192 research outputs found

    Scheduling Architectures for DiffServ Networks with Input Queuing Switches

    Full text link
    ue to its simplicity and scalability, the differentiated services (DiffServ) model is expected to be widely deployed across wired and wireless networks. Though supporting DiffServ scheduling algorithms for output-queuing (OQ) switches have been widely studied, there are few DiffServ scheduling algorithms for input-queuing (IQ) switches in the literaure. In this paper, we propose two algorithms for scheduling DiffServ DiffServ networks with IQ switches: the dynamic DiffServ scheduling (DDS) algorithm and the hierarchical DiffServ scheduling (HDS) algorithm. The basic idea of DDS and HDS is to schedule EF and AF traffic According to Their minimum service rates with the reserved bandwidth and schedule AF and BE traffic fairly with the excess bandwidth. Both DDS and HDS find a maximal weight matching but in different ways. DDS employs a Centralized scheduling scheme. HDS features a hierarchical scheduling scheme That Consists of two levels of schedulers: the central scheduler and port schedulers. Using such a hierarchical scheme, the Implementation complexity and the amount of information needs to be Transmitted between input ports and the central scheduler for HDS are dramatically reduced Compared with DDS. Through simulations, we show That both DDS and HDS popup Guarantees a minimum bandwidth for EF and AF traffic, as well as fair bandwidth allocation for BE traffic. The delay and jitter performance of the DDS is close to That of PQWRR, an existing DiffServ supporting scheduling algorithm for OQ switches. The tradeoff of the simpler Implementation scheme of HDS is its slightly worse delay performance Compared with DDS

    Design of a scheduling mechanism for an ATM switch

    Get PDF
    Includes bibliographical references.In this dissenation, the candidate proposes the use of a ratio to multiply the weights used in the matching algorithm to control the delay that individual connections encounter. We demonstrate the improved characteristics of a switch using a ratio presenting results from simulations. The candidate also proposes a novel scheduling mechanism for an input queued ATM switch. In order to evaluate the performance of the scheduling mechanism in terms of throughput and fairness, the use of various metrics, initially proposed in the literature to evaluate output buffered switches are evaluated, adjusted and applied to input scheduling. In particular the Worst-case Fairness Index (WFl) which measures the maximum delay a connection will encounter is derived for use in input queued switches

    On scheduling input queued cell switches

    Get PDF
    Output-queued switching, though is able to offer high throughput, guaranteed delay and fairness, lacks scalability owing to the speed up problem. Input-queued switching, on the other hand, is scalable, and is thus becoming an attractive alternative. This dissertation presents three approaches toward resolving the major problem encountered in input-queued switching that has prohibited the provision of quality of service guarantees. First, we proposed a maximum size matching based algorithm, referred to as min-max fair input queueing (MFIQ), which minimizes the additional delay caused by back pressure, and at the same time provides fair service among competing sessions. Like any maximum size matching algorithm, MFIQ performs well for uniform traffic, in which the destinations of the incoming cells are uniformly distributed over all the outputs, but is not stable for non-uniform traffic. Subse-quently, we proposed two maximum weight matching based algorithms, longest normalized queue first (LNQF) and earliest due date first matching (EDDFM), which are stable for both uniform and non-uniform traffic. LNQF provides fairer service than longest queue first (LQF) and better traffic shaping than oldest cell first (OCF), and EDDEM has lower probability of delay overdue than LQF, LNQF, and OCF. Our third approach, referred to as store-sort-and-forward (SSF), is a frame based scheduling algorithm. SSF is proved to be able to achieve strict sense 100% throughput, and provide bounded delay and delay jitter for input-queued switches if the traffic conforms to the (r, T) model

