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Abstract

In this paper, we address the hybrid flowshop scheduling problem for makespan
minimisation. More specifically, we are interested in the special case where there are
missing operations, i.e. some stages are skipped, a condition inspired in a realistic
problem found in a plastic manufacturer. The main contribution of our paper is
twofold. On the one hand we carry out a computational analysis to study the hard-
ness of the hybrid flowshop scheduling problem with missing operations as compared
to the classical hybrid flowshop problem. On the other hand, we propose a set of
heuristics that captures some special features of the missing operations and compare
these algorithms with already existing heuristics for the classical hybrid flowshop,
and for the hybrid flowshop problem with missing operations. The extensive compu-
tational experience carried out shows that our proposal outperforms existing methods
for the problem, indicating that it is possible to improve the makespan by interacting
with the jobs with missing operations.

1 Introduction

Flowshop scheduling problems have been largely studied in the literature during the last 50

years (Pan et al., 2014). Due to a rising demand of products, both in variety and quantity,

it is commonplace that companies increase their capacity by adding new resources (both

physical and human) to some stages in the manufacturing process (Ribas et al., 2010). As

a result, some processing stages are formed by several machines, and a flowshop layout
∗Preprint submitted to Computers & Industrial Engineering. DOI:10.1016/j.cie.2017.10.034
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turns into a hybrid flowshop, a manufacturing setting that is gaining importance nowadays

(Ruiz and Vazquez-Rodriguez, 2010).

Depending on the characteristics of the machines in every stage, a number of variations

in the Hybrid Flowshop Scheduling (HFS) problem have been analysed in the literature:

identical machines (the processing time for all machines in a stage is the same), uniform

machines (each machine in a stage has a speed parameter associated that controls the

processing time), and unrelated machines (the processing times of the different machines

in a stage are independent). Note that this problem is also denoted in the literature as

“Flexible Flow Line Scheduling”, see e.g. Leon and Ramamoorthy (1997) and Kurz and

Askin (2003) or simply as “Hybrid Flowshop Problem”, see e.g. Ruiz et al. (2008). In

this paper, we focus on the HFS problem with identical parallel machines and with the

possibility of missing operations, i.e. not every job has to go through all the stages. More

specifically, we refer to the problem under study as Hybrid Flowshop Scheduling with

Missing Operations (HFSMO) problem.

Regarding the objective function of the HFS problem, the main objectives used in

the literature can be classified into those related with the completion time of the jobs,

with the delay of jobs, with multiple criteria, or those with an specific problem-dependent

criterion (Ribas et al., 2010). Among all objectives, the makespan is clearly the most

common. In this paper, we focus on this objective, which would enable us to compare and

to discuss our results with existing contributions. Note that the HFSMO problem with

makepan objective is denoted as FHm
(
PM (k)

)m
k=1
|skip|Cmax according to the notation

in e.g. Vignier et al. (1999) and Ruiz and Vazquez-Rodriguez (2010). This problem

is NP-hard for 2 stages if at least one of them has more than one machine, since it is a

generalization of the HFS problem, which is known to be NP-hard with makespan objective

(Gupta, 1988) for the same conditions.

The HFSMO problem has not been widely analysed in the literature. Most often,

it has been addressed as an ordinary HFS problem assuming that a missing operation
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is tantamount to an operation with zero processing time. Nevertheless, this assumption

implies that every job has to be processed in every stage even with zero processing times,

therefore the completion time of the jobs increases (see e.g. Leisten and Kolbe, 1998

and Sridhar and Rajendran, 1993). Additionally, to the best of our knowledge, no paper

in the literature has analysed the empirical hardness of the HFS problem when such a

constraint is added. In this paper, first we analyse in detail the space of solutions of the

HFSMO problem as compared to the traditional HFS problem. Secondly, we propose new

efficient algorithms to solve the HFSMO problem. We focus on improvement heuristics,

i.e. heuristics that start from an already built schedule and try to improve it according to

a given procedure. The heuristics proposed exploit the specific properties of the missing

operations in the HFS setting, and the computational experience carried out shows that

they obtain better results for the problem under study and compare favourably to existing

heuristics.

The paper is organized as follows: Section 2 contains a description of the HFSMO

problem and discusses existing contributions. In Section 3, we conduct a computational

analysis of the empirical hardness of both HFS and HFSMO problems. Section 4 de-

scribes the heuristics proposed. Section 5 presents the comparison between the new set of

heuristics and the existing ones. Finally, in Section 6, we present the conclusions of our

work.

2 Problem statement and background

The HFSMO problem with makespan objective can be stated as follows: We consider a

set of n jobs, N = {1, ..., n} that have to be processed in s different stages, S = {1, ..., s}.

Each stage is composed of a set of mj identical parallel machines, Mj = {1, ...,mj}, i.e.

the processing time of the job on all machines within a stage is the same. Thus, the

processing time of a job on a specific stage can be denoted as pij, where i (i ∈ N ) denotes
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the job, and j (j ∈ S) the stage. Every job has the same routing through the stages, but

some of them can be skipped, i.e. there may be missing operations. Jobs are processed by

exactly one machine at each stage. The objective is to find the sequence of jobs on each

stage so the maximum completion time (makespan) is minimised.

