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Abstract 9 

Despite being highest potential energy source, solar intermittency and low power density make 10 

it difficult for solar energy to compete with the conventional power plants. Highly efficient 11 

concentrated photovoltaic (CPV) system provides best technology to be paired with the 12 

electrolytic hydrogen production, as a sustainable energy source with long term energy storage. 13 

However, the conventional gigantic design of CPV system limits its market and application to 14 

the open desert fields without any rooftop installation scope, unlike conventional PV. This 15 

makes CPV less popular among solar energy customers. This paper discusses the development 16 

of compact CPV-Hydrogen system for the rooftop application in the urban region. The in-house 17 

built compact CPV system works with hybrid solar tracking of 0.1o accuracy, ensured through 18 

proposed double lens collimator based solar tracking sensor. With PEM based electrolyser, the 19 

compact CPV-hydrogen system showed 28% CPV efficiency and 18% sunlight to hydrogen 20 

(STH) efficiency, for rooftop operation in tropical region of Singapore. For plant designers, the 21 

solar to hydrogen production rating of 217 kWhe/kgH2 has been presented with 15% STH daily 22 

average efficiency, recorded from the long term field operation of the system. 23 

Keywords: CPV, Hydrogen, Solar to Hydrogen, Concentrated Photovoltaic, Solar Cell. 24 

1. Introduction 25 

In current alarming situation of greenhouse gas emissions, global warming is drastically 26 

affecting the environment [1-4]. Use of renewable energy resources as primary energy supply 27 

is the only solution for sustainable future [5-8]. Among all of the energy sources, solar energy 28 

has the highest energy potential that is many times higher than the current global energy 29 

demand [9-11]. On the other hand, solar energy is only available during diurnal period, but 30 

with intermittent supply [12]. In order to compete with the conventional fossil fuel based power 31 

plants, the sustainable energy source must also be able to provide steady power supply with 32 

high energy density [13]. However, due to solar intermittency, there is a need for energy storage 33 

system for steady power supply [14]. 34 

The simplest method of solar energy utilization is its conversion into electricity through solar 35 

cell. Although, conventional single junction solar cells are having 99% share in current 36 

photovoltaic market [15], but they do not offer the highest efficiency. The multi-junction solar 37 
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cell (MJC) provides highest efficiency of 46% [16] which is 2-3 times higher than the 38 

conventional single junction cells [17]. However, due to higher material cost, they are utilized 39 

as concentrated photovoltaic (CPV) system [18]; highly efficient photovoltaic technology of 40 

the time. 41 

Despite highest efficiency, CPV technology is only having a minor share in the photovoltaic 42 

market [19]. Conventional gigantic design of CPV unit is the main reason of its limited 43 

application scope [20,21], which is only suitable and targeted for the open desert field operation 44 

as CPV can only respond to beam radiation of solar energy [22]. For that, it tracks sun 45 

movement during its operation. On the other hand, the conventional single junction flat plate 46 

PV system has significant share of its installations as rooftop system. Currently, most of the 47 

countries are planning to increase the rooftop installations of PV systems to 40-50% of their 48 

total capacity [23]. Contrariwise, CPV technology appeared to be unattractive with less 49 

customers due to its limited application scope as it is only available as gigantic units. Therefore, 50 

there is a need to have a compact system design which should not only eliminate the installation 51 

related restriction of CPV but it should also be easily available for the customers of each 52 

capacity level.  53 

Although, CPV system can convert solar radiations into electricity, a high grade energy, with 54 

highest efficiency but it still remains intermittent due to unsteady availability of solar radiations 55 

[24]. Conventional electrochemical energy storage i.e. battery can only provide a feasible and 56 

economical solution when the need is for short term energy storage and for a small capacity 57 

system [25]. In order to be a primary energy source, there is a need to have long term energy 58 

storage capability of 10-20 years, with high power density [26]. Electrolytic hydrogen 59 

production from water splitting, not only provides a sustainable long term energy storage 60 

option but also an alternate sustainable fuel with high power density [27]. It can not only be 61 

converted back into electricity when needed, using fuel cell, but it can also be exported as a 62 

fuel where it is needed [28]. Therefore, with compact CPV system, such technology will not 63 

only be in the reach of every customer but by coupling it with electrolytic hydrogen system, a 64 

sustainable and highly efficient energy source will be available at the rooftop of every 65 

commercial or housing building. The main restriction for the compact CPV design is the 66 

development of cost effective and highly accurate solar tracking system. In addition, for 67 

compact CPV system, larger number of solar tracking units are needed and due to highly 68 

accurate solar tracking requirements, the overall cost of system increases for the same capacity. 69 

