

HYBRID SWITCHING:

CONVERGING PACKET AND TDM FLOWS

IN A SINGLE PLATFORM

A Thesis Submitted to the College of

Graduate Studies and Research

In Partial Fulfillment of the Requirements

For the Degree of Master of Science

In the Department of Electrical and Computer Engineering

University of Saskatchewan

Saskatoon

By

Roshan Parajuli

 Copyright Roshan Parajuli, February, 2009. All rights reserved.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226153693?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

PERMISSION TO USE

 In presenting this thesis in partial fulfilment of the requirements for a Postgraduate

degree from the University of Saskatchewan, I agree that the Libraries of this University

may make it freely available for inspection. I further agree that permission for copying of

this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the

professor or professors who supervised my thesis work or, in their absence, by the Head of

the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial

gain shall not be allowed without my written permission. It is also understood that due

recognition shall be given to me and to the University of Saskatchewan in any scholarly

use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in

whole or part should be addressed to:

Department of the Department of Electrical and Computer Engineering

57 Campus Drive

Saskatoon, SK, S7N 5A9, Canada

Phone: (306) 966-5380

Fax: (306) 966-5407

ii

ABSTRACT

 Optical fibers have brought fast and reliable data transmission to today’s network.

The immense fiber build-out over the last few years has generated a wide array of new

access technologies, transport and network protocols, and next-generation services in the

Local Area Network (LAN), Metropolitan Area Network (MAN), and Wide Area Network

(WAN). All these different technologies, protocols, and services were introduced to address

particular telecommunication needs. To remain competitive in the market, the service

providers must offer most of these services, while maintaining their own profitability.

However, offering a large variety of equipment, protocols, and services posses a big

challenge for service carriers because it requires a huge investment in different technology

platforms, lots of training of staff, and the management of all these networks.

 In today’s network, service providers use SONET (Synchronous Optical NETwork)

as a basic TDM (Time Division Multiplexing) transport network. SONET was primarily

designed to carry voice traffic from telephone networks. However, with the explosion of

traffic in the Internet, the same SONET based TDM network is optimized to support

increasing demand for packet based Internet network services (data, voice, video,

teleconference etc.) at access networks and LANs. Therefore the service providers need to

support their Internet Protocol (IP) infrastructure as well as in the legacy telephony

infrastructure. Supporting both TDM and packet services in the present condition needs

multilayer operations which is complex, expensive, and difficult to manage. A hybrid

switch is a novel architecture that combines packets (IP) and TDM switching in a unified

access platform and provides seamless integration of access networks and LANs with

MAN/WAN networks. The ability to fully integrate these two capabilities in a single

chassis will allow service providers to deploy a more cost effective and flexible architecture

that can support a variety of different services.

iii

 This thesis develops a hybrid switch which is capable of offering bundled services

for TDM switching and packet routing. This is done by dividing the switch’s bandwidth

into VT1.5 (Virtual Tributary -1.5) channels and providing SONET based signaling for

routing the data and controlling the switch’s resources. The switch is a TDM based

architecture which allows each switch’s port to be independently configured for any

mixture of packet and TDM traffic, including 100% packet and 100% TDM. This switch

allows service providers to simplify their edge networks by consolidating the number of

separate boxes needed to provide fast and reliable access. This switch also reduces the

number of network management systems needed, and decreases the resources needed to

install, provision and maintain the network because of its ability to “collapse” two network

layers into one platform.

 The scope of this thesis includes system architecture, logic implementation, and

verification testing, and performance evaluation of the hybrid switch. The architecture

consists of ingress/egress ports, an arbiter and a crossbar. Data from ingress ports is carried

to the egress ports via VT1.5 channels which are switched at the cross point of the crossbar.

The crossbar setup and channel assignments at ingress port are done by the arbiter. The

design was tested by simulation and the hardware cost was estimated. The performance

results showed that the switch is non-blocking, provide differentiated service, and has an

overall effective throughput of 80%. This result is a significant step towards the goal of

building a switch that can support multiprotocol and provide different network capabilities

into one platform. The long-term goal of this project is to develop a prototype of the hybrid

switch with broadband capability.

iv

ACKNOWLEDGEMENTS

 I would like to express my gratitude to my supervisor Dr. Carl McCrosky for his

support, guidance, and encouragement throughout the course of this research work. I

greatly appreciate his timely thesis revision and critical feedback. I would also like to thank

Telecommunication Research Laboratories (TRLabs) for providing financial support and

other resources for this research. Jack Hanson, Vera ljubovic, Andrew Kostiuk, and the rest

of the students and staffs at TRLabs, Saskatoon, are all thanked for their time and help. I

am also thankful to Dr. Eric Salt, Dr. Ron Bolton, Dr. Li Chen, Dr. David Dodds, and Dr.

Daniel Teng who helped me at some point of time during this research. I also express

sincere thanks to the committee members, Dr. Li Chen, and Dr. Wahid Khan for their

valuable comments and suggestion in the preparation of this thesis. I would also like to

thank Dr. Simone Ludwig for acting as my external examiner.

 I am grateful to my friends in Saskatoon, as well as at the University of

Saskatchewan for their constant support and encouragement. I would like to give special

thanks to Prem Sharma, Nirmala Sharma, Sumit Paudyal, Dipendra Rai, Umesh Gyawali,

Jeeva Paudyal, Aseem Sharma, and Edwin Gono Santosa for their help in many ways. I

have a very special feeling for my lovely wife, Shrijana Dhakal, who in many ways helped

me during my Master’s program. Her consistent support, encouragement, and

understanding are highly appreciated.

 I wish to dedicate my work to my loving parents, Balika Parajuli and Gyan Prasad

Parajuli. Without their encouragement and support I would not have come this far.

v

TABLE OF CONTENTS

 PERMISSION TO USE ...i
ABSTRACT ...ii

ACKNOWLEDGEMENTS ...iv

TABLE OF CONTENTS ...v

LIST OF FIGURES ...viii

LIST OF TABLES ...x

LIST OF ABBREVIATIONS ..xi

1) Introduction ... 1
1.1 Motivation for Research ..3

1.2 Background of Hybrid switching ..4

1.3 Objectives ...6

1.4 Thesis organization ..7

2) Hybrid Switching Architecture Overview .. 9
2.1 Hybrid Switching Concept ...9

2.2 System Overview ...10

2.3 Data Path ..12

2.3.1 Class of Service (CoS) ..13

2.4 Arbiter ..14

2.5 Control Paths ..16

2.5.1 Control Path for Carrying Flow Requests ...16

2.5.2 Control Paths for Carrying Time Slot Assignments17

3) SONET Signaling, Data Paths and Control Paths 18
3.1 SONET Signaling ..18

3.1.1 The SONET Frame ...18

3.1.2 SONET Bandwidth ...19

3.1.3 The STS-N Frame ...20

3.1.4 SONET Virtual Tributaries (VTs) ..21

3.2 Packet Queuing Issues and Virtual Output Queue (VOQ)21
3.3 Data Path Architecture ...23

3.3.1 Ingress Ports ..23

3.3.2 Ingress Packet Queues ..23

3.3.3 TDM Filler ..24

3.3.4 Switch Core ...25

3.3.5 TDM Extractor ..26

3.3.6 Packet Assembler ..27

vi

3.3.7 Egress Packet FIFO ...28

3.4 Control Paths ...28

3.4.1 Flow Requests ...28

3.4.2 Ingress Time Slot Assignment ..29

3.4.3 Egress Time Slot Assignment ...29

3.4.4 Switch Time Slot Assignment ..30

3.4.5 Packet Channel Assignment ...30

3.4.6 SONET Channel Assignment ...30

4) Arbiter Bandwidth Allocation .. 31
4.1 Introduction ..31

4.2 Arbitration Goal ...31

4.2.1 Priority ..32

4.2.2 Fairness ...32

4.2.3 Efficient Bandwidth Utilization ..32

4.3 Arbiter Block ...33

4.3.1 Request Matrix ..35

4.3.2 Fair Proportional Algorithm (FPA) ..36

4.3.3 Time Slot Algorithm (TSA) ..40

4.3.3.1 Goal ..41

4.3.3.2 Ingress/Egress Open...41

4.3.3.3 Open Time Slot ..42

4.3.3.4 Masking Slot ..43

4.4 Arbiter Design Alternatives ...46

4.4.1 Software Approach ...46

4.4.1.1 NIOS II Processor ..47

4.4.1.2 Hardware and Software Partitioning47

4.4.1.3 Software Design Process ..48

4.4.1.4 Software Arbitration Process ...49

4.4.1.5 Advantages of Software Based Approach50

4.4.1.6 Implementation Results ...51

4.4.1.7 Limitations of Software Based Approach52

4.4.2 Hardware Approach ..52

4.4.2.1 Hardware Architecture ...52

4.4.2.2 Advantages of Hardware Approach53

4.5 Arbiter Implementation Summary ...54

5) Design Verification and Testing ... 56
5. 1 Introduction ...56

5.2 Simulation and Verification Process ..56

5.3 Verification and Testing ..57

5.4 Summary of the Verification ...60

6) Performance Results and Discussions ... 58
6.1 Introduction ..61

vii

6.2 Simplified IP Packet Structure ...61

6.3 Load Model ..61

6.3.1 Distribution of IP Packets by Size ..63

6.3.2 Distribution of IP Packets by Class of Service (CoS)64

6.3.3 Distribution of IP Packets by Offered Load ...65

6.3.4 Distribution of IP Packets by Hotspot Port ...65

6.4 Performance Matrices ..66

6.4.1 Throughput ..66

6.4.2 Queue Depth Vs Arbitration Cycles ...67

6.4.3 Non-blocking and Uniform Loads ..67

6.5 Simulations and Performance Results ...68

6.5.1 Objectives ...68

6.5.2 The Simulations ..68

6.5.3 Determining the Operating Load ..69

6.5.4 Results and Discussions ..69

6.5.4.1 Variation of Queue Depth with Offered Load for Uniform

 Traffic ..70

6.5.4.2 Variation of Queue Depth with Packet Classes for

 Uniform Traffic ..71

6.5.4.3 Variation of Queue Depth with Hotspot Port72

6.5.4.4 Variation of Queue Depth with Hotspot Classes73

6.5.5 Summary of the Results ..74

7) FPGA mapping: Logic Utilization, Delay and Power Estimation 76
7.1 Introduction ..76

7.2 Field Programmable Gate Arrays (FPGAs) ...76

7.2.1 Logic Utilization ...77

7.2.2 Propagation Delay ...77

7.2.3 Power Consumption ..78

7.3 FPGA Cost Estimation Methodology ..78

7.4 Synthesis Result and Analysis ...80

7.5 Summary of FPGA Mapping ..82

8) Conclusions and Future work .. 83
8.1 Conclusions ..83

8.2 Thesis Contributions ..85

8.3 Future Work ...85

8.3.1 Prototype Fabrication in FPGA ..86

8.3.2 Simulation for TDM and Packet Traffic ...86

8.3.3 Switch with Speedup...86

8.3.4 Broadband Switching by Scaling Up Granularity

 to STS-1 ..86

8.3.5 Search for an Improved Arbitration Scheme ..87

9) References ... 88

viii

LIST OF FIGURES

Figure 1.1 Traditional LAN and MAN Network ... 5

Figure 1.2 Hybrid Switching LAN and MAN Network .. 6

Figure 2.1 Hybrid Switching Model .. 9

Figure 2.2 Hybrid Switching Block ... 10

Figure 2.3 Block diagram of Hybrid Switch Architecture ... 11

Figure 2.4 Arbiter Block Diagram ... 15

Figure 3.1 SONET Frame .. 19

Figure 3.2 Formation of STS-3 frame by byte interleaving ... 20

Figure 3.3 Virtual Output Queues for N destinations and C classes 24

Figure 3.4 TDM Filler Block ... 24

Figure 3.5 Switch Core Block .. 25

Figure 3.6 TDM Extractor Block ... 26

Figure 3.7 Packet Assemblers and FIFO Memory Blocks .. 27

Figure 4.1 Arbiter Functional Block Diagram ... 33

Figure 4.2 Arbiter Flow Chart ... 34

Figure 4.3 Switch Flow Matrix Defining Time Slot Assignment Goal 40

Figure 4.4 Time Slot Assignment Logic Block ... 41

Figure 4.5 Ingress/Egress Open Vector ... 42

Figure 4.6 Formation of OTS Vector ... 42

Figure 4.7 Masking Slot Finding Process .. 43

Figure 4.8 Binary Tree ... 44

Figure 4.9 Binary Add Algorithm Block ... 45

Figure 4.10 Arbiter Module with Software and Hardware Partitioning 48

Figure 4.11 Detailed Arbiter Hardware/Software Partitioning .. 50

Figure 4.12 Arbiter Hardware Block ... 52

Figure 5.1 Simulation Process for Design Verification ... 57

ix

Figure 6.1 Structure of IP Packet Generated by Load Model .. 62

Figure 6.2 Internet Packet Distributions: Relative Frequency of Various Sizes 64

Figure 6.3 Internet Packet Distribution: Accumulated Distribution 64

Figure 6.4 Ingress Queue Length for Various Load Factors ... 70

Figure 6.5 Egress Queue Length for Various Load Classes of Traffic at Operating Load .. 71