As mentioned in Section 1, the general HFS problem –from which the HFSMO problem

is a particular case– has been widely analysed in the literature, and several reviews can

be found. In Linn and Zhang (1999), the different types of HFS problems are reviewed

according to the number of stages: 2-stage, 3-stage and k-stage. Ribas et al. (2010) present

a review focusing on the characteristics of the problem, i.e. the type of machines within

each stage and the job constraints, discussing the different solution approaches found in

the literature. With a similar approach, Ruiz and Vazquez-Rodriguez (2010) review more

than 200 works using the classification and nomenclature of Vignier et al. (1999). An

evaluation of mixed integer linear programming models for the HFS problem is performed

by Naderi et al. (2014), developing and comparing four different mathematical models.

Among the approximate procedures available for the HFS problem with makespan

objective, four heuristics are worth to note. The first one is the NEH, first proposed by

Nawaz et al. (1983) for the permutation flowshop scheduling problem, PFSP. This heuristic

starts by ordering jobs according to the highest sum of processing times across all stages

(
∑

j pij) and constructs a solution by selecting all jobs, one by one, by inserting them into

the position providing the lowest (partial) makespan (the pseudocode of this heuristic is

presented in Section 4). The NEH is first applied to hybrid flowshops by Brah and Loo

(1999), and the authors found that it outperforms other usual flowshop heuristics such as

CDS1, CDS2, PAM and HO.

A similar heuristic, denoted as Raj, is that by Rajendran (1993), a modification of the

NEH that reduces its computational time at the expense of decreasing the quality of the

solution. In this case, instead of testing each job in all positions, it is inserted in half of

them. Its pseudocode is shown in Section 4.
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Finally, the heuristics WT1_NEH(x) and WT2_NEH(x) by Kizilay et al. (2015) are

based on the profile-fitting method by McCormick et al. (1989). In these heuristics, a

number of sequences are constructed based on a parameter x, and the one obtaining the

minimum makespan is sought by reducing as much as possible the waiting time between

jobs in each stage. Once a solution is obtained, the NEH heuristic is applied, using the

solution found by the previous procedure (instead of using the order obtained by computing

the longest processing time of the jobs as initial solution order). Both heuristics are shown

to perform better that the NEH for the HFS problem with makespan objective.

Among the works considering explicitly missing operations, Leisten and Kolbe (1998)

address missing operations in the classical m-machine flowshop setting. These authors

analyse the suitability of using strict permutation schedules against the possibility of

allowing for job passing. Their conclusion is that advantages can be found when calculating

makespan (or total flowtime) if job passing is allowed. For the same layout, Rajendran and

Ziegler (2001) analyse the performance of several dispatching rules and a heuristic using

a percentage of missing operations of 0%, 20%, 30% and 40%. In Tseng et al. (2008), the

difference between permutation and non permutation schedules in a two-stage HFSMO

problem is studied, showing that non-permutation schedules obtain better results without

greatly increasing the computation times. They present a heuristic for generating a non

permutation schedule from a permutation sequence, obtaining a reduction in the makespan

values. The heuristic was tested on a set of instances considering the following probability

of missing operations: 0%, 20% and 40%. More recently, Saravanan et al. (2014) solve

the k-stage HFSMO problem with makespan objective considering the same percentages

of missing operations. They use two different metaheuristics (Simulated Annealing and

Particle Swarm Optimization), obtaining that the former outperforms the latter, both

in computational time and in the quality of the solutions. Finally, Marichelvam and

Prabaharan (2014) propose a new hybrid metaheuristic for the k-stage HFSMO problem

with makespan objective named Improved Hybrid Genetic Scatter Search (IHGSS), where
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a Genetic Algorithm (GA) and a Scatter Search (SS) are combined. The authors compare

its results against the standard versions of the GA and the SS, concluding that the IHGSS

outperforms both metaheuristics.

Apart from these contributions specifically devoted to missing operations, some authors

also take them into account for more constrainted layouts: In Kurz and Askin (2003), a

set of heuristics are proposed for the k-stage hybrid flowshop with sequence-dependent

setup times, assuming the possibility that the jobs skip some stages. The authors consider

three levels of this skipping probability, 0%(low), 0.05%(medium) and 40%(high). In

Naderi et al. (2010), a new dispatching rule and an iterated local search metaheuristic are

proposed for the HFSMO problem with sequence-dependent setup times. In their case,

two levels of skipping probability are considered, i.e. 10% and 40%.

Note that it is also possible to find some contributions on missing operations in prob-

lems slightly different to the classical HFS problem, such as in e.g. Behnamian and

Fatemi Ghomi (2011), where the case with machine- and resource-dependent processing

times is addressed using a genetic algorithm and a variable neighborhood search. In this

case, the authors consider the possibility that jobs can skip stages, and assume the same

skipping probabilities as in Kurz and Askin (2003).