Therefore, this demands to develop a cost effect but highly accurate and compact tracking unit 70 

for compact CPV design. Moreover, all of the commercially available solar tracking sensors, 71 

with tracking accuracy as of CPV standard, cannot provide an economical solution due to their 72 

high capital cost [29,30] as more number of units are needed for the compact CPV system 73 

design. 74 

In this paper, a prototype of compact CPV-hydrogen system is designed, developed and tested 75 

for rooftop application. A compact solar tracking system is developed with highly accurate, 76 

low cost, novel solar tracking sensor and microcontroller based control. On the other hand, as 77 

CPV systems are only considered to be suitable for open desert field regions with high DNI 78 

availability, therefore, the performance of developed CPV-hydrogen system is also tested for 79 
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urban rooftop application in tropical environment. The system was installed at the rooftop of 80 

EA building at NUS Singapore. It showed maximum sunlight to hydrogen (STH) efficiency of 81 

18% which is not only 4 times higher than the conventional PV-hydrogen system (i.e. PV 82 

efficiency of 7.5% [31] and electrolyser efficiency of 68% [32]) but it is also two times higher 83 

than the electrical efficiency of PV system alone. The developed system showed daily average 84 

STH efficiency of 15% and STH production rating of 217 kWh/kg. Such proposed system will 85 

not only introduce a highly efficient photovoltaic system for everyone but also a sustainable 86 

energy source with steady power supply.  87 

2. Compact CPV-Hydrogen System Design and Scope 88 

The conceptual representation of compact CPV-Hydrogen system is shown in Fig. 1. The 89 

overall system has two sub-components i.e. CPV system and hydrogen production/re-90 

utilization/storage system. In current study, the main focus is the development of compact CPV 91 

system that will not only eliminate its installation restrictions but it will also provide CPV the 92 

same application scope as that of conventional PV i.e. operation at the rooftop of residential or 93 

commercial buildings. However, by utilizing such compact CPV system, a highly efficient 94 

prototype of CPV-hydrogen system will be developed and tested for its operation under tropical 95 

weather conditions of Singapore. The excess electrical power produced by the CPV will be 96 

converted into hydrogen/oxygen by electrolytic splitting of water molecule. Such produced 97 

hydrogen can not only be converted back into electricity when needed, using fuel cell, but it 98 

can also be transported to other places as a fuel where it can be directly burnt or converted back 99 

into electricity. Such compact CPV-hydrogen system will not only boost the market share of 100 

highly efficient CPV system with steady power supply and broader application scope, but it 101 

will also provide a sustainable power source at the rooftop of each housing unit. Beside power 102 

production system, such solar energy system can also be used for sustainable hydrogen and 103 

oxygen production for process use in industries. However, oxygen can be used as an industrial 104 

disinfecting agent, after converting into ozone. 105 

The CPV system can be further split up into two systems i.e. CPV module, consisting of optical 106 

assembly of lenses or reflectors with the multi-junction solar cell (MJC), and solar tracking 107 

unit. Current compact CPV system design focuses on the design of solar tracking units. Due to 108 

larger number of tracking units needed for compact CPV design, the tracking unit must be 109 

simple and cost effective. Fig. 2 shows the design schematic of compact CPV unit and proposed 110 

solar tracking sensor. As shown, the CPV unit consists of two axis solar tracker, onto which 111 

the CPV module is mounted. Solar tracking system can be further divided into its mechanical 112 

assembly and control circuit. The mechanical assembly provides support structure and 113 

mechanical drive, consisting of worm gear and wheel. On the other hand, the control circuit is 114 

based upon the motor drivers and the central microcontroller that controls and defines the solar 115 

tracker movement. The solar tracking system needed for CPV system is different than that of 116 

the conventional PV systems. CPV systems require tracking accuracy of order 0.1o-0.3o which 117 

is about 10-100 times higher than that of conventional PV tracking units. If such high tracking 118 

accuracy is not achieved then the CPV power output can drop from maximum to zero. In order 119 

to ensure high tracking accuracy, hybrid tracking algorithm is utilized for the proposed compact 120 