Figure 6.6 Egress Queue Length for Various Load Classes of Traffic at Operating Load .. 73

Figure 6.7 Egress Queue Length for Various Classes of Hotspot Traffic 74

Figure 7.1 RTL Area and Power Analysis in IC Design Flow .. 79

x

LIST OF TABLES

Table 3.1 SONET Virtual Tributaries ...21

Table 4.1 Request Matrix for Class 1 Traffic ...37

Table 4.2 Converting Request Matrix to Column Grant Matrix ...39

Table 4.3 Converting Column Grant Matrix to Switch Flow Matrix39

Table 4.4 Arbiter Timing Result for Software Implementation ...51

Table 7.1 FPGA Resource Utilization Table for 4x4 Hybrid Switch80

Table 7.2 Scale-up Cost for Hybrid Switch ..81

xi

LIST OF ABBREVIATIONS

ADM

ASIC

Add-Drop Multiplexer

Application Specific Integrated Circuit

ATM Asynchronous Transfer Mode

CoS Class of Service

CIR Committed Information Rate

CLB Configurable Logic Block

DWDM Dense Wave Division Multiplexing

DUT Device Under Test

EIR Extended Information Rate

FPA Fair Proportional Algorithm

FPGA Field Programmable Gate Arrays

FIFO First In First Out

FR Frame Relay

HDL Hardware Descriptive Language

HoL Head of Line

IB-VOQ Ingress Buffered Virtual Output Queue

IC Integrated Circuit

IP Internet Protocol

LAN Local Area Network

LE Logic Elements

LUT LookUp Table

MSS Maximum Segment Size

MTU Maximum Transmission Unit

MAN Metropolitan Area Network

MPLS Multiprotocol Label Switching

xii

OTS Open Time Slot

OQ Output Queue

POH

POTS

PSTN

Path OverHead

Plain Old Telephone Service

Public Switched Telephone Network

QoS Quality of Service

RAM Random Access Memory

RTL Register Transfer Level

SLA Service Level Agreement

SONET Synchronous Optical NETwork

SPE

STS

Synchronous Payload Envelope

Synchronous Transfer Signal

TDM Time Division Multiplication

TOH

TSA

Time OverHead

Time Slot Algorithm

TCP Transport Control Protocol

VOQ Virtual Output Queue

VT Virtual Tributary

WAN Wide Area Network

1

Chapter 1

Introduction

Communications of voice, video and data has experienced several technological

revolutions in last two or three decades. One of the greatest inventions of recent years is the

Internet. The Internet has had phenomenal success, growing from a small research network

to a global network that we use on a daily basis. The Internet is a packet based network.

When a host wants to communicate with other hosts, it uses the Internet Protocol (IP) to

place information in packets, which are then sent to the nearest router. The router stores,

and then forwards these packets to the next hop. Through hop-by-hop routing, packets find

their way to the desired destination. This is called packet switching. With this

communication technique, link bandwidth is shared among many information flows, and

these flows are statistically multiplexed on the link.

To keep up with the explosive demand for bandwidth as well as to adhere to Service

Level Agreements (SLAs) for a growing number of mature business applications on the

Internet, network switches must be both faster and smarter. These switches must not only

simply terminate high-speed optical connections but also must switch a large number of

connections from Dense Wavelength Division Multiplexing (DWDM) transport systems

[1]. They must provide guarantees on parameters such as bandwidth, latency, loss rate, and

jitter, which are not supported by current best-effort switch architectures. Finally, they must

provide a path to migrate to Multiprotocol Label Switching (MPLS) based networks

without abandoning existing investments in the legacy networks such as Synchronous

Optical NETwork (SONET) and Frame Relay (FR).

Time division multiplexing (TDM) is a multiplexing technique that divides a circuit

into multiple channels based on time. The technique is associated with telephone company

voice services. TDM was designed to deliver a steady stream of digitized voice. The data

rate for each channel is exactly what is needed to carry a digitized voice which is 64 Kbps.

2

While companies have long used TDM circuits for both voice and data, TDM circuits are

not ideal for data because data tends to be bursty. The repeating time slots do a good job at

delivering the streaming bits of digitized voice, but data bursts fill up the slots unevenly.

When there is no data to send, bandwidth goes unused. When data bursts, there is usually

not enough bandwidth.

In order to support traditional TDM based telephone network and packet based

internet network, the service provider must have a multi-layer architecture; one layer

supporting the packet based internet traffic while the other layer supporting the TDM based

voice traffic. To compete on market, the service providers must provision all these services

by squeezing as much expense as possible out of serving provisioning and support.

However, supporting both types of services in today’s multilayer architecture is expensive,

inefficient, complex, and difficult to manage and troubleshoot.

This thesis describes a hybrid switch architecture designed to address these

problems and provide enhanced flexibility at significantly reduced cost. We propose a

switching method suitable for mapping packet based traffic into TDM time slots and to

consequently allow simultaneous switching of packets and TDM traffic on the same

switching platform. In this architecture TDM or packet data is mapped to TDM channels,

enabling TDM switches to be used in the switch fabric of a router. This switching

architecture provides lower cost TDM and packet switching and protects the investment

already made in the legacy technology (principally SONET) while enabling new

investments in both TDM switching and packet switching. In addition, the proposed hybrid

packet/TDM architecture is straightforward and offers high speed data transfer. Because of

its multiservice capability of handling both packets and TDM traffic, scalability, and

support for quality of service, the switch architecture is directly applicable to at least the

following areas:

 simplified networks,

 unified packet and TDM based circuit switching platforms,

 cost-effective delivery of multiple services on one platform,

 capacity to increase bandwidth and add new services,

3

 optimized used of physical space,

 high end enterprise applications, and

 easy installation and operation.

1.1 Motivation for Research

 Over the last decade, through the combination of telecommunication market

deregulation, economic globalization, and the Internet revolution, we have witnessed the

emergence of a range of novel communication services for both residential and enterprise

customers. IP-based applications and the deployment of IP technology not only increased

the demand for new communication services but also established the quest for greater

transmission speeds [2]. Yesterday’s focus was purely on the transmission of telephone

voices by circuit provisioning with SONET and DWDM. The data world was based on

TDM circuits designed for voice transmission. However, with the introduction of many

protocols, access services, and internet applications at the access edge, the trend in data

services, stretching out of the local area into the metro and regional transmission domain is

changing the requirements for switching and routing. Transmission networks and systems

are therefore also evolving to include mapping of multiple services and signal types into

SONET. However, the service providers face the challenge of connecting multiple data

traffic and voice traffic into their high-speed backbone because supporting wide range of

access interfaces is complex and expensive.

 Many challenges are associated with provisioning voice and data services using

today’s legacy architecture, as shown in Figure 1.1. Voice-data overlay networks results in

duplication of equipments, demands more operational space, and yields high costs. Also

running separate operations for each service is complex, and difficult to manage and

troubleshoot. Tomorrow’s transmission networks must therefore efficiently manage both

types of services-provisioned circuits for voice traffic and switched multipoint data services

simultaneously in one platform. Investment is reduced by having only one converged

network managing both traffic types, ultimately leading to lower operational expenditures.

4

 The hybrid switch addresses the requirements of a single common minimum-cost

platform from an inter-community prospective. The switch is capable of handling both

TDM flows and packet flows on any of its ports, and on sub-channels of its various ports.

Each switch port uses SONET STS-12 signaling with a bandwidth of 622.08Mb/s. Each

VT1.5 component of an STS-12 is treated as a conventional SONET (TDM) flow, or as

stream of IP packets. The switch then switches TDM flows as logical circuits with low

latency and negligible switching jitter, and switches packet flows with fair virtual output

queuing techniques. The advantage of this architecture is that it allows the normal use of

two different switching technologies and ‘boxes’ to be collapsed into one ‘box’, thereby

offering substantial savings and flexibility to the user in Local Area Network (LAN) and

Metropolitan Area Network (MAN) environments. It also follows a new and unique design

for multiservice provisioning by integrating the right amount of packets and TDM

functionality and provides a dedicated fabric for each technology, thereby guaranteeing

optimum performance of this truly converged platform.

1.2 Background of Hybrid Switching

 Figure 1.1 shows a typical carrier application under today’s network conditions.

From the figure it is obvious that different types of switching equipments are being used.

Traditional TDM traffic for Plain Old Telephone Service (POTS) for Public Switched

Transport Networks (PSTN) and dial-up Internet traffic are mostly carried over TDM based

T1 lines. These T1 circuits are terminated in a T1 multiplexer. Packet based IP,

Asynchronous Transfer Mode (ATM), and FR traffic are terminated in different terminal

devices. Both TDM and packet traffic are mapped into the SONET signal and carried over

the service provider’s SONET network. Add-Drop Multiplexer (ADM) provides access to

the SONET network.

 The requirements for different types of equipments and protocols lead to substantial

network complexity. Rack space is needed for the various types of equipment. Each set of

equipment usually comes with its own management system. This requires expertise in

multiple technologies with equipment from multiple vendors to manage each transport –

5

network type. In addition to the expense of supporting this infrastructure, the provisioning

of services requires co-ordination of the configuration of all the network elements that are

involved.

ADM

ADM

ADM

ADM

TDM

Switch

SWITCH/

ROUTER

IP

ATM

FR

SWITCH/

ROUTER

TDM

IP

ATM

FR

Internet

Metro
polita

n N
etw

ork

SONET R
ing (O

C-3 – O
C-48)

PSTN

T1

T1

Mux

TDM

Switch

T1

T1

Packets

TDM

LANMANLAN

Voice

Gateway

 Figure 1.1 Traditional LAN and MAN Network

 The hybrid switching concept combines the functions of a multiplexer with

multiple service access devices and adds the capability to support multiple protocols in one

platform. This new approach uses a rack-mounted chassis in which a wide variety of

interface and function cards can be inserted to tailor the platform to specific roles. This new

paradigm for building the network infrastructure converge the functions of time division

backbone switches and packet switches into a single backbone making the infrastructure

much simpler, cheaper, and easy to manage.

 Figure 1.2 shows the hybrid switch application in a carrier network. The optical (or

electrical) interface function to the hybrid switch has been combined with different access

interfaces. All of this has been integrated into one platform and positioned strategically at

the boundary between the MAN and the LAN. This new architecture removes barriers to

6

operational efficiency and flexible provisioning for voice and data by creating a unified

network that can be operated and managed easily.

TDM

IP

ATM

FR

Metro
polita

n N
etw

ork

SONET R
ing (O

C-3 – O
C-192)

IP

ATM

FR

Internet

Voice

Gateway

PSTN

T1

Hybrid Switch

Hybrid Switch

Hybrid SwitchHybrid Switch

T1
T1

Mux

T1

LANMANLAN

TD
M

P
ac

ke
ts

Packet

 Figure 1.2 Hybrid Switching LAN and MAN Network

1.3 Objectives

The research objective is to design and evaluate the performance of a hybrid

switching architecture for LAN and MAN networks. The key is to design a switch that is

capable of accepting both TDM flows and packet flows on any of its ports, and forwarding

it to its destination. Design, performance characterization, and simulation of the switch will

be done in order to study the cost and benefits of having such a switching architecture on

the current internet backbone network. More specifically, the research work is done in order

to:

(1) study the feasibility of supporting both TDM based traffic and packet based traffic on

a single switching platform,

7

(2) develop new algorithms for arbitration and study the performance of switches using

that arbitration scheme, and

(3) study the design alternatives, and examine the cost and performance issues; and find

what heuristics are most useful in developing efficient hybrid switching.

 Our challenges in order to meet the above objectives are:

 Design of a switching platform which integrates the functionality of a TDM based

switch and a packet based switch, with the challenge of not having excessive

implementation costs.

 Design of the data path that can carry both TDM and packet traffic.

 Design of the TDM based switch backbone with a suitable fast arbiter. The three stage

time-space-time (TST) switch should have an arbitration cycle less than four SONET

cycles.