As a summary, there are many heuristics available for the HFS problem with makespan

objective, and a few of them also for the particular case HFSMO. However, some issues

remain open:

1. Are HFS and HFSMO problems substantially different? To the best of our knowl-

edge, there is no study assessing whether the additional feature of missing operations

make these problems different. If this is the case, developing specific heuristics for

the problem could be fully justified. This issue is addressed in Section 3.

2. Is it possible to use the special structure of the HFSMO to develop efficient solution

methods for the problem? As suggested by the literature review, the missing opera-

tions should not be simply treated as zero processing times operations, so the special

6



structure of the problem could be exploited. This aspect is dealt with in Section 4.

3 Analysis of the problem

In this section we present an empirical analysis of the structure of solutions of the HFSMO

problem as compared to that of the HFS problem. The idea is to analyse how hard is

–in statistical terms– to obtain good solution for the problems under study. To do so, a

complete enumeration of the space of solutions of the problem is carried out for a high

number of instances, and the deviation with respect to the optimal solution for each of

them is studied. In this manner, the empirical distribution of the deviation from the

optimal makespan can be obtained. This type of analysis has been proved to be very

useful for different scheduling problems (see e.g. Taillard, 1990; Armentano and Ronconi,

1999; Framinan et al., 2001, or Perez-Gonzalez and Framinan, 2015). A disadvantage is

that this method can only be used for a small number of jobs/stages, given the NP-hard

nature of the problem discussed in Section 1.

In the analysis carried out, we use a simple permutation encoding following a FIFO

discipline (see e.g. Santos et al., 1996, Naderi et al., 2010 or Pan et al., 2014 for simi-

lar encoding). With respect to the instances to be analysed, different parameters have

to be determined. The processing times are generated according to the [1,99] uniform

distribution, which is the most common distribution used in the literature, both for the

PFSP (Taillard, 1993) and for the HFS (Ruiz et al., 2008). Regarding the percentage of

missing operations, authors typically use 3 levels, i.e. 0%, 20%, and 40% (see e.g. Tseng

et al., 2008 and Saravanan et al., 2014). We add the level 60% to extend the analysis. In

order to set the specific number of missing operations for each job, we follow a procedure

similar to Rajendran and Ziegler (2001), i.e. we generate all processing times and then

make a x% of the total number of operations to be equal to zero. We avoid that a job has

all its operations with processing times equal to zero by limiting the number of missing
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Table 1: Hardness analysis parameters

Parameter Values

n 5,6,7,8
pij U [1, 99]

% Missing Operations 0%,20%,40%,60%
S 3,5,10,15
mj 1,2,U [1, 5],U [2, 4]

Number of Instances 300

operations in a job to be (s− 1) at maximum. Regarding the number of stages, we make

the analysis for 3, 5, 10 and 15 stages.

Regarding the number of machines per stage, we consider two deterministic and two

uniformly distributed cases. In the first case, we assume that there are one or two machines

in every stage, respectively (clearly, the first case is the standard flowshop layout). For the

third case, a uniform [1,5] distribution is employed to generate the number of machines in

each stage, so, it is quite likely to have a bottleneck stage. Finally, the fourth case uses

a [2,4] uniform distribution, which is expected to provide a more balanced shop. In order

to ensure the statistical significance of the analysis we use 300 instances for each problem

size, thus processing a total of 76,800 instances for each type of analysis. A summary of

the parameters employed is shown in Table 1.

The results of the complete enumeration (Figures 1- 5) are shown as an empirical

probability distribution in Figures 1-5, after analysing the objective function value of each

solution in each instance. In these figures, the x-axis represents percentual distance to the

optimal value of the objective function, while the y-axis represents (empirical) probability

that a solution is within the corresponding percentual distance (non accumulative). In

other words, the charts give the empirical distribution function of the random variable

’percentual distance to the optimal value of the objective function’. According to the

results, the following conclusions can be stated:

• Number of Jobs: There is an increasing trend in the hardness as the number of jobs
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Figure 1: Cummulative distribution function for mj = U [1, 5] (jobs)

increases. This pattern is quite similar for any number of machines per stage. For

instance, in Figure 1 we see the case of an hybrid flowshop with mj = U [1, 5], where

the probability to find solutions closer to the optimal solution is always lower for

the case with more jobs (the same pattern has been found for different number of

machines per stage).

• % Missing Operations: The pattern followed by the empirical hardness is similar

for mj = 1 and mj = U [1, 5]. In these cases, the highest hardness is achieved for

the problems without missing operations, and the tendency is that the higher the

percentage of missing operations, the less harder the problem is. Moreover, there

is a difference in the hardness of mj = 1 and mj = U [1, 5], being the latter harder

than the former (see Figures 2 and 3).