    Performance Management in ATM Networks

    Get PDF
    ATM is representative of the connection-oriented resource provisioning classof protocols. The ATM network is expected to provide end-to-end QoS guaranteesto connections in the form of bounds on delays, errors and/or losses. Performancemanagement involves measurement of QoS parameters, and application of controlmeasures (if required) to improve the QoS provided to connections, or to improvethe resource utilization at switches. QoS provisioning is very important for realtimeconnections in which losses are irrecoverable and delays cause interruptionsin service. QoS of connections on a node is a direct function of the queueing andscheduling on the switch. Most scheduling architectures provide static allocationof resources (scheduling priority, maximum buffer) at connection setup time. Endto-end bounds are obtainable for some schedulers, however these are precluded forheterogeneously composed networks. The resource allocation does not adapt to theQoS provided on connections in real time. In addition, mechanisms to measurethe QoS of a connection in real-time are scarce.In this thesis, a novel framework for performance management is proposed. Itprovides QoS guarantees to real time connections. It comprises of in-service QoSmonitoring mechanisms, a hierarchical scheduling algorithm based on dynamicpriorities that are adaptive to measurements, and methods to tune the schedulers atindividual nodes based on the end-to-end measurements. Also, a novel scheduler isintroduced for scheduling maximum delay sensitive traffic. The worst case analysisfor the leaky bucket constrained traffic arrivals is presented for this scheduler. Thisscheduler is also implemented on a switch and its practical aspects are analyzed.In order to understand the implementability of complex scheduling mechanisms,a comprehensive survey of the state-of-the-art technology used in the industry isperformed. The thesis also introduces a method of measuring the one-way delayand jitter in a connection using in-service monitoring by special cells

    Hybrid switching : converging packet and TDM flows in a single platform

    Get PDF
    Optical fibers have brought fast and reliable data transmission to today’s network. The immense fiber build-out over the last few years has generated a wide array of new access technologies, transport and network protocols, and next-generation services in the Local Area Network (LAN), Metropolitan Area Network (MAN), and Wide Area Network (WAN). All these different technologies, protocols, and services were introduced to address particular telecommunication needs. To remain competitive in the market, the service providers must offer most of these services, while maintaining their own profitability. However, offering a large variety of equipment, protocols, and services posses a big challenge for service carriers because it requires a huge investment in different technology platforms, lots of training of staff, and the management of all these networks. In today’s network, service providers use SONET (Synchronous Optical NETwork) as a basic TDM (Time Division Multiplexing) transport network. SONET was primarily designed to carry voice traffic from telephone networks. However, with the explosion of traffic in the Internet, the same SONET based TDM network is optimized to support increasing demand for packet based Internet network services (data, voice, video, teleconference etc.) at access networks and LANs. Therefore the service providers need to support their Internet Protocol (IP) infrastructure as well as in the legacy telephony infrastructure. Supporting both TDM and packet services in the present condition needs multilayer operations which is complex, expensive, and difficult to manage. A hybrid switch is a novel architecture that combines packets (IP) and TDM switching in a unified access platform and provides seamless integration of access networks and LANs with MAN/WAN networks. The ability to fully integrate these two capabilities in a single chassis will allow service providers to deploy a more cost effective and flexible architecture that can support a variety of different services. This thesis develops a hybrid switch which is capable of offering bundled services for TDM switching and packet routing. This is done by dividing the switch’s bandwidth into VT1.5 (Virtual Tributary -1.5) channels and providing SONET based signaling for routing the data and controlling the switch’s resources. The switch is a TDM based architecture which allows each switch’s port to be independently configured for any mixture of packet and TDM traffic, including 100% packet and 100% TDM. This switch allows service providers to simplify their edge networks by consolidating the number of separate boxes needed to provide fast and reliable access. This switch also reduces the number of network management systems needed, and decreases the resources needed to install, provision and maintain the network because of its ability to “collapse” two network layers into one platform. The scope of this thesis includes system architecture, logic implementation, and verification testing, and performance evaluation of the hybrid switch. The architecture consists of ingress/egress ports, an arbiter and a crossbar. Data from ingress ports is carried to the egress ports via VT1.5 channels which are switched at the cross point of the crossbar. The crossbar setup and channel assignments at ingress port are done by the arbiter. The design was tested by simulation and the hardware cost was estimated. The performance results showed that the switch is non-blocking, provide differentiated service, and has an overall effective throughput of 80%. This result is a significant step towards the goal of building a switch that can support multiprotocol and provide different network capabilities into one platform. The long-term goal of this project is to develop a prototype of the hybrid switch with broadband capability