1.4 Thesis Organization

This thesis is organized in the following way. Chapter 2 gives a brief introduction to

the hybrid switch. It gives an overview of the data paths, control paths, and the arbiter unit,

and defines the interconnection networks. It also introduces the TST (Time-Space-Time)

switching nature of the hybrid switch. Different classes of service supported by the switch

and their priority for providing the Quality of Service (QoS) for the subscribers are also

explained. Chapter 3 reports the architectural design of the data paths and the control

signals. It also gives a brief introduction to SONET and describes how SONET signaling is

used on the communication link between port card and the line card. This chapter also

introduces packet queuing issues and the use of Ingress Buffered Virtual Output Queue (IB-

VOQ) memories in our hybrid switch. Chapter 4 is about the arbiter. It explains arbitration

process for packet and TDM traffic. The bandwidth arbitration algorithm and the time slot

assignment processes are also described. Finally the chapter describes the arbitration design

8

alternatives and explains a software approach and a hardware approach and their

advantages and disadvantages. Chapter 5 explains how the design was verified and tested to

make sure it functions correctly. Chapter 6 describes our simulation experiments and

results. It describes the load model used for simulating the design, and analyses of the

obtained results. Chapter 7 explains the FPGA implementation of the switch with cost and

area analysis. Chapter 8 concludes the thesis and discusses future work.

9

Chapter 2

Hybrid Switching Architecture Overview

This chapter provides an architectural overview of our hybrid switch. Section 2.1

describes the overall switching concept. A hardware system overview is introduced in

Section 2.2. An introduction to the data path is given in Section 2.3. Arbiter and control

signals of the switch are introduced in Section 2.4 and Section 2.5 respectively.

2.1 Hybrid Switching Concept

 The hybrid switch switches both TDM and packet traffic carried by SONET STS-12

(Synchronous Transport Module level - 12) links on a single switching platform. Figure 2.1

shows the hybrid switching model.

STS-12 Ingress

TDM

Packets

STS-12 Egress

TDM

Packets

SONET STS-12 Frame

336 VT1.5 TDM channels

Hybrid SwitchBackplane

Port Card Switch Card
Communication

Links

SONET STS-12 Frame

336 VT1.5 TDM channels

Figure 2.1 Hybrid Switching Model

 Traffic carried by each SONET STS-12 link is differentiated into packet and TDM

traffic at the ingress port. These packets are switched at level 3 (IP packets) or level 2

(ATM or Frame Relay). The remaining SONET TDM voice components are switched at

10

their native TDM level. The switch’s ingress and egress communication links are divided

into 336 Virtual Tributary 1.5 (VT1.5) channels. The number of VT1.5s in one STS-12

frame is 336. Each channel can carry either packet or TDM traffic from ingress port to

egress port. The traffic carried by the ingress VT1.5 channels is switched at the switch card.

The VT1.5 channel allocation and crossbar set-up logic is provided by arbiter logic in the

switch card. The traffic coming out of the switch card is extracted and differentiated into

TDM and packet traffic at the egress side. Egress traffic is read, assembled, and stored at

the egress port and sent as an STS-12 signal across the backplane.

 VT1.5 channels are used to carry long packets by byte interleaving. Each channel

can carry packet bytes from any queue. Each queue (flow) can be carried by one or more

VT1.5 channels. The channel allocations may change at any STS-12 frame boundary. It is

the job of the arbiter to announce such changes to the TDM filler, crossbar and TDM

extractor so that the packets are switched and reassembled properly.

2.2 System Overview

Figure 2.2 shows a block diagram of an NxN hybrid switch which supports C

priority classes. The switch contains NxC packet queues at each input, NxC output buffers

at each output, a crossbar fabric and an arbiter.

Arbiter

Switch Core

1 1

N

Flow Requests

STS

12
STS12

STS12

Output packet reassembly

buffers (NxC)

Time Slot

Assigments

SONET TDM

Memory

Input packet

queues (NxC)

SONET TDM

Memory

N

STS

12

Input packet

queues (NxC)

Output packet reassembly

buffers (NxC)

SONET TDM

MemorySONET TDM

Memory

 Figure 2.2 Hybrid Switching Block

11

The NxC input queues at each input port are used as IB-VOQ in order to respect

priorities and eliminate head-of-line (HOL) blocking. N ingress ports by N egress ports are

cross connected by the NxN crossbar which provides ingress lines for each input and egress

lines for each output. This hybrid switch allows each port to be independently configured

for any mixture of packet and TDM traffic, including 100% packet and 100% TDM.

Figure 2.3 shows the hybrid architecture in more detail. The communication paths

from ingress ports, through the crossbar and to the egress ports carry the SONET STS-12

protocol which contains 336 VT1.5 channels. The switch connects inputs to outputs through

these channels, each of which have an aggregate bandwidth of 1.544 Mbps. These VT1.5’s

can be used to carry standard virtual tributaries (SONET TDM) or byte streams which are

used to carry the switch’s packet traffic. Aggregations of VT1.5’s can be used to carry STS-

N’s as broadband TDM.

Ingress Time Stage

Central

Space

Stage

Egress Time Stage

Queues

Switch Core

Packet

TDM

Packet Channel Assignment

VT1.5 Channels

Arbiter

Packet

In
g

re
s
s
 T

S
A

E
g

re
s
s
 T

S
A

Switch

TSA

F
lo

w
 R

e
q

u
e

s
ts

Packet

TDM Memory

Hybrid Ingress TDM Filler

TDM

SONET Channel Assignment

Hybrid Egress TDM Extractor

Egress

FIFO Memory

TDM Memory
TDM

TDM

Packet

Data Path

Control Path

Packet

Assembler
Switch CardLine Card

VT1.5

Channels

Figure 2.3 Block Diagram of Hybrid Switch Architecture

12

As shown in Figure 2.3, the hybrid switch architecture consists of three switching

stages; two time switching stages on the line card and a space switching stage on the switch

card. Traffic at the hybrid ingress ports is mapped to VT1.5 time slots within an aggregate

SONET STS-12 by the TDM filler module, which is a time switch. The crossbar (switch

core) acts as a space switch which connects STS-12 TDM signals from one input port to

another output port. The crossbar makes separate connections for each VT1.5. The TDM

extractor (the final time stage) reads the traffic carried by egress VT1.5 channels and uses it

as a source to extract and reassemble packets and to extract SONET TDM traffic.

At each ingress port, there may be conflicting demands for resources such as buffer

space and time through the crossbar. A control scheme for resource allocation is provided

by the arbiter module. Its main objective is to resolve the conflicts and provide efficient and

fair scheduling of these resources. The arbitration enforces three specific goals:

(1) respect for priorities,

(2) fairness among the ports, and

(3) maximum bandwidth utilization and maximal throughput.

By enforcing the above goals, arbiter maximizes bandwidth utilization and meets

the QoS requirements as closely as possible.

2.3 Data Path

 The solid lines in Figure 2.3 represent the data path. Each packet arriving at an

ingress port is classified and placed in the appropriate ingress buffered queue based on its

class and its destination. Each packet with distinct class and destination represents a

separate flow. There are NxC distinct flows at each ingress port. The TDM (SONET) traffic

is simply put in a SONET memory and each VT1.5 column of the SONET traffic represents

one separate flow.

In each arbitration cycle each packet flow is assigned some set of VT1.5’s to carry

13

packets from ingress to egress port. The collection of VT1.5’s in aggregate form a byte

stream into which the packets are fed in priority order. In each arbitration period a new set

of VT1.5s may be allocated to any flow. The switch must be capable of hitlessly changing

from one set of VT1.5’s to the next set, without disrupting the traffic flow. For each output

port, there is a choice of which of several input ports it will connect to. For each output

grant, the crossbar arbitration logic selects one of the inputs and blocks the others. The

TDM extractor on the output side selects the channel, reads the byte stream, and sends the

data into the appropriate packet assembler. Once a full packet is assembled, it is sent to a

FIFO buffer which is then read by the egress port. The packet assembler begins assembling

the next packet with the next arriving byte.

For switching SONET TDM traffic, the switch carries out an N port SONET STS-

12 time-space-time (TST) switch with switching occurring at every VT1.5 frame. The

switch fabric exchanges the aligned STS-12 data streams at VT1.5 granularity through TST

stages. Both ingress and egress time switch (TDM filler and TDM extractor) perform time

slot interchange on the data stream while the space switch stage switches data from one

SONET pipe to another. Each time slot is switched independently in the space switch stage.

Switch control memories (TDM filler, TDM extractor and switch set up) are organized into

pages of control words, which determine what permutations are implemented for each of

the 336 VT1.5 positions per SONET STS-12 frame (in time) at each of the N ports (in

space) for the switching stages. The switched TDM traffic is extracted and stored in TDM

memory at the egress side and then transmitted through the egress port.

No frequency speed up is assumed for this switch architecture. As we shall see in

the chapters on performance results and conclusions, some speed up is required in practice.

2.3.1 Class of Service (CoS)

CoS is a way of managing traffic in a network by grouping similar types of traffic

together and treating each type as a class with its own level of service priority. It enables

more predictable traffic delivery of priority data across IP-enabled networks. Our hybrid

http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212644,00.html

14

switch supports three classes of services: first (high priority), second (medium priority) and

third (low priority).

The high-priority class supports strictly bounded delay and jitter applications such

as VoIP and real-time video applications with non-preemptive bandwidth guarantees. The

medium-priority class supports applications that are less sensitive to delay and jitter such as

non-real-time video and VPN services. User-provisioned committed information rate (CIR)

and extended information rate (EIR) guarantees are supported for different service

requirements. The low-priority class of service supports best-effort applications that do not

need bandwidth guarantees such as consumer Internet access via the IP protocol suite. With

three unique classes of service, service providers can offer differentiated services with

different price points to satisfy different customer requirements.

2.4 Arbiter

An NxN hybrid switch contains NxNxC queues at the ingresses which store different

packet traffic flows based on sources, destination, and CoS assignment. Due to the presence

of IB-VOQs at each ingress port (Figure 2.2), packets which are destined to different output

ports may be transmitted through the switch in any order; regardless of their arrival time at

the ingress port. It is the job of the arbiter to decide when the packet from each queue

should be sent to the egress port.

Figure 2.4 shows the block diagram of the arbiter. The arbiter examines TDM

requests for SONET traffic and flow requests for packet traffic and makes scheduling

decisions for every VT1.5 channel, including which input buffers to read, which output

buffers to write, and the configuration settings for the crossbar. The SONET control unit

(microprocessor) embedded in the hybrid switch (not shown) carries TDM requests to the

arbiter while SONET STS-12 Transport Overhead (TOH) and Path Overhead (POH) carry

packet flow requests to the arbiter. TDM traffic has priority over all packet traffic and is

served first. The remaining VT1.5 channels are allocated by the arbiter to packet traffic.

15

Channel allocation for SONET TDM traffic is static. All the channels are “open” for

TDM requests and they get channels for all of their requests. However, the channel

distribution for packet traffic is dynamic in nature and needs a rapid and flexible arbitration

scheme in order to respond to the bursty, self addressing nature of packet traffic. In order to

perform packet arbitration, the arbiter accepts bandwidth requests for the NxNxC input

flows from the N ingress ports. These bandwidth requests are stored in a request matrix.

The bandwidth requests combine information about current queue size (depth) and current

traffic flow at ingress port (recent flow). The Fair Proportional Algorithm (FPA) scheme in

the arbiter uses this information to allocate bandwidth to each ingress-to-egress flow. The

Time Slot Algorithm (TSA) gives time slot assignments which map bandwidth allocations

from the FPA to specific TDM channels. The time slot assignments computed by the TSA

are passed to the switch core to configure the crossbar. The time slot assignments are also

sent to port cards by embedding them in the SONET STS-12 signal’s overheads. Port cards

use this information to fill the ingress TDM channels with packets and to extract packets

out of STS-12 frame on the egress side.

Request

Matrix
Port 1 STS12

Arbiter

Port N STS12

Time slot

Assignment

to switchcore

SONET

Processor

Request

Matrix

SONET Static TDM Request

Time Slot

Algorithm

(TSA)

Fair

Proportional

Arbitration

(FPA)

 Figure 2.4 Arbiter Block Diagram

Unlike other packet switches which need only one grant per ingress port for full

utilization of the channel bandwidth, our hybrid switch must have multiple grants per

ingress port, one for each active ingress-to-egress VT1.5 flow. The total grant per port is the

16

number of VT1.5 channels allocated per ingress by the switch’s arbiter. Since there are 336

VT1.5 channels per ingress/egress link, we need to have 336 VT1.5 channel allocations per

STS-12 frame to fully utilize the switch’s bandwidth. Similarly, each output port contends

for multiple input ports and there must be 336 VT1.5 channel allocations per STS-12 frame

to fully utilize total switch’s bandwidth. The arbitration task is thus symmetrical with

respect to inputs and outputs. Furthermore, since the arbitration result for each port is

dependent on the arbitration for other ports, the arbitration task cannot be performed by

separate independent arbiters at the input ports or output ports. In order to maximize

performance, the arbitration should result in switch configurations that allow for the

maximum number of packets traffic to be transmitted simultaneously. The arbitration

process itself must be fast relative to the rate at which packets are received and relative to

the latency of packet transmission through the switch.