CPV unit.  121 
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 122 

The hybrid tracking algorithm is based upon both passive (astronomical) and active (optical) 123 

tracking algorithms. The passive tracking algorithm utilizes predefined solar geometry model 124 

[33] to determine the sun position at any place and any time of the day. Azimuth and zenith are 125 

two tracking angles which define the sun position in horizontal and vertical planes, 126 

respectively. The azimuth angle ‘θa‘ is referenced from south in horizontal plane. However, the 127 

zenith angle ‘θz‘ is referenced from horizontal level, in vertical plane. Both zenith and azimuth 128 

angles are given by equations (1) and (2A) or (2B), respectively. 129 
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where  'ω', 'δ' and 'ø' are hour angle, declination angle and latitude, respectively. The passive 135 

or astronomical tracking algorithm works as per defined solar position. However, in such case 136 

the tracking accuracy cannot be ensured as astronomical tracking is based upon open loop 137 

configuration, with no feedback. The mechanical drive is prone to backlash which can easily 138 

introduce tracking error. Therefore, in order to ensure required tracking accuracy, there is a 139 

need for real time feedback from solar tracking sensor, regarding solar position.  140 

Fig. 2 shows the design and arrangement of proposed double lens collimator based solar 141 

tracking sensor. The solar tracking sensor is based upon two parts. First one is the optical 142 

assembly that amplifies the solar radiations and directs the resultant beam to an array of 143 

photosensors, which provides the required feedback in form of electrical signal. The optical 144 

collimator is based upon a certain arrangement of convex and concave lenses, sharing same 145 

focal point. The parallel solar rays, after passing through collimator, are converted into a 146 

concentrated form of collimated beam. The convex lens converges the parallel rays at its focal 147 

point. However, the concave lens, placed in the path of these converging rays, makes them 148 

parallel again as both lenses share the same focal point. Such concentrated but collimated beam 149 

is then directed at the centre of photosensor array, appearing as a concentrated bright spot. 150 

During operation, the solar tracking sensor is aligned with the tracker position such that when 151 

tracker is accurately facing towards the sun, the concentrated bright spot is exactly in the centre 152 

of photosensors array. In case of tracking error, the solar radiations, received by the solar 153 

tracking sensor, do not remain parallel to its optical axis. As a result of this misalignment, the 154 

concentrated bright spot deviates from its centre position. When the tracking error exceeds 155 

from tracking limit, the deviation of bright spot increases to such an extent that it hits any of 156 

the phtosensor in the array. In this case, a feedback signal is generated by the corresponding 157 
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photosensor, which is translated by the control circuit of solar tracker as a tracking error. 158 

According to the position of each of the photosensor in the array, the microcontroller is 159 

programmed in such a way that it moves trackers accordingly, so that the bright sport again 160 

comes in the centre of photosensors array. As far as the concentrated bright spot remains inside 161 

the photo-sensor array, the tracker is assumed to be accurately tracking the sun within the 162 

defined error limits. The distance ‘S’ between convex and concave lenses, and the thickness of 163 

concentrated collimated beam ‘bt’ can be calculated by equations (3) and (4), respectively. 164 
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  (4) 166 

The ray tracing simulation of proposed solar tracking sensor is also shown at the right side of 167 

Fig. 2. It can be seen that a perfect collimated beam can be obtained after concave lens. It must 168 

be noted that the distance between concave lens and photosensor array defines the sensitivity 169 

of solar tracking sensor. In addition, the distance among the photosensors in the array defines 170 

the error limit of the solar tracking unit.  171 

As mentioned before, the movement of the solar tracker is managed by the control box which 172 

generates the required tracking signals, according to the hybrid tracking algorithm. For 173 

compact CPV system design, such control box must simple, robust and cost effective so that it 174 

can be easily implemented with required accuracy of CPV system. A simple schematic of 175 

microcontroller based control box for compact CPV system, is shown in Fig. 3. The heart of 176 

the control box is the microcontroller that implements the hybrid tracking algorithm and 177 

controls the tracker movements accordingly. The GPS and real time clock (RTC) modules are 178 

used to get the required information of date, time, latitude and longitude of particular location, 179 

to implement the astronomical tracking algorithm. On the other hand, the solar tracking sensor 180 

is connected to microcontroller through ADC (analogue to digital converter) communication, 181 