    Quality of service optimization of multimedia traffic in mobile networks

    Get PDF
    Mobile communication systems have continued to evolve beyond the currently deployed Third Generation (3G) systems with the main goal of providing higher capacity. Systems beyond 3G are expected to cater for a wide variety of services such as speech, data, image transmission, video, as well as multimedia services consisting of a combination of these. With the air interface being the bottleneck in mobile networks, recent enhancing technologies such as the High Speed Downlink Packet Access (HSDPA), incorporate major changes to the radio access segment of 3G Universal Mobile Telecommunications System (UMTS). HSDPA introduces new features such as fast link adaptation mechanisms, fast packet scheduling, and physical layer retransmissions in the base stations, necessitating buffering of data at the air interface which presents a bottleneck to end-to-end communication. Hence, in order to provide end-to-end Quality of Service (QoS) guarantees to multimedia services in wireless networks such as HSDPA, efficient buffer management schemes are required at the air interface. The main objective of this thesis is to propose and evaluate solutions that will address the QoS optimization of multimedia traffic at the radio link interface of HSDPA systems. In the thesis, a novel queuing system known as the Time-Space Priority (TSP) scheme is proposed for multimedia traffic QoS control. TSP provides customized preferential treatment to the constituent flows in the multimedia traffic to suit their diverse QoS requirements. With TSP queuing, the real-time component of the multimedia traffic, being delay sensitive and loss tolerant, is given transmission priority; while the non-real-time component, being loss sensitive and delay tolerant, enjoys space priority. Hence, based on the TSP queuing paradigm, new buffer managementalgorithms are designed for joint QoS control of the diverse components in a multimedia session of the same HSDPA user. In the thesis, a TSP based buffer management algorithm known as the Enhanced Time Space Priority (E-TSP) is proposed for HSDPA. E-TSP incorporates flow control mechanisms to mitigate congestion in the air interface buffer of a user with multimedia session comprising real-time and non-real-time flows. Thus, E-TSP is designed to provide efficient network and radio resource utilization to improve end-to-end multimedia traffic performance. In order to allow real-time optimization of the QoS control between the real-time and non-real-time flows of the HSDPA multimedia session, another TSP based buffer management algorithm known as the Dynamic Time Space Priority (D-TSP) is proposed. D-TSP incorporates dynamic priority switching between the real-time and non-real-time flows. D-TSP is designed to allow optimum QoS trade-off between the flows whilst still guaranteeing the stringent real-time component’s QoS requirements. The thesis presents results of extensive performance studies undertaken via analytical modelling and dynamic network-level HSDPA simulations demonstrating the effectiveness of the proposed TSP queuing system and the TSP based buffer management schemes

    On packet switch design

    Get PDF

    Bandwidth and Power Management in Broadband Wireless Networks

    Get PDF
    Bandwidth and power are considered as two important resources in wireless networks. Therefore, how to management these resources becomes a critical issue. In this thesis, we investigate this issue majorally in IEEE 802.16 networks. We first perform performance analysis on two bandwidth request mechanisms defined in IEEE 802.16 networks. We also propose two practical performance objectives. Based on the analysis, we design two scheduling algorithm to achieve the objectives. Due to the characteristics of popular variable bit rate (VBR) traffic, it is very difficult for subscriber stations (SSs) to make appropriate bandwidth reservation. Therefore, the bandwidth may not be utilized all the time. We propose a new protocol, named bandwidth recycling, to utilized unused bandwidth. Our simulation shows that the proposed scheme can improve system utilization averagely by 40\%. We also propose a more aggressive solution to reduce the gap between bandwidth reservation and real usage. We first design a centralized approach by linear programming to obtain the optimal solution. Further, we design a fully distributed scheme based on game theory, named bandwidth reservation (BR) game. Due to different quality of service (QoS) requirements, we customize the utility function for each scheduling class. Our numerical and simulation show that the gap between BR game and optimal solution is limited. Due to the advantage of dynamical fractional frequency reuse (DFFR), the base station (BS) can dynamically adjust transmission power on each frequency partition. We emphasis on power allocation issue in DFFR to achieve most ecomicical data transmission. We first formulate the problem by integer linear programming (ILP). Due to high computation complexity, we further design a greedy algorithm. Our simulation shows that the results of the greedy algorithm is very close to the ILP results
    corecore