For mj = 2 and mj = U [2, 4], the tendency is the opposite (see Figures 4 and 5), i.e.

the higher the percentage of missing operations, the harder the problem is. However,

for mj = 2 and mj = U [2, 4] the difference in hardness is not as pronounced as in

the previous two cases. The most significant difference is that, for mj = 2, there is
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Figure 2: Cummulative distribution function for mj = 1 (missing operations)

Figure 3: Cummulative distribution function for mj = U [1, 5] (missing operations)

a slightly smaller difference in hardness between problems with 0%, 20% and 40%

of missing operations (see Figures 4 and 5). A possible explanation of such different
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Figure 4: Cummulative distribution function for mj = 2 (missing operations)

behaviour is that, in the first two cases, the possibility of very highly loaded stages

in the shop is much higher than in the other two cases, as processing times remain

the same for all of them. More specifically, for mj = 1 there is a high probability

that any of the single-machine stages becomes very loaded, while in mj = [1, 5]

it is foreseeable that those stages with a single machine, or even those with two,

become the most loaded stages. Therefore, the existence of missing operations is

an opportunity to alleviate the load of these stages. On the other hand, in the last

two cases, the hardness increases with the number of missing operations because the

existence of missing operations can cause an over-loading in some stages.

As a conclusion of the analysis carried out in the section, we have shown that, in

general, the HFSMO problem is different than the classical HFS problem, so it makes

sense to use and develop heuristics specifically designed for this particular case. This is

carried out in the next section.
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Figure 5: Cummulative distribution function for mj = U [2, 4] (missing operations)

4 Heuristics Proposal

The aim of this section is to develop appropriate procedures for the HFSMO problem that

take advantage of the special features of the missing operations. To do so, we:

1. Propose a number of modifications of well-known dispatching rules employed for the

HFS problem.

2. Propose four sets of improvement heuristics specifically conceived for the HFSMO

problem.

Regarding the dispatching rules, the following extensions are proposed:

• SPTswm (SPT - stages without missing operations) and LPTswm (LPT - stages

without missing operations). The jobs are sorted according to the ascending (de-

scending) sum of processing times divided by the number of stages without missing

operations. This approach attempts to remove the effect of zero-processing times.

• SPTw (SPT - weighted) and LPTw (LPT - weighted). These two rules first apply a

weight to every stage depending on the number of machines in each stage and then
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sort the jobs according to the ascending or descending weighted sum of processing

times. The idea is to take into account the processing capacity of each stage, favour-

ing those jobs with higher processing times in stages with more capacity and those

with shorter processing times, respectively.

• SPTwswm (SPT - weighted stages without missing operations) and LPTwswm (LPT

- weighted stages without missing operations). The previous dispatching rules are

mixed, so we apply the factors referring to the number of stages without missing

operations and to the number of machines per stage.

• A backward version of all the above rules (as done e.g. in Pan et al., 2014), where

jobs are assigned to machines starting from the last stage instead of starting from the

first and then they are assigned to the preceding stages by computing their backward

release times. To denote the backward version of the dispatching rules we add a b at

the beginning of the name, e.g. bSPTswm is the backward version of the SPTswm

rule.

Regarding improvement heuristics, we propose the following DFF_N(a), DFF_R(a),

DFF_N(100)_RI, and DFF_SD. Firstly, DFF_N(a) and DFF_R(a) try to improve the

solutions obtained by the NEH and Raj heuristics by searching in the neighbourhood of

jobs with missing operations. More specifically, let ΠNEH and ΠRaj be the sequences

obtained by the NEH heuristic (see pseudocode in Figure 6) and Rajendran heuristic (see

pseudocode in Figure 7) respectively. DFF_N(a) uses ΠNEH as its initial solution whereas

DFF_R(a) uses ΠRaj. Additionally, let qj be the number of missing operations in stage

j and let ∆j := {δj1, . . . , δ
j
qj
} be the set of jobs containing missing operations in stage j.

Then, the proposed heuristics first compute ∆j for each stage j and the initial sequences

of jobs, denoted as Π. After that, each job δji is tested in both the first and last a/2

positions of iteration sequence (denoted as Π), updating the solution if the best makespan

is improved. A detailed procedure of the heuristic DFF_N(a) (DFF_R(a)) is explained
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below:

Step 1 Let ΠNEH be the initial solution of DFF_N(a), i.e. Π, (or equivalently, let

ΠRaj be the initial solution of DFF_R(a))

Step 2 Perform Steps 3-6 for all stages (j = {1, . . . , s})

Step 3 Perform Steps 4-6 for all jobs (i = {1, . . . , qj})

Step 4 Remove job δji from ∆j.

Step 5 Insert job δji in the first and last a/2 positions of sequence Π and denote the

new sequence of jobs as Πk, ∀k = {1, ..., a}.

Step 6 Compute the objective function for each Πk, ∀k = {1, ..., a}. If the best

solution has been improved, Π is updated as the best sequence among Πk,

∀k = {1, ..., a}.