2.5 Control Paths

The dashed lines in Figure 2.1 represent the control paths. Control paths are used to

carry the flow requests from port cards to the arbiter, and time slot assignment information

from the arbiter to the port cards and from the arbiter to the crossbar. The control signals

(paths) in our hybrid switch have the following main functions:

(1) Control the flow of packets from ingress queues to egress port.

(2) Configure switch crossbar to connect appropriate ingress port to egress port

 for each of 336xN VT1.5 time slots.

(3) Control egress port to select appropriate TDM channel in STS12 stream for

 packet and TDM recovery.

2.5.1 Control Path for Carrying Flow Requests

Flow requests from ingress queues are carried to the arbiter in SONET STS-12

signal’s overheads. The entire SONET frame is passed to the arbiter module which parses

the frame, extracts the flow requests and saves them as a request matrix. The request matrix

17

is used to find the TDM channel arbitration for each flow at ingress port. The arbitration

process is described in Section 2.3.

2.5.2 Control Paths for Carrying Time Slot Assignments

 Time slot assignments are passed from the arbiter module to port cards by

embedding them in SONET STS-12’s TOH and POH bytes being sent to the egress port.

The time slot assignments are extracted at egress port card and used for controlling the

TDM fillers and the TDM extractors as shown in Figure 2.2. The same time slot assignment

at switch card is used by the crossbar (space switch) to cross-connect ingress and egress

ports at VT1.5 granularity.

18

Chapter 3

SONET Signaling, Data Path and Control Paths

This chapter extends Chapter 2 by providing more detail about the data paths and

the control signals. It begins with a brief introduction to SONET, and the formation of STS-

x signal and VTs which are the basis for carrying data and control information across the

switching platform. Section 3.1 describes the SONET frame and signaling. Section 3.2

describes the packet queuing issues. Section 3.3 gives an introduction to the hybrid switch

at the architectural level and describes the data path block diagram. Section 3.4 describes

the control paths and explains how the control signals are used to control data flow.

3.1 SONET Signaling

 SONET is the basis for the transport of packet and TDM traffic in our hybrid

switch. Ingress traffic and switch control information is carried via STS-12 signaling. Each

SONET STS-12 frame is divided into multiple VT1.5 virtual tributaries (VTs) which

provide the data path channels for ingress-to-egress traffic flow. The SONET overheads

carry the control information for data flow and switch setup. The following subsections

describe the SONET frame and VT sub-structure.

3.1.1 The SONET Frame

Figure 3.1 shows the fundamental SONET frame. This frame is known as a

Synchronous Transport Signal, Level One (STS-1). It is 9 bytes tall and 90 bytes wide for a

total of 810 bytes of transported data including both user payload and overhead. The first

three columns of the frame are the Section and Line Overhead (SOH and LOH), known

collectively as the Transport Overhead. The bulk of the frame itself, to the left, is the

19

synchronous payload envelope (SPE), which is the container area for the user data that is

being transported. The data, previously identified as the payload, begins somewhere in the

payload envelope. The actual starting point will vary. The Path Overhead (POH) begins

when the payload begins; because it is unique to the payload itself, it travels closely with

the payload. The first byte of the payload is the first byte of the Path Overhead.

Payload

Synchronous Payload Envelope
POHSOH

LOH

90 Bytes

9 Bytes

TOH

(SOH + LOH)

Figure 3.1 SONET Frame

3.1.2 SONET Bandwidth

The SONET frame consists of 810 bytes, and like the T-1 frame, it is transmitted

once every 125µs (8000 frames per second). This works out to an overall bit rate of 810

bytes/frame x 8 bits/byte x 8000 frames/second= 51.84 Mbps, the fundamental transmission

rate of the SONET STS-1 frame which is slightly more than a 44.736 Mbps DS-3, a

respectable carrier level by anyone’s standard. The basic structure of the STS-1 frame is

repeated for the higher rates. Three STS-1 frames are multiplexed to create the STS-3

which has a bandwidth of 155.52 Mbps, these in turn are multiplexed to create the STS-12,

and so on. If the payload requires less than 51.84 Mbps, the Synchronous Payload Envelope

(SPE) is subdivided into smaller components, known as virtual tributaries, for the purpose

of transporting and switching payloads smaller than the STS-1 rate [3].

20

3.1.3 The STS-N Frame

In situations where multiple STS-1s are required to transport more payload

information, SONET enables the creation of what is called STS-N frames, where N

represents the number of STS-1 frames that are multiplexed together to create the frame. If

three STS-1s are combined, the result is an STS-3. In this case, the three STS-1s are

brought into the multiplexer and byte interleaved to create an STS-3, as shown in Figure

3.2. In other words, the multiplexer selects the first byte of frame one, followed by the first

byte of frame two, followed by the first byte of frame three. Then it selects the second byte

of frame one, followed by the second byte of frame two, followed by the second byte of

frame three, and so on, until it has built an interleaved frame that is now three times the size

of an STS-1: 9x270 bytes instead of 9x90 and is still generated 8000 times per second. The

technique described above is called a single stage multiplexing process because the

incoming payload components are combined in a single step. A two-stage technique is also

commonly used. For example, an STS-12 can be created in two ways. Twelve STS-1s can

be combined in a single stage process to create the byte interleaved STS-12; alternatively,

four groups of three STS-1s can be combined to form four STS-3s, which can then be

further combined in a second stage to create a single STS-12 [4].

STS-1

STS-1

STS-1

STS-

3

1

2

3

90 Bytes

9
 B

y
te

s

270 Bytes

9
 B

y
te

s

 Figure 3.2 Formation of STS-3 frame by byte interleaving

21

3.1.4 SONET Virtual Tributaries

When a SONET frame is modified for the transport of sub-rate payloads, it is said to

carry virtual tributaries (VTs) in which the payload envelope is chopped into smaller pieces

that can then be individually used for the transport of multiple lower-bandwidth signals.

 To create a VT, the SPE is subdivided. An STS-1 comprises 90 columns of bytes,

four of which are reserved for overhead functions (Section, Line, and Path). This leaves 86

for actual user payload. To create virtual tributaries, the payload capacity of the SPE is

divided into seven, 12-column pieces called “VT groups”. This leaves two unassigned

columns which are called “fixed stuff”. Each of the VT groups can be further subdivided

into one of four different VTs to carry a variety of payload types, as shown in Table 3.1 [4].

 Table 3.1 SONET Virtual Tributaries

VT Type Columns/VT Bytes/VT VTs/Group VTs/SPE VT Bandwidth (Mbps)

VT1.5 3 27 4 28 1.728

VT2 4 36 3 21 2.304

VT3 6 54 2 14 3.456

VT6 12 108 1 7 6.912

3.2 Packet Queuing Issues and Virtual Output Queue

The two main tasks involved in switching are: scheduling and data forwarding.

Scheduling involves deciding for each input port which output port the packet should be

sent to and arbitrating when more than one input port requests for the same output port

while data forwarding involves sending the packet data from input ports to output ports

according to the scheduling decision. Data is generally stored in a queue before sending it

to output ports.

22

In general, packet switches can be divided into two categories: output queued (OQ)

switches and input queued (IQ) switches, based on where delayed packets are queued. A

typical OQ switch has a first-in-first-out (FIFO) queue at each output port to buffer the

packets destined to that output port. OQ switches are shown to be able to achieve unity

throughput and can easily meet different QoS requirements, such as delay and bandwidth,

by applying various scheduling algorithms [5]. However, since there is no buffer at the

input side, if the packets arriving at different input ports are destined to the same output

port, all the packets must be transmitted simultaneously. Therefore, in order for OQ

switches to work at full throughput, the switching speed of the internal fabric and the

receiving speed of the output port must be N times faster than the sending speed of the

input port in an N x N switch. This speedup requirement makes OQ switches difficult to

scale. In particular, when the switch has a large number of input ports or the speed of a

single input port increases to Gb/s, it is impractical to achieve the N speedup [6]. On the

other hand, for IQ switches, the switching fabric and the output port only need to run at the

same speed as that of the input port and, therefore, IQ switches have been the main research

focus of high speed single stage switches. The single input queued switch, has a FIFO

queue at each input port to store the incoming packets waiting for transmission. Since only

the packet at the HOL of each input queue can participate in the scheduling, the packets

behind the HOL packet suffer from so called “head of line” blocking, which means that,

even though their destination output ports may be free, they cannot be scheduled to transfer

because the HOL packet is blocked [7].

An efficient yet simple buffering strategy to avoid HOL blocking is to adopt a

multiple input queued switch structure, which was introduced in [8]. A typical multiple

input queued switch has a separate FIFO queue corresponding to each output port. It is the

IB-VOQ structure since each queue stores those packets which have arrived at a given input

port and are destined to the same output port. HOL blocking is eliminated because a packet

cannot be held up by a packet ahead of it that goes to a different output. It is known that the

VOQ switch structure can achieve 100 percent throughput for all independent arrival

processes by using the maximum weight matching algorithm [9] or by using other

maximum matching algorithms with speedup [10], [11], [12], [13].

23

3.3 Data Path Architecture

The hybrid switch is configured as a circuit switching platform which can switch

both packets and TDM traffic. As described in Chapter 2, the switching process starts at the

ingress port where traffic is differentiated into packet traffic and TDM traffic. Packet traffic

is switched by request-grant process which is described in more detail in Chapter 4.

SONET TDM traffic is switched by static channel allocation process which is also

described in the next chapter. The switched TDM traffic and packet byte streams are

extracted, assembled and transmitted through egress port. The following sub-sections

describe the data path blocks of the hybrid switch.

3.3.1 Ingress Ports

Our experimental hybrid switch architecture is optimized for 32 ports. Each port

supports 622 Mbps link bandwidth which is organized as 336 VT1.5 channels for carrying

data from ingress to egress. Therefore, the aggregate duplex bandwidth of the switch is 19.9

Gbps (19.9 Gbps ingress, 19.9 Gbps egress). The communication backplane is SONET

structured network. The packet traffic coming to the ingress port is differentiated according

to class and sent to their appropriate queues (VOQs) and the TDM traffic is sent to a

SONET memory.

3.3.2 Ingress Packet Queues

Figure 3.3 shows the ingress packet queues. There are NxC separate queues at each

input port. Packets coming to the ingress port are stored in queues before they are

transmitted to the egress port. Packets in the ingress queue are sent to the egress port

through the crossbar in a controlled fashion by the arbiter. Scheduling of the crossbar and

the arbitration of packet flows in queue are based on the queue depth and current traffic

flow in the queue, as described in detail in Chapter 4.

24

NxC

Figure 3.3 Virtual Output Queues for N destinations and C classes

3.3.3 TDM Filler

Figure 3.4 shows the block diagram of the TDM filler. The ingress (and egress)

communication link is divided into 336 (28x12) VT1.5 TDM channels. Each channel can

carry 9 bytes/column x 3 columns = 27 bytes. The TDM filler receives traffic from the

ingress queues (VOQs and SONET memory) and fills ingress VT1.5 channels to carry data

to the switch core. The channel assignment for each queue can change on any STS-12

frame boundary and it’s the job of the arbiter to make these changes to the TDM

filler/extractor at a time. For the same priority traffic if more and more traffic are coming to

the ingress port, the arbiter allocates more and more bandwidth to that flow.

Ingress VOQ

Arbiter

Flow Requests

Flow

Requests

Time Slot

Assignment

Switch Core

VT1.5 channels

SONET Memory

SONET Channel

Assignment

Packet Channel

Assignment

TDM

Filler

LUT1

LUT2

write

read

Packet Bytes

TDM Bytes

read

write

 Figure 3.4 TDM Filler Block

25

There are N TDM Fillers, one per ingress port. The channel mapping decision for

each TDM filler is based on the switch’s arbitration process. The arbitration process

generates time slot assignments that define which flow should use which channel at a time.

The slot assignment is stored in a look-up table (LUT). There are two LUTs per TDM Filler

block; one is used for writing TDM filling instruction for the next arbitration cycle and the

other LUT is used for current VT1.5 channel filling instructions. In the next arbitration

cycle, LUT roles are swapped.

3.3.4 Switch Core

Figure 3.5 shows the diagram of the switch core. The switch core located at the

switch card connects all switch input ports to the output ports. It is the switch pipeline root,

because it is the source of configurations that trigger the transmission of packets/TDM cells

throughout the crossbar. The switch core is made up of a scheduler and a crossbar. The

scheduler implements algorithms that provide efficient use of the crossbar bandwidth and

the crossbar connects each ingress port to the egress port as directed. The crossbars and the

arbiter connect to each port via high-speed serial links.

