operations as early as possible
and all second operations as late as possible. Find
thus an optimal schedule σ ∗ for Problem (P). Stop.

Theorem 1 Algorithm I is a Polynomial-Time Approxi-
mation Scheme for any makespan minimization scheduling
problem with time lags in class M. The running time of the
algorithm is polynomial in n but exponential in μ(o−1)m

ε
.

4 PTAS for problems in class F

Let now (P) be any problem belonging to class F , which
consists of m-machine flow shop total flow time minimiza-
tion problems with time lags; see Sect. 2. Let F ∗ denote
the optimal solution value for Problem (P), and let ε > 0 be
any real positive number. Let pi[j ] denote the j th smallest
processing time on machine Mi (i = 1, . . . ,m; j = 1, . . . , n)

and define Pik = ∑k
j=1 pi[j ]. We then have that

F ∗ ≥ Pin, for each i = 1, . . . ,m. (5)

Similar to the previous subsection, we divide the n × m op-
erations into 3m subsets:

• Zi = {Oij |pij = 0} for i = 1, . . . ,m; these are the zero
operations.

• Si = {Oij |0 < pij ≤ ε
μ(m−1)

Pin

n
} for i = 1, . . . ,m; these

are the small operations.
• Li = {Oij |pij > ε

μ(m−1)
Pin

n
}, for i = 1, . . . ,m; these are

the large operations.

If
∑m

i=1 |Si | > 0, we have at least one operation Oij with
0 < pij < ε

μ(m−1)
Pin

n
. With (1) and (5), we have

lmax ≤ μ

(
ε

μ(m − 1)

Pin

n

)

≤ ε

m − 1

Pin

n
≤ ε

m − 1

F ∗

n
. (6)

Let now Problem ¯(P) be the counterpart problem of (P)
without given time lags; accordingly, by definition of class
F , ¯(P) either is solvable in polynomial time or has a PTAS.
If ¯(P) is solvable in polynomial time, then let σ̄ ∗ denote an
optimal schedule for this problem. Otherwise, that is, if ¯(P)
is N P -hard but has a PTAS, let σ̄ ε denote a feasible sched-
ule for ¯(P) with solution value at most (1 + ε)F̄ ∗, where F̄ ∗
is the optimal solution value for Problem ¯(P). Of course, we
have that F̄ ∗ ≤ F ∗.

Let σ be the schedule obtained from either σ̄ ∗ or σ̄ ε ,
whichever is appropriate, by inserting as little idle time as
possible between the different operations to ensure that σ is
a feasible schedule for Problem (P). Then we need to insert
no more than lmax idle time before each operation on each
machine M2, . . . ,Mm to transform either σ̄ ∗ or σ̄ ε into a
feasible solution σ for Problem (P). Accordingly, the com-
pletion time of each job Jj in σ is at most (m − 1)lmax time
later than the completion time of Jj in σ̄ ∗ or σ̄ ε . Hence,
using (6), we have

F(σ) ≤ F
(
σ̄ ∗) + n(m − 1)lmax ≤ (1 + ε)F ∗,

if σ has been obtained from σ̄ ∗,

and

F(σ) ≤ F
(
σ̄ ε

) + n(m − 1)lmax ≤ (1 + 2ε)F ∗,

if σ has been obtained from σ̄ ε.

So, if
∑m

i=1 |Si | > 0, then Problem (P) has a PTAS.
Now consider the case that Si = ∅ for some i (i =

1, . . . ,m). We have then the following lemma.

Lemma 1 If Si = ∅, then |Li | ≤ 2μ(m−1)
ε

− 1; that is, if
there are no small operations on machine Mi , the number of
large operations on machine Mi is bounded from above by
2μ(m−1)

ε
− 1.

Proof Suppose k is the smallest index such that pi[k] >
ε

μ(m−1)
Pin

n
, and hence suppose there are K = n−k +1 large

operations to be scheduled on Mi . This implies that

(K)(K + 1)

2
pi[k] ≤ Pin.
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We also have that

K(K + 1)

2
pi[k] >

(
K(K + 1)

2

)(
ε

μ(m − 1)

)(
Pin

n

)

.

Hence, we must have that

K(K + 1)

2

ε

μ(m − 1)

Pin

n
< Pin,

which implies that

K(K + 1)

2n
≤ μ(m − 1)

ε
.

Since K ≤ n, we have K <
2μ(m−1)

ε
− 1. �

Lemma 1 implies that n < (
2μ(m−1)

ε
− 1)m, since each

has job at least contains one large one operation (see Prop-
erty (xi) of Problems (P) in class F ; see Sect. 2). Hence, for
fixed m and μ, we can find the optimal schedule in polyno-
mial time by complete enumeration.

Now, we give a summary of our algorithm.

Algorithm II PTAS for any problem (P) in class F

Step 1. If
∑m

i=1 |Si | > 0, go to Step 2, otherwise go to
Step 3.

Step 2. Find schedule σ , to be obtained either from σ̄ ∗, if
¯(P) is polynomially solvable, or from σ̄ ε , if ¯(P) has

a PTAS. Stop.
Step 3. Enumerate all possible sequences explicitly and find

thus a schedule σ ∗ with minimum total flow time.
Stop.

Theorem 2 Algorithm II is a Polynomial-Time Approxima-
tion Scheme for any total flow time minimization schedul-
ing problem with time lags in class F . The running time
of the algorithm is polynomial in n but exponential in
(

2μ(m−1)m
ε

− m).

5 Conclusions

In this paper, we have presented the first PTASs for machine
scheduling problems with time lags. Specifically, we have
defined two classes of scheduling problems with time lags,
one for minimizing makespan and one for minimizing to-
tal completion time, such that each problem in those classes
possesses a PTAS. Our algorithms mark a step forward for
time lag problems without earlier known approximability re-
sults, such as F2|rj , lj |Cmax and Fm|lij |∑Cj , as well as
for problems with known approximability results, such as
F2|lj |Cmax, if the time lags are relatively restricted in size.
For example, the best approximation algorithm for the prob-
lem F2|lj |Cmax has a worst-case ratio of 11

6 (Karuno and

Nagamochi 2003). For μ ≤ 5, our algorithm either improves
the ratio to 3

2 in O(n logn) time, or finds the optimal solu-
tion by enumerating at most 10 large jobs. For μ ≤ 10, our
algorithm either improves the ratio to 5

3 in O(n logn) time,
or finds the optimal solution by enumerating at most 15 large
jobs.

Remember that no explicit enumeration is required if
there is at least one job with a small operation. This implies
that, for any Problem (P) whose counterpart ¯(P) is polynomi-
ally solvable, we can find an n0 > 0 for any given μ > 0 and
ε > 0 such that our algorithm requires no explicit enumera-
tion if n > n0. This n0 is defined by the maximum number
of jobs with large operations; accordingly, for problems in
class M, n0 = μ(o − 1)m/ε (see Inequality (3)), and for
problems in class F , n0 = (

2μ(m−1)
ε

− 1)m (see Lemma 1).
Take, for example, again the problem F2|lj |Cmax or the
problem O2|lhij |Cmax, which has a known worst-case ra-
tio of 2 (Rebaine 2004). For μ ≤ 10, our algorithm im-
proves the worst-case ratio to 6

5 in O(n logn) time for any
n > n0 = 100 with no enumeration required. For μ ≤ 25,
our PTAS improves the worst-case ratio to 3

2 in O(n logn)

time for any n > n0 = 100, also with no enumeration re-
quired.
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