7,833 research outputs found

    JUMPSAT: Qualifying three equipments in one Cubesat mission

    Get PDF
    We work on a student 3U Cubesat mission, called JUMPSAT, expected for 2017. This is a collaborative project involving both institutions (CNES, ONERA) and schools (ISAE, TELECOM Bretagne). The different equipments to qualify are the Supaero Star Tracker, which measures stars’ luminosity to infer the satellite’s attitude, a detector for particles trapped in the Earth magnetic field designed by the ONERA, and the AOCS. Uplink and Downlink communications will be provided during the mission by the HETE Primary Ground Stations. JUMPSAT is the first Cubesat which needs a three axis attitude control, which involves an innovative mission analysis, to overcome all these constraints. The mission analysis deals with the orbit’s determination, the Cubesat’s structure, the power strategy, and the visibility balance. The particles detector is the only constraint for the altitude of the satellite: we can get meaningful data only at altitudes higher than 700 km. Moreover, the most interesting zones are South Atlantic and poles. But a circular orbit with this altitude does not respect the LOS (French space act).The structure of the Cubesat is also hard to define. To get information from the satellite, we need an antenna, and an attitude and orbital control system to point the antenna at the ground station and the Star Tracker at the stars. Solar Panels cannot be opened out because of the micro elements that could be settled on the particles detector. However, fixed solar panels are not very efficient to recharge batteries. The power balance shows critical problems: both attitude control system and the Star Tracker consume a lot, and cannot work at the same time during the whole orbit. However, all the components are linked: the Star Tracker is not efficient if the satellite attitude is not stabilized; the antenna functioning must be synchronized with visibilities by the ground station. Anyway, the visibility balance stresses the point that a ground station at Toulouse would be particularly welcome. We need also to take into account phenomena of eclipse and satellite drift. To conclude, our mission analysis is deeply constrained by the equipments we want to qualify. Our task is to find the optimal orbit, suggest a power strategy considering the orbital constraints and components’ physical parameters, and to study the visibility balance. It is a real challenge in terms of power consumption, architecture, orbital strategy for such a small satellite

    Hydrogen at the rooftop: Compact CPV-hydrogen system to convert sunlight to hydrogen

    Get PDF
    Despite being highest potential energy source, solar intermittency and low power density make it difficult for solar energy to compete with the conventional power plants. Highly efficient concentrated photovoltaic (CPV) system provides best technology to be paired with the electrolytic hydrogen production, as a sustainable energy source with long term energy storage. However, the conventional gigantic design of CPV system limits its market and application to the open desert fields without any rooftop installation scope, unlike conventional PV. This makes CPV less popular among solar energy customers. This paper discusses the development of compact CPV-Hydrogen system for the rooftop application in the urban region. The in-house built compact CPV system works with hybrid solar tracking of 0.1° accuracy, ensured through proposed double lens collimator based solar tracking sensor. With PEM based electrolyser, the compact CPV-hydrogen system showed 28% CPV efficiency and 18% sunlight to hydrogen (STH) efficiency, for rooftop operation in tropical region of Singapore. For plant designers, the solar to hydrogen production rating of 217 kWhe/kgH2 has been presented with 15% STH daily average efficiency, recorded from the long term field operation of the syste

    Analysis of the advanced Nimbus power systems

    Get PDF
    Solar-conversion power-supply subsystem for Nimbus B, using pulse width modulated voltage regulato

    A Sliding Mode Control for a Sensorless Tracker: Application on a Photovoltaic System

    Full text link
    The photovoltaic sun tracker allows us to increase the energy production. The sun tracker considered in this study has two degrees of freedom (2-DOF) and especially specified by the lack of sensors. In this way, the tracker will have as a set point the sun position at every second during the day for a period of five years. After sunset, the tracker goes back to the initial position (which of sunrise). The sliding mode control (SMC) will be applied to ensure at best the tracking mechanism and, in another hand, the sliding mode observer will replace the velocity sensor which suffers from a lot of measurement disturbances. Experimental measurements show that this autonomic dual axis Sun Tracker increases the power production by over 40%