%(NEH Heuristic)

Generate a job sequence Π := [π1, π2, · · · , πn] using dispatching rule LPT

for i = 1 to n do
Take job πi from Π

Move job πi to all possible positions in Π and calculate makespan

Select the sequence with minimum makespan

end

Return Π

Figure 6: NEH heuristic pseudocode
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%(Rajendran Heuristic)

Generate a job sequence Π := [π1, π2, · · · , πn] using dispatching rule LPT

Place first job in the partial sequence Π∗, i.e. Π∗ = (π1)

Number of jobs in π∗ equal to 1 (n∗ = 1)

for i = 2 to n do
Calculate lb = |(n∗ + 1)/2| and ub = (n∗ + 1)

Remove next job from Π

Insert the removed job in Π∗ in the lb < ρ < ub positions

Evaluate makespan of partial sequences

Select sequence with minimum makespan and update Π∗

n∗ = n∗ + 1

end

Return Π

Figure 7: Rajendran heuristic pseudocode

In order to explain the DFF_N procedure with a small example, let us assume a hybrid

flowshop composed of three stages with two machines in the first stage, one machine in the

second stage and two machines in the last stage. A set of four jobs whose processing times

are depicted in Figure 8 is to be scheduled. As we can see, missing operations appear both

in second and third stages. In this example we can see how a reduction in the makespan

can be achieved by applying the proposed heuristic. In the left part of Figure 8, it can be

seen the result of applying the NEH heuristic to the problem, obtaining a makespan value

of 17 for sequence Π = (2, 1, 4, 3). In the right part, it can be seen that an improvement of

the makespan can be obtained by applying one loop of the new heuristic. In this example

we move the job with a missing operation in the last stage (job 3), and try to insert it in

the four possible positions, obtaining makespan values of 19,18,17 and 16. Therefore, we

select the last possible sequence Π = (2, 1, 3, 4) with an improved makespan.

Finally, regarding the DFF_N(100)_RI, and DFF_SD proposals, they are two modi-
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Figure 8: Example of DFF_N

fications of DFF_N(a). On the one hand, DFF_N(100) with Random Insertions (denoted

as DFF_N(100)_RI) works in the same manner as DFF_N(100), but for each insertion

of a job containing missing operations there is a small probability (10%) of selecting a job

without missing operations to be inserted. With this proposal we want to prove whether

a better solution can be obtained by considering exclusively jobs with missing operations,

or if we can obtain a better solution by including also jobs without missing operations. On

the other hand, we also propose the DFF Stage Dependent heuristic (DFF_SD), which

is similar to DFF_N(100), but instead of inserting the jobs in all possible positions, in-

sertions are dependent on the stage where the missing operations appear, i.e. if a job

contains missing operations in the first s
2
stages, the insertions are only made in the first

n
2
positions of the sequence, and if the job contains the missing operations in the second

s
2
stages, the insertions are made in the second n

2
positions of the sequence. The aim of

this proposal is to know whether it is worth to insert jobs in all possible positions, or the

improvement is dependent on the stage where missing operations exists.
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5 Computational experience

In this section we analyse the performance of our proposals using an extensive set of in-

stances. We perform a computational evaluation by comparing the proposed approximate

methods with a set of heuristics from the literature. By doing so, we determine the actual

set of efficient heuristics for the problem under consideration. The section is organised as

follows: the set of instances and the indicators to compare the algorithms are described

in Subsection 5.1; the algorithms implemented in this study are described in Subsection

5.2; the results of the computational experiences are shown in Subsections 5.3 and 5.4 for

dispatching rules and improvement heuristics, respectively.

5.1 Benchmark and Indicators

To compare the different approximate procedures, an extensive benchmark composed of

4,800 instances is designed, varying both the number of jobs and stages. More specifically,

n ∈ {5, 10, 20, 30, 40, 50, 100, 200}. In line with the benchmark by Carlier and Neron

(2000), we use s ∈ {3, 5, 10, 15, 20}. 30 instances are generated for each combination of

the factors. The processing times are assumed to be drawn from a uniform distribution

between 1 and 99. Regarding the percentage of missing operations, we use 0%, 20%, 40%

and 60% as discussed in Section 3. Finally, with respect to the number of machines per

stage, we assume mj = U [1, 5]. A summary of the values of the parameters is shown in

Table 2.

The results are evaluated by means of the average Relative Percentage Deviation (RPD)

and the Average Computational Time (ACT) in seconds:

RPDh =
Cmaxj − Cbest

max

Cbest
max

· 100

ACTh =

∑
∀s Th,s
S
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Table 2: Test bed for performance analysis

Parameter Values

n 5,10,20,30,40,50,100,200

s 3,5,10,15,20

pij U [1, 99]

% Missing Operations 0%,20%,40%,60%

mj U [1, 5]

Number of Instances per combination of n and s 30

where RPDh is the Relative Percentage Deviation of heuristic h for an specific instance,

Cmaxh is the makespan obtained by heuristic h for that instance, Cbest
max is the best makespan

obtained by any heuristic in that instance, Th,s is the CPU time in seconds of heuristic h

in instance s, and S is the total number of instances.