Flow Requests

STS12

STS12

STS12

STS12

Time Slot

Assigments

1

N

1

N

LUT

M
e

m
o

ry

P
a

g
e

 1

M
e

m
o

ry

P
a

g
e

 2

Arbiter

Time Slot Assigments

 Figure 3.5 Switch Core Block

26

The digital crossbar in the switch core makes connections between the ingress ports

and the egress ports. The arbiter configures the crossbar with time slot assignments

generated by TSA module. The time slot assignments generated by TSA are stored in a

LUT to be used in the next arbitration cycle. There are two LUTs; one for reading crossbar

configuration and another for writing new configuration from arbiter. In every arbitration

cycle the LUT’s roles are swapped.

3.3.5 TDM Extractor

The TDM Extractor, as show in Figure 3.6, is used to extract packet and TDM

traffic from STS-12 stream coming out of the switch core. The channel extraction

information, which is stored in LUTs, is provided by the arbiter. The payload in the SONET

STS-12 frame needs to be extracted and assembled at the egress port. Like in the TDM

Filler and the Switch Core, there are also two LUTs in each TDM Extractor block (LUT1

and LUT2 in Figure 3.6); one for reading and one for writing. In each arbitration cycle,

their roles are swapped.

VT1.5 TDM channels

LUT1

LUT2

SONET Memory

switch traffic

Egress Time Slot

Assignments

TDM byte

Packet byte

TDM Extractor

Packet Assembler

From Switch Core

 Figure 3.6 TDM Extractor Block

In order to extract the data from SONET signal, the extractor must be synchronized

with the SONET frame. For synchronization, the TDM extractor monitors the incoming

SONET signal and looks for the frame boundary signals (A1, A2). Once the boundary is

27

found, it differentiates SONET data into control data (ingress and egress time slot

assignments which are appended to SONET header) and payload data (actual traffic). The

payload data is extracted from the VT1.5 channels and forwarded to corresponding traffic

handler where as the control data is used to fill-up TDM filler/extractor LUTs as shown in

Figure 3.6.

3.3.6 Packet Assembler

Before IP packets are sent to the output buffers, the packet’s byte chunks which are

carried by the SONET frame in the form of TDM cells (in SONET STS-12 payload) need

to be assembled to re-form the original packets. Packet assembler modules are used for this

purpose.

Packets from ingress VOQs are filled in VT1.5 channels by TDM filler and since

one VT1.5 channel can accommodate only 9x3 =27 bytes, the egress port may have to wait

for other channels in order to get all the bytes of a packet. During the waiting period, the

transmitted bytes are stored in a memory inside the packet assembler. Once all the bytes of

a packet arrive at the assembler, it is sent to an output FIFO memory as a single packet and

then stored in a FIFO memory as shown in Figure 3.7.

NxC Packet

Assemblers
NxC FIFO

Memory

TDM

Extractor

Egress FIFO Memory

Egress FIFO Memory

Egress FIFO Memory

Packet

Assember

Packet

Assember

Packet

Assember

Figure 3.7 Packet Assemblers and FIFO Memory Blocks

28

3.3.7 Egress Packet FIFO

The assembled packet from the packet assembler is stored in egress FIFO memory

(Figure 3.7). There are NxC FIFO memories, one for each source and class combination.

The egress port transmits these packets to the backplane links.

3.4 Control paths

 Our hybrid switch is equipped with data path and control signaling paths for

cooperating with arbiter and other data path modules for high throughput packet routing.

There are several control paths in the switch that carries control information. Following are

the main control signals the control path carries:

 (1) Flow Request from queues to the arbiter

 (2) Ingress Time Slot Assignment from arbiter to port card.

(3) Egress Time Slot Assignment from arbiter to port card.

 (4) Switch Time Slot Assignment from arbiter to crossbar.

 (5) Packet Channel Assignment from TDM filler block to queue block.

 (6) SONET Channel Assignment from TDM filler block to SONET memory.

3.4.1 Flow Request

 In hybrid switch the arbiter allocates channel(s) for a particular flow at ingress port

based on the channel requests for that particular flow. The Flow request is the number of

VT1.5 channels requested by a queue at ingress port. It is calculated based on the current

queue depth and recent traffic flow at the ingress port. The following equation is used to

calculate the flow request:

29

BR = Q/N + F (3.1)

Where,

BR = Flow Requested.

F = Recent Traffic Flow.

Q = Current Queue Depth.

N = Number of arbitration cycles to bring Q to zero.

The requested bandwidth information is carried to arbiter in SONET headers which

are used by arbiter for crossbar scheduling and packet arbitration purposes.

3.4.2 Ingress Time Slot Assignment

The ingress time slot assignment signal carries the ingress link channel allocations

information from the arbiter which tells the TDM filler how the ingress VT1.5 channels

should be filled by ingress traffic. There are 336 VT1.5 channels in each ingress

communication link and each of these channels may be carrying either packet traffic or

TDM traffic or simply not carrying any traffic at all. Ingress TSA signal tells the TDM

filler whether or not the channels are to be filled with packet traffic from ingress VOQ or

from the SONET memory. The channel allocation is computed by the arbiter and the

allocation result is carried to the port card by embedding it into SONET STS-12

(aggregation of 336 VT1.5 channels) signal’s path and transport overheads.

3.4.3 Egress Time Slot Assignment

The egress time slot assignment signal from the arbiter module carries the

information about how the communication channel’s bandwidth is distributed among all the

ports. This information is used to extract the TDM and packet traffic from the link and send

them to their corresponding traffic handler. The egress time slot assignment is computed

by TSA block in the arbiter and the signal is carried to the port card by embedding it into

SONET STS-12 signal’s path and transport overheads.

30

3.4.4 Switch Time Slot Assignment

The crossbar in the switch core is used to connect multiple inputs to multiple

outputs at a time. A standard problem in crossbar switches is that of setting the cross-points

when the particular ingress should be connected to specific output. In our hybrid switch the

cross-points are closed and opened according to the time slot assignments provided by the

arbiter. When the crossbar is enabled, the input is connected to the output and the traffic

carried by VT1.5 channels in ingress communication link is switched to VT1.5 channels in

egress communication link.

3.4.5 Packet Channel Assignment

The TDM filler divides ingress time slot assignments into two parts, one to allocate

VT1.5 channels for packet traffic, and another to allocate channels for TDM traffic. Packet

channel assignment is a control signal from the TDM filler to the ingress queue module that

carries the information which queue should use which VT1.5 TDM channel to send packets

to the egress port. This signal controls the flow of packets from ingress queue to the egress

ports.

3.4.6 SONET Channel Assignment

This is a signal from TDM filler to the SONET memory that map is used to map the

SONET TDM traffic directly into ingress VT1.5 TDM channels. This is also computed by

the arbiter module.

31

Chapter 4

 Arbiter Bandwidth Allocation

The arbiter controls and allocates access to the data path by controlling and

allocating the shared resources. In our hybrid switch the shared resources are the ingress

TDM channels, the egress TDM channels, and the crossbar paths. This chapter describes

the resources, arbitration algorithms, design alternatives, implementation issues, and the

timing results of the arbiter.

4.1 Introduction

The arbiter provides a mechanism to control and regulate the flow of traffic from the

ingress ports to the egress ports. It manages the ingress traffic by distributing the available

bandwidth resources fairly among ports and satisfying customer‟s QoS requirements. This

is accomplished by differentiating traffic in priority order. In order to perform the

arbitration, the arbiter resolves bandwidth requests from the ingress ports according to some

specifications. These specifications are defined in Section 4.3. The arbiter‟s goal is to find

an optimal set of switch settings through solving these requests.

4.2 Arbitration Goal

The goal of arbitration is to allocate bandwidth to all ports fairly, efficiently, and in

a reasonable time. In order to achieve this goal, the arbiter allocates the switch‟s bandwidth

to the NxNxC flows according the following principles:

(1) priority of the packet flows,

(2) fairness between ingress ports and between egress ports, and

(3) efficient bandwidth utilization.

32

4.2.1 Priority

Our hybrid switch respects the customer‟s QoS requirement by allocating available

bandwidth according to traffic types. Three classes of service are supported by the switch

and each class represents traffic with different QoS requirements. Flow (bandwidth)

requests from the ingress ports are served in strict order of priority classes. The higher

priority traffic is allocated as much bandwidth as possible first and the residual bandwidth

is passed on to the next lower priority traffic.

4.2.2 Fairness

The arbiter maintains fairness among all the ingress and all the egress ports by

assigning bandwidth in proportion to their bandwidth requests, i.e., the channel requesting

more bandwidth gets the higher bandwidth while the channel requesting less bandwidth

gets the lower bandwidth. This fairness is accomplished by applying proportional

bandwidth allocation scheme which is discussed in the next section.

4.2.3 Efficient Bandwidth Utilization

Our switch is bandwidth limited. A central issue in our hybrid switch is how to

allocate this limited bandwidth to ingress flows efficiently while maintaining the fairness.

The switch utilizes bandwidth efficiently by regulating the traffic on “per flow” basis. Our

communication link is divided into multiple VT1.5 channels. The channel allocation is done

by finding all the available channels first, and then assigning these channels to the flows.

This scheme is efficient because bandwidth allocation for any flow may be realized along

any available free channels and as long as there is any open (unassigned) channel. This

process is called TSA which is discussed in the next section. The process of finding open

channels and assigning them to different traffics in priority order forms a network policy

that alleviates the application‟s performance and optimizes the bandwidth utilization.

33

4.3 Arbiter Block

Figure 4.1 shows the block diagram of the arbiter module.

Fair Proportional

Algorithm (FPA)

Ingress N PortIngress 2 PortIngress 1 Port

Request

Matrix N

Request

Matrix 2

Request

Matrix 1

Time Slot

Algorithm (TSA)

Port 1 flow request

Switch Core

Time Slot Assigment

Port 2 flow request Port N flow request

Read Address

Flow Request

Switch Flow

ARBITER

SONET

Processor

SONET TDM Requests

Figure 4.1: Arbiter Functional Block Diagram

The inputs to the arbiter are flow requests from port cards and TDM requests from

SONET processor. The output from the arbiter is a set of time slot assignments which are

passed to the switch core‟s LUT and to the port cards by appending them to SONET STS-

12 frames. The entire arbitration process is completed in the following five steps:

(1) read TDM flow requests,

(2) allocate VT1.5 channels for TDM flow requests,

(3) read packet flow requests,

(4) allocate VT1.5 channels for packet flow requests, and

34

(5) update crossbar setting for next arbitration cycle and send time slot assignments

 in (2) and (4) to port cards.

These steps are described in reference to the flow chart in Figure 4.2. SONET TDM

traffic has priority over packet traffic and thus bandwidth is allocated to TDM traffic first.

The remaining bandwidth is allocated to packet traffic using a FPA scheme. In FPA, the

flow request matrix is viewed separately as a set of column requests and a set of row

requests. The arbitration is carried out in two separate steps: arbitration by column in step 1

and arbitration by row in step 2. In the first step, our arbitration algorithm checks the flow

requests of each element of the matrix along columns and assigns bandwidth proportional

to the request. This represents assigning bandwidth along the egress port so the bandwidth

is fairly distributed along the egress port without violating the bandwidth threshold (336

VT1.5 channels). Similarly, in the second step bandwidth assignment is done along the

“row” of the request matrix. This step will prevent bandwidth over-allocation on the ingress

ports.

TDM Request Packet Request

Column Arbitration

Row Arbitration

TDM Grant

FPA

Time Slot Assigment

TSA

 Figure 4.2 Arbiter Flow Chart

The bandwidth assigned to each flow using FPA must be assigned VT1.5 TDM

channels such that there is no any ingress-to-egress violation; i.e. no more than one ingress

flow should send traffic in one particular VT1.5 TDM channel and no more than one egress

35

channel should get data from one particular VT1.5 channel. The process of “conflict free”

slot assignment is done by time slot algorithm which is described in Section 4.3.3. After the

time slot assignment by TSA, the arbiter‟s decisions are then sent to the port cards and the

switch core LUTs for crossbar configuration.

In our hybrid switch, the arbiter tries to find an “optimal” switch setting. However,

the optimal result described here is not a “perfect” solution. The arbiter described here

decomposes the arbitration process into two steps: arbitration among conflicting column

requests (egress) followed by arbitration among conflicting row requests (ingress) that have

won in the first step. In each step, the highest priority requests are served first in order to

meet the QoS requirements. This solution is not optimal in the sense of finding perfect

matches in switch settings because the arbitration in the second step may further reduce the

optimal switch setting we found in the first step leaving switch capacity unused. In order to

achieve the optimal result, arbitration would have to be an iterative process between step 1

and step 2 with alternating increasing and decreasing of individual request number until the

optimal settings are found. This iterative process is heuristic in nature and may take a long

time to converge. Instead, the arbiter described here is motivated by the need to find useful

switch settings very quickly. In the other words, in this application there is an important

trade-off between optimality and speed. A slow, optimal solution would be much less

useful than a fast good but not-so optimal solution. This is discussed in more detail in the

later parts of this chapter.

