13 research outputs found

    Lightning-Fast Dual-Layer Lossless Coding for Radiance Format High Dynamic Range Images

    Full text link
    This paper proposes a fast dual-layer lossless coding for high dynamic range images (HDRIs) in the Radiance format. The coding, which consists of a base layer and a lossless enhancement layer, provides a standard dynamic range image (SDRI) without requiring an additional algorithm at the decoder and can losslessly decode the HDRI by adding the residual signals (residuals) between the HDRI and SDRI to the SDRI, if desired. To suppress the dynamic range of the residuals in the enhancement layer, the coding directly uses the mantissa and exponent information from the Radiance format. To further reduce the residual energy, each mantissa is modeled (estimated) as a linear function, i.e., a simple linear regression, of the encoded-decoded SDRI in each region with the same exponent. This is called simple linear regressive mantissa estimator. Experimental results show that, compared with existing methods, our coding reduces the average bitrate by approximately 1.571.57-6.686.68 % and significantly reduces the average encoder implementation time by approximately 87.1387.13-98.9698.96 %

    Stereoscopic high dynamic range imaging

    Get PDF
    Two modern technologies show promise to dramatically increase immersion in virtual environments. Stereoscopic imaging captures two images representing the views of both eyes and allows for better depth perception. High dynamic range (HDR) imaging accurately represents real world lighting as opposed to traditional low dynamic range (LDR) imaging. HDR provides a better contrast and more natural looking scenes. The combination of the two technologies in order to gain advantages of both has been, until now, mostly unexplored due to the current limitations in the imaging pipeline. This thesis reviews both fields, proposes stereoscopic high dynamic range (SHDR) imaging pipeline outlining the challenges that need to be resolved to enable SHDR and focuses on capture and compression aspects of that pipeline. The problems of capturing SHDR images that would potentially require two HDR cameras and introduce ghosting, are mitigated by capturing an HDR and LDR pair and using it to generate SHDR images. A detailed user study compared four different methods of generating SHDR images. Results demonstrated that one of the methods may produce images perceptually indistinguishable from the ground truth. Insights obtained while developing static image operators guided the design of SHDR video techniques. Three methods for generating SHDR video from an HDR-LDR video pair are proposed and compared to the ground truth SHDR videos. Results showed little overall error and identified a method with the least error. Once captured, SHDR content needs to be efficiently compressed. Five SHDR compression methods that are backward compatible are presented. The proposed methods can encode SHDR content to little more than that of a traditional single LDR image (18% larger for one method) and the backward compatibility property encourages early adoption of the format. The work presented in this thesis has introduced and advanced capture and compression methods for the adoption of SHDR imaging. In general, this research paves the way for a novel field of SHDR imaging which should lead to improved and more realistic representation of captured scenes