5.2 Implemented algorithms

We test a set of 56 different heuristics classified into 2 groups: dispatching rules (24) and

improvement heuristics (32). Among the dispatching rules, we use the proposals discussed

in Section 4, i.e. SPTswm, LPTswm, SPTw, LPTw, SPTwswm, LPTwswm, bSPTswm,

bLPTswm, bSPTw, bLPTw, bSPTwswm, and bLPTwswm. In addition, the following

basic dispatching rules are tested:

• Shortest (longest) Processing Time, SPT (LPT): The jobs are sorted according to

the sum of their duration in each stage, pi =
∑
∀j pij, in ascending (descending)

order.

• Shortest (longest) Processing Time at the First Stage, SPTF (LPTF). The jobs

are sorted according to their duration in the first stage, pi = pi1, in ascending

(descending) order.

• Shortest (longest) Processing Time in the Bottleneck stage, SPTB (LPTB). The jobs

are sorted according to their duration in the stage with the highest sum of processing
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times for all jobs, pi = pib with b := arg maxj{
∑
∀i pij}, in ascending (descending)

order.

We also added the backward version associated to all dispatching rules as commented

in Section 4.

Regarding improvement heuristics, we include in the comparisons the four existing

heuristics for related scheduling problems (HFS and PFSP) discussed in Section 2 (i.e.

NEH, Raj, WT1_NEH(x), and WT2_NEH(x)), and the best performing metaheuristics

for the HFSMO problem, i.e. the simulated annealing algorithm by Saravanan et al. (2014)

and IHGSS. More specifically, we compare:

• The original NEH heuristic by applying the above dispatching rules as initial solu-

tions. We denote them in the following as NEH_y, where y is the dispatching rule

used as initial solution. A total of 6 heuristics are generated in this manner.

• The original Raj heuristic by applying all previously described dispatching rules as

initial solutions. We denote these heuristics as Raj_y, where y is the dispatching

rule used as initial solution. A total of 6 heuristics are obtained.

• The heuristics WT1_NEH(x) and WT2_NEH(x) by Kizilay et al. (2015), where

the parameter x is set to be equal to the number of jobs (n), as this case provides

the best results in a series of preliminary experiments. Let us denote them in the

following as WT1_NEH and WT2_NEH respectively.

• The Simulated Annealing algorithm by Saravanan et al. (2014) (henceforth SA_Saravanan).

• The IHGSS by Marichelvam and Prabaharan (2014) (henceforth IHGSS_Marichelvam).

All these heuristics are re-implemented to be compared against our proposals, i.e.:

DFF_N(a), DFF_R(a), DFF_N(100)_RI, and DFF_SD, with a ∈ {20, 40, 80, 100}. All

heuristics have been coded using the same programming language (C#), and the set of
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instances was executed under the same conditions, i.e. using the same computer (Intel Core

i7-3770 with 3.4 GHz and 16 GB RAM) and the same libraries. In the next subsections we

present the results of the computational experience, first regarding the dispatching rules,

and finally regarding the improvement heuristics.

5.3 Dispatching rules

In Table 3 we show the results of the 24 dispatching rules for each level of missing oper-

ations, as well as the aggregated results. The table shows the ranking of the dispatching

rules according to ARPD (we focus only on ARPD as ACT is almost negligible for all

heuristics). Note that, as we are presenting the ARPD for instances with no missing

operations, the shaded cells provide the same results as the cells just above.

For those instances with missing operations, there are 3 dispatching rules dominating

the other 19: bSPTB, bSPT and LPT. In Table 4 we present the numerical results ac-

cording to the size of the instances, classifying them into big (100 and 200 jobs), medium

(30, 40 and 50 jobs), and small instances (5, 10 and 20 jobs). Although the overall best

performing dispatching rules is bSPTB, depending on the size of the instances and on if

only missing operations or all jobs are considered together, in some cases LPT performs

better than bSPT.

5.4 Improvement Heuristics

The results of the 32 improvement heuristics are summarised in Table 5, and in Figures

9 and 10. Results for all instances are presented in Figure 9, and in the second and third

columns of Table 5. Instances with missing operations are shown in Figure 10, and in the

fourth and fifth columns of Table 5. The behaviour of the heuristics in both figures is

similar, but the improvement obtained by the new heuristics in terms of ARPD is reduced

when all instances are considered. This is foreseeable, as our heuristics have the same

performance as other heuristics when there are no missing operations. Taking this into
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Table 4: Numerical results (ARPD) for best performing dispatching rules

Size Type LPT bSPTB bSPT

BIG (100, 200 jobs)
All Instances 2.987 1.923 3.002

Only Missing Operations 2.812 2.044 2.801

MEDIUM (30, 40, 50 jobs)
All Instances 8.541 6.278 8.056

Only Missing Operations 8.704 6.912 8.192

SMALL (5, 10, 20 jobs)
All Instances 23.011 22.372 23.977

Only Missing Operations 24.440 24.117 25.249

Figure 9: Results of the heuristics for all instances

account, we focus on the results of the instances with missing operations (see Figure 10).