4.3.1 Request Matrix

 Bandwidth (flow) requests from each traffic flow at the ingress ports are carried to

the arbiter by appending the requests to SONET STS-12 overheads. The arbiter unit

extracts these requests and saves them in bandwidth request memories in the form of a

matrix. These requests are used to calculate the bandwidth different distribution to different

ingress flows during the next arbitration cycle.

 The bandwidth request for each ingress flow is calculated by using the following

equation:

36

 BR = Q/4 + F (4.1)

 Where,

 BR = Bandwidth Requested (no. of VT1.5 channels)

 Q = Queue Depth (no. of VT1.5 channels)

 F = Recent Flow, i.e. total traffic in last arbitration period (no. of VT1.5 channels)

Equation 4.1 says the bandwidth requested is a function of queue depth and recent

flow. The current queue depth (Q) and recent flow (F) are initially in the unit of bytes, but

converted to the unit of VT1.5 by dividing it with number of 1B slots in one VT1.5 per

SONET frame, which is 27.

The arbitration problem in the hybrid switch can be described as a problem of

solving a matrix of requests from ingress ports, each one for access to an egress port via a

cross-point of the crossbar. The priorities of the arbitration scheme include maintaining

high link utilizations, small queuing delays, and fairness among competing sources. One

way to achieve high utilization and low queuing delay is to vary the flow rate as a function

of the queue length [14]. In our hybrid switch, the flow rate is a function of queue length;

and it is varied by dividing the queue length into 2 parts: recent flow (F in bytes) and

current queue depth Q (in bytes). The current traffic flow represents the amount of packet

flow (in bytes) coming to the ingress port during last arbitration cycle and current queue

depth represents total queue length minus current traffic flow. The above equation is

derived from our need of having a switch that is very quick to react to the current traffic

conditions while offering steady packet flow to the network. The switch tries to allocate

bandwidth such that all the traffic flow that has accumulated during last arbitration cycle is

drained in next arbitration cycle while the original queue depth is drained in four arbitration

cycles (500 µs time). The request matrix changes in every arbitration cycle.

4.3.2 Fair Proportional Algorithm (FPA)

This algorithm is used for flow arbitration of packet requests which are stored in the

request matrix inside the arbiter unit (Figure 4.1). The bandwidth for TDM requests is pre-

37

allocated and thus arbitration on these TDM requests is omitted. As described earlier, the

FPA arbitration is carried out in two steps: arbitration along column requests followed by

arbitration along row requests that have won in the first step. The final result represents the

number of VTs allowed for that particular flow request. In order to ensure the QoS

requirements the two-step FPA is first applied to the highest priority traffic and then to

lower priority traffic. As the arbitration has to be fair to every port and should give equal

opportunity, arbiter should avoid one particular ingress/egress port getting more advantage

over the other. Both the fairness and QoS requirement are fulfilled by allocating bandwidth

proportionally. Proportional bandwidth granted for all the requests is calculated using the

following equation:

BG = BR x BA/SR (4.2)

Where,

BG = Bandwidth Granted for each flow request.

BA = Bandwidth Available (along ingress or egress port)

BR = Bandwidth Requested

SR = Sum of Bandwidth Requested (along ingress or egress port)

Table 4.1 Request Matrix for Class 1 Traffic

 Request Matrix Ingress SR Ingress BA

 120 120 130 50 420 336

 80 50 140 120 390 336

 90 75 130 60 355 336

 65 70 125 100 360 336

Egress SR 355 315 525 330

Egress BA 336 336 336 336

The process of flow arbitration is illustrated by an example. Table 4.1 shows a

typical request matrix for class 1 traffic. Since the highest priority traffic gets access to all

available bandwidth and when it does not use up all, the unused portion is shared by all low

38

priority traffic, these requests have all the bandwidth available for grant. The bandwidth

arbitration is carried out in the following two steps:

Step 1

 Arbitration is carried out along all the columns of the Request Matrix.

 Request Matrix Column Grant Matrix

120 120 130 50 113 0 0 0

80 50 140 120 0 0 0 0

90 75 130 60 0 0 0 0

65 70 125 100 0 0 0 0

120 120 130 50 113 0 0 0

80 50 140 120 75 0 0 0

90 75 130 60 0 0 0 0

65 70 125 100 0 0 0 0

120 120 130 50 113 0 0 0

80 50 140 120 75 0 0 0

90 75 130 60 85 0 0 0

65 70 125 100 0 0 0 0

120 120 130 50 113 0 0 0

80 50 140 120 75 0 0 0

90 75 130 60 85 0 0 0

65 70 125 100 61 0 0 0

using the similar steps for other columns we get the following settings for column

arbitration

39

 Table 4.2 Converting Request Matrix to Column Grant Matrix

 Request Matrix Column Grant

 120 120 130 50 113 120 83 50

 80 50 140 120 75 50 89 120

 90 75 130 60 85 75 83 60

 65 70 125 100 61 70 80 100

Egress SR 355 315 525 330 Egress Grant 334 315 335 330

 Table 4.2 shows the bandwidth allocated on the column of the request matrix. The

sum of bandwidth allocated is given, which does not exceed the maximum capacity (336

channels).

Step 2

 The grant matrix from Step 1 (Table 4.2) is used as a request matrix and the same

procedure is followed as in Step 1. This step is to make sure the ingress port has not

exceeded the maximum available link bandwidth.

Table 4.3 Converting Column Grant Matrix to Switch Flow Matrix

 Column Grant Matrix Row Grant Matrix (Switch Flow Matrix)

 Ingress Grant

113 120 83 50 104 110 76 46 336

75 50 89 120 75 50 89 120 334

85 75 83 60 85 75 83 60 303

61 70 80 100 61 70 80 100 311

 Egress Grant 325 305 328 326

 The row grant matrix shown in Table 4.3 is the Switch Flow Matrix which

represents the channel allocations by arbiter for different ingress flows. The row of the flow

matrix represents the ingress port and the column represents the egress port. The sum of

40

channels allocated at ingress and egress ports should not be more that the actual capacity of

these ports i.e. the summations of each row and each column of the Switch Flow Matrix

must not exceed 336. The above calculation shows that the arbiter does not violate this rule.

This switch flow matrix is used by the TSA block in order to find the time slot assignment

for each ingress flow.

4.3.3 Time Slot Algorithm (TSA)

The channel configuration in our hybrid switch is an interconnection pattern such

that at most 336 VT1.5 channels can be utilized by an input port and at most 336 VT1.5

channels can be utilized by an output port in a single STS-12 frame time. A time slot

conflict occurs if two or more channels from input are switched to the same output at the

same temporal boundary. For a given switch flow matrix, an optimal TSA is an assignment

that has all the conflict free slot assignment for all the elements of the flow matrix.

The time slot algorithm in our hybrid switching system is used to find channel

settings (VT1.5 channels) of the links such that as many as possible of the channels are

utilized without any conflicts. The process involves reading the switch flow table, finding

the open channels, assigning channels to different flows, and sending slot assignment

information to the switch core LUT and the port cards. Figure 4.3 shows the switch flow

matrix that defines how many TDM channels should be allocated to a flow by the time slot

assignment algorithm and Figure 4.4 shows the time slot assignment process.

104 110

76 50

76 46

90 120

85 75

62 70

83 60

80 100

Goal

1
2

3

cl
as

s

Figure 4.3 Switch Flow Matrix Defining Time Slot Assignment Goal

41

Ingress Open Egress Open

Open Time Slots

Masking Slots

SUM

COMPARE

DONE

> or <

=

OR LogicOR Logic

New Egress

Open

New Ingress

Open

GOAL

1

2

N

1

2

N

Figure 4.4 Time Slot Assignment Logic Block

4.3.3.1 Goal

The goal for each flow‟s channel assignment is the ideal number of channels granted to a

flow at an ingress port by the FPA module. The slot assignment algorithm reads the goal

from the switch flow matrix and assigns VT1.5 channels to that flow. The time slot

assignment process is done per flow basis, starting from high priority traffic to low priority

traffic and the goal is selected randomly from the switch flow matrix.

4.3.3.2 Ingress/Egress Open

 Before mapping any “grant” from FPA to TDM time slots, the arbiter needs to know

which TDM channels are free at the ingress and the egress. Ingress/Egress open represents

the numbers of VT1.5 channels, and their time positions, that are available for TDM

42

channel mapping at ingress and egress port. As shown in Figure 4.5, this is a vector

representation of VT1.5 channels in the form of bits. Each bit, if “0”, represents an open

channel and if “1” represents an occupied channel. The bit position represents the time

position of the VT1.5 channel. For NxN switch, there are N ingress open vectors and N

egress open vectors.

0 1 0 1 0 1 0 1 1 0 1 0

Ingress/Egress Open

VT1.5 Channel Number

1 2 3 4 5 6 331 332 333 334 335 336

Figure 4.5 Ingress/Egress Open Vector

4.3.3.3 Open Time Slot

 Open Time Slot (OTS) is the vector representation of open channels that are

common to both, the ingress and the egress ports. OTS shows how many channels are

available and how many are occupied and this must be known for making any connection

from an ingress port to an egress port. It is calculated by doing an OR operation between

ingress open and egress open. The figure below shows the process of finding OTS.

 Figure 4.6 shows the OTS formation of OTS vector from ingress open and egress

open vectors. The bit value „0‟ in the OTS vector represents the free channel that can be

mapped to carry traffic from ingress A to Egress B, while „1‟ represents the channel which

is occupied by another flow.

0 1 0 1 0 1 0 1 1 0 1 0

0 1 0 0 1 0 0 0 1 1 0 0

OR

0 1 0 1 1 1 0 1 1 1 1 0

Result

Ingress Open

Egress Open

Open Time Slots

Ingress A

Egress B

VT1.5 Channel Number

1 2 3 4 5 6 331 332 333 334 335 336

Figure 4.6 Formation of OTS Vector

43

4.3.3.4 Masking Slots

OTS is the representation of VT1.5 channels which are “available” or “occupied”

for possible time slot assignments between particular ingress and egress ports. The number

of TDM channels required to satisfy the goal is either greater than, or smaller than, or equal

to the available channels represented by OTS. We need to find the open slots such that the

time slots assignment is equal to the Goal or is as close as possible. The open channels in

OTS vector after all the search is completed gives the Masking Slots vector. This is called

Masking Slots because this vector is used to update the Ingress/Egress Open once the time

slot assignment for a flow is done. Figure 4.7 shows the process of finding the Masking

Slots.

Sum of Channels Available (from OTS)

DONE

Greater

Decrease Channels Increase Channels

Compare

with Goal

More

Channels

AvailableSmall Yes

Equal No

Figure 4.7 Masking Slot Finding Process

For finding the Masking Slots, we search the OTS vector such that the open

channels are equal to the Goal (if there are enough “available” channels) or as close as

possible to the Goal (if there are not enough “available” channels). This is done in order to

avoid any channel over-allocation. The process of finding Masking Slots is done by

applying Binary Add Algorithm (BAA) which is described below.

Binary Add Algorithm (BAA)

This algorithm is used to find the free time slots (VT1.5 channels) in OTS and

match the time slots with our Goal. This is accomplished by a binary search.

44

Figure 4.8 shows a binary tree. A binary tree is made of nodes, where each node

contains a left and right pointer and data element. The root pointer points to the topmost

node in the tree. The left and right pointers recursively point to smaller sub-trees on either

side. The minimum element of an ordered binary search tree is the last node of the left

pointer and its maximum element is the last node of the right pointer. Therefore, the

minimum and the maximum can always be found by tracking the left child and the right

child respectively until an empty sub-tree is reached [15].

Root

Pointer

Left

Pointer

Right

Pointer

 Figure 4.8: Binary Tree

BAA is a binary search process for finding the open VT1.5 channels such that the

Goal is met without any channel over-allocation. There are 336 VT1.5 channels in each

SONET STS-12 link and in order to provide the advantage of binary search, OTS vector of

size 512 is used (factor of 2) instead of only 336. The block diagram for this algorithm is

shown in Figure 4.9. Two pointers are used; Max and Depth. Max (M) points to the

maximum slot number position on the open slots that matches the goal while D represents

the incremental/detrimental depth in order to adjust the position of M to exactly match the

goal.

45

512 2 1256336

Unused Search area

SUM

COMPARE

DONE

> or <

=

GOAL

Max(M)

Open Time Slots (OTS)

DD

DD

Figure 4.9 Binary Add Algorithm Block

Binary add algorithm for finding the maximal matching conflict free slot assignment

from OTS is completed in the following 4 steps:

Step 1

 M is chosen to be the middle of OTS (256
th

 slot). The value of D is initialized with

128 (M/2). The sum of open slots (binary “0”) from bit position 1 to M is calculated by

doing „NOT‟ operation on OTS vector and summing all „1‟s.