    Non-disruptive use of light fields in image and video processing

    Get PDF
    In the age of computational imaging, cameras capture not only an image but also data. This captured additional data can be best used for photo-realistic renderings facilitating numerous post-processing possibilities such as perspective shift, depth scaling, digital refocus, 3D reconstruction, and much more. In computational photography, the light field imaging technology captures the complete volumetric information of a scene. This technology has the highest potential to accelerate immersive experiences towards close-toreality. It has gained significance in both commercial and research domains. However, due to lack of coding and storage formats and also the incompatibility of the tools to process and enable the data, light fields are not exploited to its full potential. This dissertation approaches the integration of light field data to image and video processing. Towards this goal, the representation of light fields using advanced file formats designed for 2D image assemblies to facilitate asset re-usability and interoperability between applications and devices is addressed. The novel 5D light field acquisition and the on-going research on coding frameworks are presented. Multiple techniques for optimised sequencing of light field data are also proposed. As light fields contain complete 3D information of a scene, large amounts of data is captured and is highly redundant in nature. Hence, by pre-processing the data using the proposed approaches, excellent coding performance can be achieved.Im Zeitalter der computergestützten Bildgebung erfassen Kameras nicht mehr nur ein Bild, sondern vielmehr auch Daten. Diese erfassten Zusatzdaten lassen sich optimal für fotorealistische Renderings nutzen und erlauben zahlreiche Nachbearbeitungsmöglichkeiten, wie Perspektivwechsel, Tiefenskalierung, digitale Nachfokussierung, 3D-Rekonstruktion und vieles mehr. In der computergestützten Fotografie erfasst die Lichtfeld-Abbildungstechnologie die vollständige volumetrische Information einer Szene. Diese Technologie bietet dabei das größte Potenzial, immersive Erlebnisse zu mehr Realitätsnähe zu beschleunigen. Deshalb gewinnt sie sowohl im kommerziellen Sektor als auch im Forschungsbereich zunehmend an Bedeutung. Aufgrund fehlender Kompressions- und Speicherformate sowie der Inkompatibilität derWerkzeuge zur Verarbeitung und Freigabe der Daten, wird das Potenzial der Lichtfelder nicht voll ausgeschöpft. Diese Dissertation ermöglicht die Integration von Lichtfelddaten in die Bild- und Videoverarbeitung. Hierzu wird die Darstellung von Lichtfeldern mit Hilfe von fortschrittlichen für 2D-Bilder entwickelten Dateiformaten erarbeitet, um die Wiederverwendbarkeit von Assets- Dateien und die Kompatibilität zwischen Anwendungen und Geräten zu erleichtern. Die neuartige 5D-Lichtfeldaufnahme und die aktuelle Forschung an Kompressions-Rahmenbedingungen werden vorgestellt. Es werden zudem verschiedene Techniken für eine optimierte Sequenzierung von Lichtfelddaten vorgeschlagen. Da Lichtfelder die vollständige 3D-Information einer Szene beinhalten, wird eine große Menge an Daten, die in hohem Maße redundant sind, erfasst. Die hier vorgeschlagenen Ansätze zur Datenvorverarbeitung erreichen dabei eine ausgezeichnete Komprimierleistung

    Image Processing Using FPGAs

    Get PDF
    This book presents a selection of papers representing current research on using field programmable gate arrays (FPGAs) for realising image processing algorithms. These papers are reprints of papers selected for a Special Issue of the Journal of Imaging on image processing using FPGAs. A diverse range of topics is covered, including parallel soft processors, memory management, image filters, segmentation, clustering, image analysis, and image compression. Applications include traffic sign recognition for autonomous driving, cell detection for histopathology, and video compression. Collectively, they represent the current state-of-the-art on image processing using FPGAs

    Modélisation et distribution adaptatives de grandes scènes naturelles

    Get PDF
    Cette thèse traite de la modélisation et la diffusion de grandes scènes 3D naturelles. Nous visons à fournir des techniques pour permettre à des utilisateurs de naviguer à distance dans une scène 3D naturelle, tout en assurant la cohérence botanique et l'interactivité. Tout d'abord, nous fournissons une technique de compression multi-résolution, fondée sur la normalisation, l'instanciation, la décorrélation, et sur le codage entropique des informations géometriques pour des modèles de plantes. Ensuite, nous étudions la transmission efficace de ces objets 3D. L'algorithme de paquétisation proposé fonctionne pour la plupart des représentations multi-résolution d'objet 3D. Nous validons les techniques de paquétisation par des expériences sur un WAN (Wide Area Network), avec et sans contrôle de congestion (Datagram Congestion Control Protocol). Enfin, nous abordons les questions du streaming au niveau de la scène. Nous optimisons le traitement des requêtes du côté serveur en fournissant une structure de données adaptée et nous préparons le terrain pour nos travaux futurs sur l'évolutivité et le déploiement de systèmes distribués de streaming 3D. ABSTRACT : This thesis deals with the modeling and the interactive streaming of large natural 3D scenes. We aim at providing techniques to allow the remote walkthrough of users in a natural 3D scene ensuring botanical coherency and interactivity.First, we provide a compact and progressive representation for botanically realistic plant models. The topological structure and the geometry of the plants are represented by generalized cylinders. We provide a multi-resolution compression scheme, based on standardization and instantiation, on difference-based decorrelation, and on entropy coding. Then, we study efficient transmission of these 3D objects. The proposed packetization scheme works for any multi-resolution 3D representation. We validate our packetization schemes with extensive experiments over a WAN (Wide Area Network), with and without congestion control (Datagram Congestion Control Protocol). Finally, we address issues on streaming at the scene-level. We optimize the viewpoint culling requests on server-side by providing an adapted datastructure and we prepare the ground for our further work on scalability and deployment of distributed 3D streaming systems
    corecore