to convert its analogue feedback signal into a digital signal so that it can be read and 182 

implemented by the microcontroller. Based upon the required tracking information, the tracker 183 

movement is controlled by sending signals to the motor drivers. 184 

 185 

3. Developed CPV-Hydrogen System and Testing Methodology 186 

According to the proposed design of compact CPV system, as demonstrated in the previous 187 

section, a working prototype of compact CPV-hydrogen system is developed at the rooftop of EA 188 

building in NUS Singapore. The developed prototype is shown in Fig. 4. 189 

The developed CPV system is based upon a CPV module, utilizing 2x2 Fresnel lens array and 190 

triple junction InGaP/InGaAs/Ge solar cell. The CPV module is mounted onto the mechanical 191 

structure of compact two axis solar tracking unit. For the developed system, the gear ratio of 40 is 192 

implemented for azimuth driving assembly and gear ratio of 60 is implemented for zenith driving 193 

assembly. The high gear ratio for zenith axis is due to the high torque requirement as the weight 194 
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of CPV module is supported by the zenith driving assembly. Therefore, by utilizing the stepper 195 

motor of resolution 1.8o/step and stepper motor driver of ratio ‘16’, the azimuth and zenith driving 196 

assemblies have resolution of 0.0028125o and 0.001875o per step, respectively as given by 197 

equation (5).  198 

RatioGearStepDriver

StepMotor


tepMovement/STracker

   (5) 199 

The developed control box for such a tracking system is also shown in Fig. 4. The hybrid tracking 200 

algorithm is developed in C-programming and compiled through codevisionAVR. A prototype of 201 

solar tracking sensor is also developed and connected to the microcontroller through ADC 202 

communication. The developed tracker is designed to have error sensing capability of as low as 203 

0.1o. In hybrid tracking algorithm, the astronomical tracking acts as the main tracking method. 204 

However, when such passive tracking algorithm completes then the feedback from solar tracking 205 

sensor is obtained. If the feedback signal is low then this indicates that the tracker is accurately 206 

facing towards the sun. However, in case of high feedback signal, the tracker is adjusted such that 207 

the feedback signal drops to zero again. After ensuring the tracking accuracy through feedback 208 

signal, the hybrid tracking algorithm starts again and remains continued during the operation. 209 

During CPV operation, the solar tracking system ensures that the Fresnel lens along with the whole 210 

CPV module, is facing towards the sun, within their acceptable optical error limit. The beam solar 211 

radiations, after passing through Fresnel lens, are converged at the inlet aperture of glass 212 

homogeniser which further directs and unformly distributes them over the MJC area. The multi-213 

junction cell, placed at the outlet aperture of glass homogeniser, converts the received solar 214 

radiations into electrical power. However, some of the energy is lost as heat which is dissipated 215 

through heat spreader and heat sink, place at the back side of MJC. The power output of CPV 216 

system is then supplied to the PEM electrolyser based hydrogen production unit, through MPPT 217 

(maximum power point tacking) device or DC-DC converter. PEM electrolyser has its own 218 

current-voltage (I-V) characteristics, which depend upon the amount of current flowing through 219 

the circuit. On the other hand, the solar cell has a certain operating point with maximum efficiency, 220 

at certain concentration. Therefore, for overall maximum system efficiency, it is very important 221 

for both of the units that they must operate at their optimum points.  222 

The hydrogen production system is based upon a small stack of PEM electrolysers, where 223 

produced CPV electricity is used to split water into hydrogen and oxygen. The produced 224 

hydrogen/oxygen gases are then stored into cylinders for storage and further used. For this 225 

purpose, a mechanical compression system is developed, which not only compresses the produced 226 

gases into the storage cylinders but also helps to have the flow of gases through the production 227 

unit. The flow schematic of developed compact CPV-hydrogen system is shown in Fig. 5. All of 228 

the feedback signals from the system, either system production or sensor output, are recorded 229 

through central data logging unit, to analyse the system performance. In order to measure the 230 

quantity of produced gases, they are first stored temporarily over the water and by the amount of 231 

water displaced, as measured through level sensor of ±1.5% accuracy, the quantity of produced 232 

gases is determined. Moreover, for testing and prototyping purpose, only single compressor is 233 

used for the storage of both types of gases, due to limited budget. However, in such case, proper 234 
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flushing of line is required before switching the compressor to other gas supply mode, to avoid 235 

mixing of gases in the system. 236 

The performance of the developed system is measured in terms of its power output and energy 237 

efficiency. The performance parameters which are measured for the system performance analysis, 238 

are given by equations (6) to (10). 239 
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Where ‘VCPV’ and ‘ICPV’ are voltage and current output of CPV system, respectively and their 245 

product gives the total CPV power output ‘PCPV’, as given by equation (6). The efficiency of CPV 246 