Step 2

 The current sum is compared with goal. If sum > goal then adjust new M=M-D and

new D=D/2 and repeat step 1. Else if the sum is less than goal then make new M=M+D

and new D=D/2 and repeat step 1. Else if the sum is equal to goal then TSA is done. Else go

to Step 3.

Step 3

 If Max (M) >336, set M at 336 because that is the maximum number of channels

each ingress or egress port has. Repeat step 2.

46

 Step 4

 Any time if D= 1/2, BAA is assumed to be completed because the entire search for

open channels has been finished.

All the 0‟s in OTS vector from channel number 1 to M represents the VT1.5

channels granted for a particular flow. The Masking Slots is found by inverting all the bits

of OTS vector from 1 to M and resetting all the other bits (making „0‟). All the 1‟s in

Masking Slots represents the channels that are allocated for a particular flow in this

arbitration cycle. The row number and the column number of the Goal in the switch flow

matrix give the information about ingress/egress port number: where the traffic is coming

from and where it should be routed. Based on all these information the time slot assignment

“code” is generated. The code represents which ingress flow to read, in which egress port to

send data and which VT1.5 channel carries the information. This code is then passed to the

switch core LUT and the port cards. The Masking Slots vector is then used for updating the

Ingress Open and the Egress Open OR-ing it with original Ingress Open and Egress Open

vectors and the process is repeated for another Goal.

4.4 Arbiter Design Alternatives

There are two design alternatives for the arbiter. The first one is a software approach

where arbitration is implemented in software (written in C) and downloaded to a processor

implemented on an FPGA (Field Programmable Gate Array) board. The second approach is

a hardware approach which is written in a Hardware Descriptive Language (HDL). In

hardware approach the arbiter logic is directly downloaded to logic units on an FPGA

board.

4.4.1 Software Approach

The software implementation run in the NIOS II soft processor from Altera and the

coding is done in C language. The next sub-sections give brief introduction about the NIOS

II processor and the software design process.

47

4.4.1.1 NIOS II Processor

The hybrid switch can be thought of as an embedded system where the arbiter is

built to constantly respond to external events and to generate control outputs as a function

of their current state and inputs. Embedded-system specification and design consists of two

tasks, the first is describing a system‟s desired functionality and the second is mapping that

functionality for implementation by a set of system components such as processors, FPGAs,

memories, and buses [16]. Altera‟s Nios II embedded processor tool provides the platform

and tools needed to integrate an entire system on a single programmable logic device

(PLD).

The Nios II processor is a soft core processor which offers flexibility, scalability and

low absolute cost. Many applications that require moderate performance are fit by the soft

cores and they immediately benefit from process enhancements to their target hardware

platform. The Nios II processor‟s parameterizability allows users to make the

performance/cost tradeoff quickly, without needing to be a processor architect. Regardless

of the configuration, the same instruction set allows Altera to deliver fully-verified cores

and industry-standard software development tools such as C/C++ compilers. All the tools

necessary to develop embedded designs are provided by Altera, including an industry-

standard C/C++ compiler and debugger, peripherals, and drivers, the Quartus II software

for design development, and download cables for device programming and verification.

These tools provide a system-centric approach to development and allow hardware and

software to be created concurrently.

4.4.1.2 Hardware and Software Partitioning

Figure 4.10 is a block diagram of the switch with software and hardware partitioned

in the arbiter. In this hardware software co-design, the job of software and hardware are

divided as follows: the software does the initialization and configuration (packet

arbitration) and the hardware does the buffering of arbitration parameters (flow requests)

48

and communicating TSA configuration to the port cards and the crossbar. In the other word

software is used for flow arbitration (FPA unit) and slot assignment (TSA unit) while

hardware is used for memory buffers for flow requests and switch flow and logic to pass

TSA to port cards and crossbar.

SONET

Processor
TDM

Requests Arbiter Memory and Logics

Arbiter Scheduler

(NIOSII Processor) software

hardware

Switch Core

1 1

N

Flow Requests

STS12 STS12

STS12

Output packet FIFO

(NxC)

Time Slot Assigments

SONET TDM

Memory

Input packet

queues (NxC)

SONET TDM

Memory

N
STS12

SONET TDM

Memory

Input packet

queues (NxC)

SONET TDM

Memory

Output packet FIFO

(NxC)

 Figure 4.10 Hybrid Switch with Arbiter Software/Hardware Partitioning

4.4.1.3 Software Design Process

The HW/SW co-design process for arbitration can be summarized in three main

steps:

(1) writing program in software,

(2) reading requests,

(3) detecting critical software parts, and

(4) hardware/software optimization of the algorithm.

 The first step is implementing the algorithm in software. The ANSI C and the

assembler programming language are supported by NIOS II IDE (Integrated Design

Environment). Generally, the preferable choice is the implementation of the software code

49

using ANSI C. In this way, instead of rewriting the code from scratch, the use of an already

existing code for the algorithm, available in NIOS II IDE, shortens the design cycle. The

portability of ANSI C allows also the code to be created and tested for functionality on

other platforms. Once the software code has been tested for functionality and implemented

into the target platform, the performance analysis is applied. For this purpose the bandwidth

requests from packet flow and TDM flow are read and the performance is examined. The

next step is to check if the required constraints have been met. If not, critical software parts

have to be detected and optimized. To have precision on the time processing of the software

code corresponding to a focused part, we can either use a logic analyzer to make our

measurement directly on the FPGA output pin or use Signal Tap from Altera to capture the

signal in PC. The final step is the software code refinement and optimization of critical

software parts using hardware description. The general idea is to implement parallel

structures in hardware for fastest data processing.

4.4.1.4 Software Arbitration Process

The functional block diagram of the architecture proposed for arbitration is as

shown in Figure 4.11. The architecture has three main components: memory unit, controller

unit and computational unit (scheduler). The memory unit consists of one dual port RAM

per port to store the flow request from each port. The controller consists of a round robin

counter to control the memory read. The computational unit processes the bandwidth

requests stored in the RAM to generate time slot assignment. The time slot assignment

defines the distribution of available bandwidth to different flows.

The bandwidth requests from ingress ports are stored in memories inside the arbiter.

The shift register, TDM counter, SYNC (synchronizer), and WEN (write enable) in Figure

4.11 are used to monitor the incoming byte stream from ingress port, find the start of STS-

12 frame (A1, A2 bytes), and enable the memories to store the flow requests from each

ingress port. The software module reads the contents of request memories and uses this

information to arbitrate available bandwidth to different ports. The software part acts as a

master port and the hardware part acts as a slave port. When the scheduler is ready to

50

compute the next arbitration, software sends scheduler ready signal informing hardware

software part is ready to compute next arbitration. Since the hardware and software are run

at different time (speed) there is another signal from scheduler (send next byte) to

synchronize the software/hardware timing. These request flow control signal goes to the

round robin counter which controls the flow of requests from memories to processor. The

queue status counter signal from RR counter tells the software to which destination and

class the current flow request belongs to. FPA and TSA are computed by processor and

configuration signals (switch configuration signal) are passed to switch core and then to

port cards.

Port 1 STS12

Controller

(RR counter)

wen

NIOS II Processor

(Scheduler)

SYNC

TDM counter

Mux_inN

Mux_out

shift register

shift register

Port N STS12

software

 hardware

11

8
8

Port 1

BW Requests

(RAM_1)

Port N

BW Requests

(RAM_N)

Mux_in1

fl
o

w
 r

e
q

u
e

s
ts

q
u

e
u

e
 s

ta
tu

s
 c

o
u

n
te

r

s
c

h
e

d
u

le
r

re
a

d
y

s
e

n
d

 n
e

x
t

b
y

te

Log2(6N^2)

19

switch configuration signal

For 4 ports

 5:0 -- tdm slot assignment

16:6 -- tdm slot number

18:17-- port number

Log2(6N^2)

To Switchcore

Figure 4.11 Detailed Arbiter Hardware/Software Partitioning

4.4.1.5 Advantages of Software Based Approach

Taking various factors such as flexibility, development cost, power consumption

and processing speed requirement into account there exists a trade-off between hardware

and software implementation. Hardware implementation is generally better than software

implementation in processing speed and power consumption while software can give a

more flexible design solution.

51

Programming in the NIOS II processor provides flexibility in the system

implementation such an as: chose the exact set of CPUs, peripherals, and interfaces needed

for the application; increase performance without changing your board design, accelerating

only functions that require it; eliminate the risk of processor obsolescence; lower overall

cost, complexity, and power consumption combining many functions into one chip [17].

This processor is very flexible and has some configurations that can be made in the design

stages. These configurations allow the user to optimize the processor for his application.

The most relevant are the clock frequency, the debug level, the performance level and the

user defined instructions. The performance level configuration enables the user to choose

one of the three performances available: The NIOS II/f (fast), which results in a larger

processor that uses more logic elements, but is faster and has more features, such as

multiplication and others; The NIOS II/s (standard), which creates a processor with

balanced relationship between speed and area, and some special features; The NIOS II/e

(economic), which generates a very economic processor in terms of area, but very simple in

terms of data processing capability [18]. The user-defined instructions allow the user to

import hardware designs and attach them to the processor hardware, making them

accessible by means of customizable instructions.

4.4.1.6 Implementation Results

The C code and the Verilog HDL code for the arbiter were simulated on NIOS-II

IDE. The switch‟s size was varied from 4x4 to 32x32 and the time period for the arbitration

was recorded. Following are the timing results for different switch sizes:

 Table 4.4 Arbiter Timing Results for Software Implementation

Number of Ports

PPorts

Clock Ticks Time (ms)

4 185497 1.55

8 670771 5.59

12 1327503 11.06

16 2452516 20.43

32 8838006 73.65

52

4.4.1.7 Limitations of Software Based Approach

The arbitration time for a 32x32 port switch was 73.65 ms (~35 STS12 frames) as

compared to our target of 4 SONET STS12 frames time (500 µs). Although the

implementation of the arbitration algorithm in software is easy and more flexible, it fails to

meet the critical time for arbitration. An arbiter running that slowly would cause

unacceptable ingress queue build up when traffic bursts arrive at the switch. Thus, the

software based approach is impractical for our switching applications.

4.4.2 Hardware Approach

In order to overcome the limitation of software based approach, a hardware based

approach was developed. In the hardware based design the function of processor in

software is directly implemented in hardware. The Verilog HDL was used for the whole

logic circuit design and simulated for testing. Verification and testing procedure and results

for the simulations are discussed in Chapters 5 through 7.

4.4.2.1 Hardware Architecture

Figure 4.12 shows the block diagram of arbiter implemented in hardware.

Port 1 STS12

wen

SYNC

TDM

counter

shift register

shift register

Port N STS12

Port 1

Flow Requests

(RAM_1)

Port N

Flow Requests

(RAM_N)

Switch Flow

Memory

Flow Request

Memories

Fair Proportional

Algorithm (FPA)

Bandwidth Request

Total Egress Request

Start Arbitration

Request Memory

Read Address

Time Slot Algorithm

(TSA)

Switch Flow

Switchflow Memory

Read Address

Start TSA TSA Switchcore &

Portcards

ARBITER

Figure 4.12 Arbiter Hardware Block

53

The arbiter contains three main functional modules: Flow Requests Memories, FPA

and TSA. The functional block has N dedicated unidirectional 8-bit wide data buses for

receiving the requested bandwidth from each ingress port. The width of requested

bandwidth from each ingress queue is three bytes (24 bits) and they are all stored in buffers.

The buffers are realized in N RAMs (one for each ingress port), each RAM block is 3xMxC

bytes (three bytes for each destination-class flow), where M is the number of egress ports

and C is the priority classes supported by switch.

Once all the new flow requests are available in the arbiter flow request memories

arbitration is done in order to distribute port bandwidth fairly among all ingresses. The

bandwidth allocation algorithm and time slot assignment algorithm are the same but they

are now implemented in the Verilog HDL. When the new set of flow requests comes to the

arbiter, this control information is stored in Flow Request Blocks inside the arbiter as

shown in Figure 4.12. The Flow Request Blocks then invoke the FPA block for

proportional bandwidth allocation on these requests. The FPA block reads the requested

bandwidth stored in the memory by address indexing. At the same time it also computes the

sums of all egress requests from Bandwidth Request Memories module and available egress

bandwidth from switch flow memory (inside FPA module). The requested bandwidth is

scaled in proportion to their requests and egress bandwidth available (Equation 4.2). The

final functional block of the arbiter is the TSA block. The TSA block is activated by FPA

block when the flow arbitration for new requests is completed. TSA block randomly reads

the content of switch flow memory of FPA block (Goal) and assigns appropriate channel(s)

(time slots) for the flow at corresponding ingress port and egress port. The detail TSA

process is described in Section 4.3. The switch configuration (slot assignment) is then

passed to switch core and port cards.