We define a number of groups according to their ACT to simplify the comparison between

heuristics.

A number of conclusions can be drawn from our comparison, which are statistically

justified by means of Holm’s procedure (Holm, 1979). In this procedure, each hypothesis

is analysed using a non-parametric Mann-Whitney test (see e.g. Fernandez-Viagas and

Framinan, 2015). We first sort the hypotheses in non descending order of the p-values

found in the test. Next, we check all hypotheses and reject hypothesis i if its p-value is
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Table 5: ACTh and ARPDh for each heuristic for all instances (second and third columns)
and for the set of instances with missing operations (fourth and fifth columns).

Heuristic All instances Instances with missing operations
ACTh ARPDh ACTh ARPDh

RAJ_LPT 0.62 56.72 0.62 65.58
RAJ_LPTF 0.62 63.89 0.62 74.02
RAJ_LPTB 0.62 62.52 0.62 72.34
RAJ_SPT 0.62 56.95 0.62 65.90
RAJ_SPTF 0.62 55.65 0.62 64.51
RAJ_SPTB 0.62 54.86 0.62 63.48
NEH_SPT 1.25 52.79 1.25 61.38
NEH_SPTF 1.22 53.41 1.22 62.17
NEH_SPTB 1.21 53.22 1.21 61.84
NEH_LPT 1.21 51.83 1.22 60.34
NEH_LPTF 1.20 52.12 1.20 60.56
NEH_LPTB 1.21 52.09 1.22 60.62

IHGSS_Marichelvam 1.81 45.74 1.85 51.79
SA_Saravanan 3.30 41.41 3.38 47.71
WT1_NEH 242.61 45.93 243.55 53.94
WT2_NEH 242.56 45.92 243.67 53.93
DFF_R(20) 1.30 35.07 1.54 37.31
DFF_R(40) 2.01 27.94 2.48 27.87
DFF_R(80) 3.53 20.77 4.51 18.44
DFF_R(100) 4.32 19.22 5.57 16.40
DFF_N(20) 1.91 35.02 2.16 38.51
DFF_N(40) 2.61 28.36 3.10 29.70
DFF_N(80) 4.12 17.97 5.11 15.98
DFF_N(100) 4.91 15.90 6.16 13.28
DFF_SD 3.07 26.88 3.70 27.72

DFF_N(100)_RI 5.09 16.86 6.40 14.55
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Figure 10: Results of the heuristics for instances with missing operations

lower than α
(k−i+1)

, where k is the total number of hypotheses. The results of this procedure

are presented in Table 6. We also present the mean and least significance difference (LSD)

95% intervals in Figure 11.

The following conclusions for the groups (and the hypotheses for the subsequent sta-

tistical analysis) can be obtained:

• Group 1. All Raj heuristics are included, as they achieve the shortest computation

times. However, their performance is not good in terms of ARPD. To analyse the

statistical significance of these heuristics, we check if the following two hypotheses

hold: in H1 we compare the best performing Raj heuristic (Raj_SPTB) with the

second one (Raj_SPTF) and in H2 we compare Raj_SPTB with the worst perform-

ing one (Raj_LPTF) to analyse the influence of the initial solution in the heuristic.

According to the results in Table 6, the first hypothesis cannot be rejected, meaning

that we cannot assure that there is a significant difference between the two heuris-

tics. Nevertheless the second hypothesis can be rejected, i.e. the best and worst

initial sequence are significantly different.
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Table 6: Holm’s procedure

Hi Hypothesis p-value Mann-Whitney α
k−i+1 Holm’s rocedure

H2 Raj_SPTB = Raj_LPTF 0.000 R 0.0031 R
H4 NEH_LPT = NEH_bSPTF 0.000 R 0.0033 R
H5 NEH_LPT = DFF_R(20) 0.000 R 0.0035 R
H6 DFF_R(40) = DFF_N(20) 0.000 R 0.0038 R
H7 DFF_R(40)= IHGSS_Marichelvam 0.000 R 0.0042 R
H9 DFF_SD = SA_Saravanan 0.000 R 0.0045 R
H10 DFF_N(80) = DFF_R(80) 0.000 R 0.0050 R
H11 DFF_N(100) = DFF_R(100) 0.000 R 0.0056 R
H12 DFF_N(100) = DFF_N(100)_RI 0.000 R 0.0062 R
H13 DFF_N(100) = WT1_NEH 0.000 R 0.0071 R
H14 DFF_N(100) = WT2_NEH 0.000 R 0.0083 R
H15 DFF_R(20) = IHGSS_Marichelvam 0.000 R 0.0100 R
H16 DFF_R(40) = SA_Saravanan 0.000 R 0.0125 R
H1 Raj_SPTB = Raj_SPTF 0.194 0.0167
H8 DFF_SD = DFF_N(40) 0.260 0.0250
H3 NEH_LPT = NEH_LPTF 0.769 0.0500

Figure 11: Mean and LSD intervals 95% for RPD

• Group 2. We include the versions of the NEH heuristic and DFF_R(20). The first

conclusion is that the NEH heuristics initialised with backward dispatching rules do
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not perform well for the problem under consideration, obtaining the worst ARPD and

a non-competitive ACT. Among NEH heuristics, the best performing is NEH_LPT,

closely followed by NEH_LPTB and NEH_LPTF. DFF_R(20) performs better

with respect to ARPD, although it has a larger ACT.