‘ηCPV’ is given by the ratio of input to output power i.e. equation (7). Here, DNI (Direct Normal 247 

Irradiance) represents the amount of solar beam radiations received by the CPV system, measured 248 

in W/m2 using Eppleylab Pyrheliometer with ±1% calibrated accuracy, and ‘Acon’ gives the 249 

receiver area of Fresnel lens array. For electrolyser, the amount of hydrogen produced ‘nE,H2’ is 250 

given by the equation (8) where ‘nE’ represents the number of electrons needed for the electrolysis, 251 

‘F’ represents the Farady constant, ‘NEC’ represents the number of electrolyser cells connected in 252 

series, ‘ηEF’ represents the Farady efficiency and ‘IE’ represent the current flowing through the 253 

electrolyser. The efficiency of electrolyser ‘ηEL’ is solely depending upon its operating voltage 254 

‘UE’, as given by (9). The numerator of equation (9) gives the energy output in form of hydrogen 255 

as 237200 J/mol represent the Gibs free energy of water electrolysis reaction, which is equivalent 256 

to 1.23V, called as thermos-neutral voltage. The overall STH efficiency of CPV-hydrogen system 257 

‘ηCPV_H2’ is then given by the equation (10), which is the product of efficiencies of both units i.e. 258 

CPV and Electrolyser.  259 

However, the efficiency of conventional PV system is based upon the global horizontal 260 

irradiance (GHI). Therefore, in case of PV, the STH can be calculated as. 261 
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4. Results and discussion 264 

Before analysing the overall performance of developed compact CPV-hydrogen system, the 265 

individual performance of CPV and electrolyser units is evaluated. Fig. 6 shows the maximum 266 

performance of developed CPV system, in form of conversion efficiency with heat sink 267 

temperature and received DNI, during different times of the day. It can be seen that the CPV 268 

system showed maximum solar energy conversion efficiency of 28%. However, the CPV 269 

efficiency slightly dropped to 25-26% in the noon time despite increase in the received DNI. Such 270 

drop in the efficiency is due to increase in the cell temperature which can be seen through increase 271 

in the heat sink temperature. With increase in the DNI, concentration at the cell area increases, 272 

resulting in more heat loss and consequently, the system efficiency drops slightly.  273 

Fig. 7 shows the performance characteristics of PEM electrolyser used in the development of 274 

current system. Each data point is based upon the average value of five experimental data sets 275 

repeated under similar conditions. In addition, the measured experimental data set has uncertainty 276 

of ±0.42% and confidence level of 98% for current, uncertainty of ±0.43% and confidence level 277 

of 98% for voltage and uncertainty of ±0.97% and confidence level of 95% for gas flow 278 

measurement. Therefore, Faraday efficiency has uncertainty of ±1.39%. From the I-V 279 

characteristics of the electrolyser, it can be seen that the electrolytic reaction is starting after 1.4 V 280 

and then a proportional trend can be seen between current and voltage of electrolyser. On the other 281 

hand, if we look at the Faraday efficiency of PEM electrolyser unit, it is almost 100% throughout 282 

the range of operating voltage. Thus, equation (8) can also be used to calculate the instantaneous 283 

production of hydrogen, other than the gas quantity measurement system developed for this setup. 284 

Similar to the I-V characteristics of the electrolyser, its hydrogen production is also proportional 285 

to the operating voltage. However, higher operating voltage can reduce the system efficiency, as 286 

given by equation (9), because Farady efficiency is almost 100% for the complete range of 287 

operating voltage. Therefore, for larger gas production with high system efficiency, the slope of 288 

hydrogen production versus voltage graph must be higher instead of operating the system at higher 289 

voltage. 290 

In order to analyse the performance variation of CPV-hydrogen system under real field condition, 291 

the system was operated for the whole day operation and the system performance curves are 292 

shown in Fig. 8. It must be noted that the DNI data was measured with uncertainty of ±1% and 293 

confidence level of 96%. On the other hand, CPV voltage and current measurements have 294 

uncertainties of ±0.46% and ±0.49%, respectively with 97% confidence level. Therefore, the 295 

uncertainties in the CPV efficiency, electrolyser efficiency and STH efficiency are ±1.67%, 296 