    A Sliding Mode Multimodel Control for a Sensorless Photovoltaic System

    Full text link
    In this work we will talk about a new control test using the sliding mode control with a nonlinear sliding mode observer, which are very solicited in tracking problems, for a sensorless photovoltaic panel. In this case, the panel system will has as a set point the sun position at every second during the day for a period of five years; then the tracker, using sliding mode multimodel controller and a sliding mode observer, will track these positions to make the sunrays orthogonal to the photovoltaic cell that produces more energy. After sunset, the tracker goes back to the initial position (which of sunrise). Experimental measurements show that this autonomic dual axis Sun Tracker increases the power production by over 40%

    Observations of the December 13 and 14, 2006, Solar Particle Events in the 80 MeV/n - 3 GeV/n range from space with PAMELA detector

    Full text link
    We present the space spectrometer PAMELA observations of proton and helium fluxes during the December 13 and 14, 2006 solar particle events. This is the first direct measurement of the solar energetic particles in space with a single instrument in the energy range from \sim 80 MeV/n up to \sim 3 GeV/n. In the event of December 13 measured energy spectra of solar protons and helium were compared with results obtained by neutron monitors and other detectors. Our measurements show a spectral behaviour different from those derived from the neutron monitor network. No satisfactory analytical fitting was found for the energy spectra. During the first hours of the December 13 event solar energetic particles spectra were close to the exponential form demonstrating rather significant temporal evolution. Solar He with energy up to ~1 GeV/n was recorded on December 13. In the event of December 14 energy of solar protons reached ~600 MeV whereas maximum energy of He was below 100 MeV/n. The spectra were slightly bended in the lower energy range and preserved their form during the second event. Difference in the particle flux appearance and temporal evolution in these two events may argue for a special conditions leading to acceleration of solar particles up to relativistic energies.Comment: Accepted for publication on Astrophysical journa

    Financial Analysis of a Grid-connected Photovoltaic System in South Florida

    Full text link
    In this paper the performance and financial analysis of a grid-connected photovoltaic system installed at Florida Atlantic University (FAU) is evaluated. The power plant has the capacity of 14.8 kW and has been under operation since August 2014. This solar PV system is composed of two 7.4 kW sub-arrays, one fixed and one with single axis tracking. First, an overview of the system followed by local weather characteristics in Boca Raton, Florida is presented. In addition, monthly averaged daily solar radiation in Boca Raton as well as system AC are calculated utilizing the PVwatts simulation calculator. Inputs such as module and inverter specifications are applied to the System Advisor Model (SAM) to design and optimize the system. Finally, the estimated local load demand as well as simulation results are extracted and analyzed.Comment: 6 Pages, IEEE PVSC 2017 Conference, Washington D.

    CUSTARD (Cranfield University Space Technology Advanced Research Demonstrator) - A Micro-System Technology Demonstrator Nanosatellite. Summary of the Group Design Project MSc in Astronautics and Space Engineering. 1999-2000, Cranfield University

    Get PDF
    CUSTARD (Cranfield University Space Technology And Research Demonstrator) was the group design project for students of the MSc in Astronautics and Space Engineering for the Academic Year 1999/2000 at Cranfield University. The project involved the initial design of a nanosatellite to be used as a technology demonstrator for microsystem technology (MST) in space. The students worked together as one group (organised into several subgroups, e.g. system, mechanical), with each student responsible for a set of work packages. The nanosatellite designed had a mass of 4 kg, lifetime of 3 months in low Earth orbit, coarse 3-axis attitude control (no orbit control), and was capable of carrying up to 1 kg of payload. The electrical power available was 18 W (peak). Assuming a single X-band ground station at RAL (UK), a data rate of up to 1 M bit s-1 for about 3000 s per day is possible. The payloads proposed are a microgravity laboratory and a formation flying experiment. The report summarises the results of the project and includes executive summaries from all team members. Further information and summaries of the full reports are available from the College of Aeronautics, Cranfield University
    corecore