To check these conclusions we test the following three hypotheses, i.e.

– in H3 we compare the best performing NEH heuristic (NEH_LPT) with the

second one (NEH_LPTF);

– in H4 we compare the best performing heuristic (NEH_LPT) with the worst

performing one (NEH_bSPTF);

– and in H5 we compare the best NEH heuristic (NEH_LPT) with one of our

proposals (DFF_R(20)).

According to Table 6, the same results are found as for the Raj_y heuristics in the

first two hypotheses, i.e. the first hypothesis cannot be rejected and the second

one can be rejected. The H5 hypothesis can be rejected according to the results.

Therefore, there are significant differences between the best NEH and our proposal

DFF_R(20), being our proposal the best performing heuristic of this group.

• Group 3. This group includes the metaheuristic IHGSS_Marichelvam and the

heuristics DFF_N(20) and DFF_R(40), and. We can conclude from Figure 10 that

the best performing one is DFF_R(40) although it takes more ACT than DFF_(20).

IHGSS_Marichelvam takes less time than the other two heuristics but its ARPD is

also higher. To assert that the DFF_R(40) heuristic is the best perfoming one, we

analyse the following hypotheses: in H6 we compare DFF_R(40) and DFF_N(20);

in H7 our proposal DFF_R(40) is compared with IHGSS_Marichelvam. For both

hypotheses, statistical significative differences have been found and, in light of these

results, we can state that DFF_R(40) is the best performing heuristic of this group.
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• Group 4. We consider here DFF_SD and DFF_N(40), and SA_Saravanan. From

Figure 10 it can be seen that DFF_SD is the best performing heuristic of the group

in terms of quality of solutions, i.e. ARPD, although DFF_N(40) has a lower ACT.

It can be also seen that SA_Saravanan is not efficient. To check these conclusions

we include two new hypotheses: In H8 we compare DFF_SD and DFF_N(40) and

we obtain that there are not significative differences between them. However, in H9

we compare DFF_SD and SA_Saravanan, and we find that their ARPD values are

significatively different, indicating that our proposal is efficient and improves the

previous state-of-the art algorithm of this group.

• Group 5. In this group we include DFF_N(80) and DFF_R(80). It turns out that

DFF initialised with NEH heuristic performs better than when initialised with Raj

(see Figure 10), although it needs more CPU time. From Table 6, it can be seen

that hypothesis H10 can be rejected, i.e. the heuristics are significatively different,

being DFF_N(80) the best performing heuristic of the group.

• Group 6. This group includes DFF_R(100), DFF_N(100), DFF_N(100)_RI, WT1_NEH

and WT2_NEH. Among them, DFF_N(100) obtains the best results in terms of

ARPD, and is second in terms of ACT after DFF_R(100). We compare DFF_N(100)

against the other 4 heuristics in this group, as can be seen in hypotheses H11, H12,

H13, and H14. From Table 6, it can be seen that the hypotheses can be rejected,

meaning that there are significant differences between these heuristics. Therefore we

conclude that our proposal DFF_N(100) is the best performing one.

We also compare the already existing heuristics for the problem under study, i.e.

IHGSS_Marichelvam and SA_Saravanan, with the new proposals with better ARPDs

for lower ACTs, i.e. DFF_R(20) and DFF_N(40) respectively. It can be seen that the

new proposals performs better in both cases. To confirm this conclusion we include hy-

potheses H15 and H16 and, according to Table 6, it can be seen thats there are significative
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differences among them.

6 Conclusions and Further Research

In this paper, an analysis of the effect of missing operations on the hybrid flowshop problem

with makespan minimisation criterion has been carried out. First, we study the empirical

hardness of this problem as compared to the classical HFS. The analysis shows that,

depending on the prevalence of missing operations in the jobs, the problem is different

than the classical HFS without missing operations. We also analyse a number of different

factors (number of jobs, number of stages, etc.) influencing the structure of solutions of

the problem.

To take advantage of the special behaviour of the missing operations, we develop a

number of dispatching rules and improvement heuristics that are compared with already

existing ones both for the special case with missing operations, and for the general HFS

case. From this comparison, we found that our proposals perform more efficiently than

existing heuristics, therefore representing a new state-of-the art for the problem.

A number of open research issues can be addressed from this work. First, regarding

the empirical hardness analysis, an in-depth study of different processing times could be

interesting. Furthermore, we assume that missing operations can appear in any stage of

the shop. It could therefore be interesting to study different patterns in the appearance

of missing operations, as it is more realistic to assume that only some stages would have

missing operations.
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