±1.82% and ±3.49%, respectively. It can be seen that a maximum sunlight to hydrogen (STH) 297 

efficiency of 18% is recorded for the developed CPV-hydrogen system, which is about 2 times 298 

higher than the electrical efficiency of conventional PV modules. In the morning, with the increase 299 

in the DNI, the STH efficiency is increasing. However, after certain limit, further increase in DNI 300 

is cause drop in the STH efficiency. This trend can be explained with the maximum efficiency 301 

curve for CPV system. The CPV efficiency was increasing in the morning with increase in the 302 

DNI, due to increase in the concentration at the cell area. However, with further increase in the 303 

DNI, the efficiency slightly drops due to increase in the cell temperature at higher concentration, 304 

as explained above in Fig. 6. The CPV efficiency stabilizes at 24-25% while STH efficiency 305 
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remains steady at 15%. However, if electrolyser efficiency curve is observed, a continuous drop 306 

can be seen during first half of the day when DNI is increasing and a continuous increase occurs 307 

during other half of the day when DNI start to drop in the afternoon.  With increase in the DNI, 308 

the power output of CPV also increases as there is a slight drop in the efficiency and consequently, 309 

the electrical power delivered to the electrolyser also increases, causing increase in the voltage 310 

and current of the electrolyser, as shown in Fig. 8. With continuous increase in the operating 311 

voltage of electrolyser, its efficiency drops continuously, as the efficiency only depends upon the 312 

operating voltage. However, when DNI starts to drop in the afternoon, the CPV power and 313 

electrolyser voltage drop as well, causing an increase in the efficiency of electrolyser.  314 

From the system performance curves, it can be seen that a lot of parameters are simultaneously 315 

affecting the system performance. Thus, the true system performance cannot be rated by 316 

maximum power output or efficiency only because the real field conditions change throughout the 317 

day. For operation of the system like CPV, especially in the urban region with tropical weather 318 

where the system can only respond to beam part of solar radiations, the feasibility of such a system 319 

can only be justified with average real field performance instead of instantaneous maximum 320 

efficiency. Therefore, to analyse the feasibility of CPV-hydrogen system in tropical weather 321 

conditions, the system output was monitored for many days, under different weather conditions. 322 

Fig. 9 shows the daily average STH efficiency for different days with different amount of received 323 

beam radiations. It can be seen that with the increase in the amount of beam radiation received per 324 

day, the daily average STH efficiency is decreasing. The main cause for this drop is similar to the 325 

one given for Fig. 6 and Fig. 8 where efficiency of the system is decreasing with the increase in 326 

the DNI. The first reason is due to increase in the cell temperature with increase in DNI or 327 

concentration. However, the second reason is the drop in the electrolyser efficiency due to increase 328 

in its operating voltage which increases with increase in the power output. Such trend can be 329 

explained through Fig. 10 which shows the variation of hydrogen production rating with increase 330 

in the amount of received radiations. The hydrogen production rating is increasing with increase 331 

in the solar energy input i.e. for clear days. This increase in hydrogen production rating, on the 332 

other hand, depicts the lower electrolyser efficiency, as explained in Fig. 11. It can be seen that 333 

for higher rating or power consumption, the electrolyser efficiency is decreasing. These results of 334 

decreasing efficiency suggest to operate electrolyser cell at lower power or voltage. For larger 335 

production, multiple electrolyser cells can be connected in series for better system efficiency. The 336 

above charts does not encourage the operation of CPV-hydrogen systems in region with low DNI 337 

availability. In fact, these results show the feasible operation of CPV-hydrogen system even in the 338 

tropical region. 339 

From this series of experiments, it can be seen that the system showed an average long term STH 340 

efficiency of 15%. This efficiency is 1.5-2 times higher than the instantaneous electrical efficiency 341 

of conventional PV. In addition, the electrolyser showed average efficiency in the range of 66-342 

70% with hydrogen production rating of 47-50 kWh/kg. The CPV-hydrogen system showed an 343 

average production rating of 217 kWh/kg.  344 

From the plant designer’s point of view, the presented average performance data is very important 345 

to estimate the actual size of the system for the production requirement. It has been shown that the 346 

maximum rated performance does not reflect the actual field potential as the system output is 347 
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continuously changing during field operation. The field conditions vary throughout the day and 348 

so as the system output. Therefore, the average long term performance gives the correct estimation 349 

of system output for the real field operation. Based upon the solar beam radiations availability, 350 

one can easily estimate the average hydrogen production rating and so as the electrolyser 351 

efficiency. This can give the average STH efficiency which can be used to calculate the system 352 

size or area, for the certain hydrogen production requirement. In addition, these full day 353 

experiments also validates the accuracy and performance of the developed compact two axis solar 354 

tracking system. This also shows the excellent performance and accuracy of the developed solar 355 

tracking sensor.  356 

5. Conclusion 357 

A compact CPV-hydrogen system has been successfully designed and developed for the rooftop 358 

application. The microcontroller based hybrid two axis solar tracking system has been developed 359 

for economical but highly accurate operation of the compact CPV field. A novel design of the 360 

solar tracking sensor has also been proposed for the cost effective operation, with high accuracy. 361 

The double collimator based solar tracking sensor showed tracking error sensitivity of as high as 362 

0.1o, same as the accuracy of the commercially available solar tracking sensors for CPV 363 

application, but at a fraction of the cost. The main reason for such high accuracy at low cost is due 364 

to the development of optical based design of solar tracking sensor with ordinary photosensors, 365 

instead of utilizing highly sensitive photosensor based design with high cost. The developed CPV 366 

system showed stable operation at the rooftop, with required tracking accuracy throughout the 367 

days during long term operation. Moreover, the performance and production of developed CPV-368 

hydrogen system is also tested and evaluated for tropical weather conditions. A maximum of 18% 369 

STH efficiency was recorded for the CPV based hydrogen production system. Daily average 370 

efficiency of 15% was recorded with STH production rating of 217 kWh/kg. This shows that 371 

despite only being responsive to the beam radiations, CPV system is still feasible for the operation 372 

in tropical region, with superior performance than the conventional PV.  373 

Such proposed compact CPV system design will offer the same application scope to the CPV 374 

technology, as that of conventional PV system but with higher efficiency. In addition, a highly 375 

efficient sustainable hydrogen production system will be in the reach of every common customer 376 

that will help for the better utilization of solar energy with high power density, at any time, 377 

throughout the day.  378 
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Nomenclature 383 

STH Sunlight to Hydrogen PEM Proton Exchange Membrane 

d Distance between photo-sensors 

(mm) 

h Distance between collimator and 

photo-sensor array (mm) 
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ω Hour angle (degree) δ Declination angle (degree) 

θa Azimuth angle (degree) θz Zenith angle  (degree) 

DNI Direct Normal Irradiance, (W/m2) Acon Area of Solar Concentrator (m2) 

PSD Position Sensitive Diode bt Collimated beam thickness (mm) 

IE Electrolyser Current (A) S Distance between collimating 

lenses (mm) 

MJC Multi-junction solar cell CPV Concentrated Photovoltaic 

PV Photovoltaic GHI Global horizontal irradiance 

fcx Focal length of convex lens (mm) fcn Focal length of concave lens (mm) 

Dcx Convex lens diameter (mm) ø Latitude (degree) 

ADC Analogue to Digital Converter CTS Colour Tracking Sensor 

RTC Real Time Clock GPS Global positioning system 

NEC Number of Cells of Electrolyser VCPV CPV Voltage (V) 

IE Electrolyser Current (A) ηEL Electrolyser Efficiency (%) 

2,HEn


 
Hydrogen Production Flow Rate 

from Electrolyser (mol/s) 

ηEF Faraday Efficiency of Electrolyser 

(%) 

ηCPV CPV Efficiency (%) PCPV CPV Power Output (W) 

nE Electrons Requirement for Water 

Splitting 

ηCPV_H2 Sunlight to Hydrogen (STH) 

Efficiency for CPV (%) 

ηPV PV Efficiency (%) ηPV_H2 Sunlight to Hydrogen (STH) 

Efficiency for PV (%) 

UE Electrolyser Cell Voltage (V) F Faraday Constant (A.s/mol) 

MPPT Maximum Power Point Tracking ICPV CPV Current (A) 
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