4.4.2.2 Advantages of Hardware Approach

The main purpose of migrating from a software approach to a hardware approach

was to address the problem of arbitration timing limitations in software. The arbitration

timing calculation for 32x32 switch for each of the functional block are given below:

54

 Request Bandwidth Transfer Time

SONET STS 12 header is used to carry the requested bandwidth to the arbiter. Each

ingress queue flow request is represented by a 3 byte value. Considering a practical switch

size of 32x32 with support for 3 traffic classes, we need 32x3x3 = 288 slots to carry all

queue flow requests from ingress while one STS12 frame has 33x12 = 396 slots. The first

STS12 frame carries flow request and the approximate time is 9/12 of 125 µs = 93.75 µs.

 Worst Case Flow Arbitration Algorithm (FPA) Time

Time for each request read from flow requests memories = 1 clock cycle.

Total request memory read addresses = 32x32x3 = 3072

Total time for reading requests from flow request memories = 3072 cycles.

Total time for calculating total egress requests = 0 cycles (pipelined with request read).

Total time for calculating total ingress requests = 31x32x3 = 2976 cycles.

Time for ingress/egress scaling = 0 cycles (pipelined with request read).

Total cycles for FPA= 3072 + (3072+2976) = 9120 cycles

For 100 MHz FPGA: Total time = (9120) cycles x 1s/(100 x10
6
cycles) = 91.20 µs.

 Worst Case Time Slot Algorithm Time

Time for reading the FPA flow memory = 3072 cycles.

Time for finding the open time slots and sum per flow = log2 (512) = 9 cycles.

Time for calculating new ingress/egress opens = 0 cycles (pipelined with switch flow

read).

For 100 MHz: Total time = (3072x9+3072) cycles x 1s/100x10
6
 cycles = 307.20 µs.

4.5 Arbiter Implementation Summary

Both software and hardware approaches for the implementations of the arbiter were

considered. The software approach for a 32x32 switch gives an arbitration and slot

55

assignment time of 73.65 ms (approx. 589 STS12 frame time) whereas the arbitration and

time slot assignment in hardware is 93.75 µs+91.20 µs+307. 20 µs = 492.15 µs; which is

slightly less than four STS-12 frame time. So the hardware based approach is used, as it is

required to allow the overall switch to react more quickly to arriving traffic bursts.

56

Chapter 5

 Design Verification and Testing

 In order to ensure the functional correctness of the hybrid switch, the performance

of the switch is evaluated and compared to predefined expectations. In this chapter we

describe the evaluation techniques and the results obtained from our testing procedures.

5.1 Introduction

For the purpose of testing and developing our hybrid switch in an FPGA, we

employ various verification techniques to guarantee the functional correctness and

eliminate logical errors. The verification techniques used in our hybrid switch are

simulation based. A variety of test cases are fed to the device under test (DUT) for each

block and simulated and tested. For each test case, the output is monitored and compared to

the expected behavior. The simulation method, although incomplete in a sense that it

inherently has very limited coverage for design verification, has the advantage that it can be

realized directly by the developer within a common HDL environment and thus can be

applied quickly and with limited manpower.

5.2 Simulation and Verification Procedure

A simulation environment usually consists of two basic components: a DUT and a

testbench. The DUT is the design which is to be tested; the testbench is a unit responsible

for driving DUT inputs and checking correct DUT behaviour. Simulation examines the

design behavior under certain conditions and results are checked to ensure the correctness

of the design. Our simulation verification process is shown in Figure 5.1. This is the

modular decomposition of the DUT and the process of verification is to generate a

57

testbench for each module and to work from the bottom towards the top, validating at each

level before moving up.

FPATDM

Filler

TSAIngress

Queue
TDM

Extractor

Packet

Assembler

Switch

Core

Ingress Port Egress Port Arbiter

Port Card Switch Card

Switch

Figure 5.1 Simulation Process for Design Verification

The simulation was carried out for each module to determine if the individual units

function correctly. Once an individual module passes the verification test, the modules that

form a common unit, for example ingress queues and TDM filler for ingress port, TDM

extractor and packet assembler for egress port and arbiter in Figure 5.1, were added and

simulated. Again the ingress port and egress port units were added and simulated to verify

the functional behavior of port card and arbiter unit and switch core unit were added and

simulated to verity the functional behavior of switch card. The port card unit and switch

card unit are added and simulated to test and verify the entire switch system.

5.3 Verification and Testing

 Switching of TDM signals in our hybrid switch is static. It was assumed that the

bandwidth allocation for TDM traffic was made first before doing any allocation for “best

58

effort” IP traffic. This assumption makes the switching of TDM traffic relatively easy and

there would not be any port contention for TDM traffic due to the availability of “all”

bandwidth to TDM traffic. In this research, our main concern is to see how the switch

behaves under different load conditions and adjusts to the current network condition when

the system is bandwidth limited. Since we assume the TDM traffic is not bandwidth

limited, the interface for TDM traffic was not build and the actual simulation and

verification were carried out only on the IP packet traffic.

 IP packets with different destinations and CoS were applied to the input ports and

examined to see if the packets go to their corresponding queue memory and the depth

indicator for that queue was incremented by the size of the packet. It was also verified that

if enabling a particular flow releases the next packet belonging to the flow correctly and in

the correct format.

 The TDM filler is stimulated with predefined page 1 and page 2 channel assignment

LUTs and checked if it enables the appropriate ingress queue at the ingress port. It was

verified that page 1 and page 2 were swapped correctly at the end of each arbitration cycle.

The TDM filler is also responsible for generating SONET STS-12 signals. A simulation

was carried out to verify that the STS-12 signal generated was in the correct format and also

to verify that the control information and the data carried by the communication link are

correct.

 The TDM Extractor was stimulated with predefined page 1 and page 2 channel

extraction LUTs. It was verified that the data coming out from the switch core in the form

of the stream of SONET STS-12 signal was extracted correctly by the packet assembler. It

was also verified that the page 1 and page 2 memory for extraction swap at each arbitration

cycle. Finally, the packet assembler module was monitored to see if the correct packet

sequence was received, and that once the full packet was received, it was correctly sent to

the FIFO memory at the egress port.

 The arbiter module consists of a FPA unit and a TSA unit. To test the FPA unit, a

random request matrix was applied and the bandwidth grant by the FPA was compared to

the expected values. To test the TSA module, a random grant matrix was applied to check if

59

the channel assignment was done correctly and without any conflict at any input or output

ports. The number of slot assignments was compared with the number of bandwidth grants

and the efficiency of TSA unit was evaluated for full load and partial load condition.

 The switch core was loaded with two look up tables (page 1 and page 2) and

verified that the input signals were switched to the correct output ports according to the

values in the LUT. The switch core must be able to distinguish control signals and the data

signals and it was also verified that the control signals were ignored by the switch core

(control information is only useful to the arbiter) and only the data signals are switched

according to the LUT’s values.

 On the next step of the design verification process the TDM filler and the ingress

queue units were combined to form the ingress port module. Similarly, the TDM extractor

and the packet assembler units were combined to form the egress port module, and the FPA

and the TSA units were combined to form the arbiter module. Testing and verification were

done on these larger modules. The IP load, and predefined channel assignment LUTs were

applied to the ingress port module. Three signals: the packet coming out from the ingress

queue, queue enable signal from TDM filler, and the STS-12 signals to the switch core

were monitored to assure their correctness. The egress port module was tested by providing

a random STS-12 signal stream carrying IP packets as an input. There were two LUTs to

tell which data should go to which packet assembler (out of N assemblers) at what time.

The outputs at N assemblers were monitored to see if the packets were received in the

correct order. Similarly, the arbiter module was verified by simulating with random

bandwidth request matrices. The bandwidth grant for each ingress/egress port were

monitored and compared with predefined values. The time slot assignment was checked to

verify there were no any ingress/egress conflicts for any flow grant.

 The third verification step involves combining the ingress port module and the

egress port module to form the port card module and combining arbiter module and the

switch core module to form the switch card module. The port card module was verified by

simulating it with the same ingress port and the egress port inputs and checking the output

60

results and the switch card module was verified by simulating it with the same arbiter and

switch core inputs and checking the output results.

On the final verification step the two modules: port card and the switch card

modules were combined to form the entire switching system and simulated. The input to the

switch was only the IP load, and the simulation was carried out with empty packet queues

and empty LUTs. The system should generate its own LUT values at every arbitration

cycles and the page 1 and page 2 LUT memory should be swapped automatically for read

and write operation at the end of every arbitration cycle. At the end, the simulation results

were checked to verify that

(1) the randomly generated packets were switched to the correct destination,

(2) the packet’s priorities were fully respected, and

(3) channel assignment and extraction LUTs for read and write were swapped at the end of

 each arbitration cycle.

5.4 Summary of the Verification

 The switch was tested with simulation-based techniques to ensure that the

synthesized design, when manufactured, will perform the desired functionality. The

verification testing was conducted on a modular basis and as one module passed the

verification test it was combined with another “tested” module to make a bigger unit and

verification was done on that bigger unit. The entire hybrid switching system was simulated

and verified by combining each small modules and testing it.

The verification procedure reported in this chapter was modeled after the techniques

used in industry. However, the inherent manpower limitations of a single student pursuing

an M.Sc forced a reduction in the completeness of application of these verification

techniques. Nevertheless, the verification carried out on our hybrid switch leaves us

confident that the primary data and control paths all function properly, and the resulting

switch is functional.

61

Chapter 6

 Performance Results and Discussions

 This chapter discusses the simulation experiments and the results obtained. The first

section describes the load model used for the simulation. The second section describes the

performance results of the simulation. Finally, the obtained results are analyzed and

conclusions are drawn.

6.1 Introduction

The general purpose of the performance testing was to determine how some aspects

of the switching system performs under a particular workload, which serves to validate and

verify some quality attributes of the designed system. In order to carry out the performance

testing, a load model was designed. This load model generates simplified IP packets. The

switching system was evaluated for different IP load conditions. This process shows how

different load affects the dynamics of flows in the switch.

6.2 Simplified IP Packet Structure

Most network data transmission technologies use IP packets to transmit data from a

source device to destination. The IP packets have fixed header and payload format. Payload

is the actual user data and packet header are carried in order to route actual data on a

network from one node to another. A lot of information is carried in the actual packet

header. However, in the simulation we are interested in the switch performance only and a

lot of “real” IP header fields are not useful at all. So we decided to generate a very simple

IP packet header whose structure is shown in Figure 6.3.

62

Packet Sequence Number

Source

Length

Class

Destination

8b8b

Payload

Payload

Figure 6.1 Structure of IP Packet Generated by Load Model

Packet Sequence Number: packet sequence number is a unique ID given to a packet by

the sender. Packets in same class and going to the same destination port share the same

sequence number incremented by one. This is 16 bit long which can tag up to 65536

packets. This sequence number is used to determine whether any packet losses have

occurred during transmission.

Source: This field represents the endpoint address of the sender.

Destination: It represents the endpoint address of the intended receiver.

Length: This is the length of a packet, measured in bytes. This includes the header and the

payload. This field allows the length of a packet to be up to 65,535 bytes. Such long

datagrams are impractical for most hosts and networks. In our load model the packet size is

limited to 1500 bytes, which represents the maximum transmission unit for Ethernet hosts.

Class: The Class is a one byte field on the packet header of the load model that provides an

indication of the quality of service desired. This parameter is used to guide the selection of

the actual service when transmitting a datagram through a particular network.

Payload: This is the actual data that the packet is delivering to the destination. In our

typical IP load, this data includes TCP and IP header and TCP payload. For the simulation

63

the payload is transmitted as a sequential integer number and verified at receiver to make

sure no data was lost or added during transmission.

6.3 Load Model

Load model generates traffic loads for simulation purposes. A load model represents

the expected concurrent number of users on the application and how much link capacity

each user is using at a time and the traffic priority for each user traffic. The load model and

its characteristics are explained below.

 Since the performance testing was carried out for packet traffic only, the load

applied to our switch consists entirely of IP packets. This IP load has two fixed

characteristics: the distribution of IP packet sizes and the distribution of packets by class of

service (CoS). The IP load has two variable characteristics: the overall intensity of the load,

and the degree of hotspot concentration present in an otherwise uniform random load.

6.3.1Distribution of IP packets by Size

IP traffic is pre-dominated by small packets, with peaks at the common sizes of

44B, 256B, 576B and 1500B [19]. The small packets, 40-44 bytes in length, include TCP

acknowledgement segments, TCP control segments and telnet packets carrying single

characters. Many TCP implementations that do not implement Path Maximum

Transmission Unit (MTU) Discovery use either 512 byte or 536 bytes as the default

Maximum Segment Size (MSS) for nonlocal IP destinations, yielding a 552 byte or 576

byte packet size and ninety percent of the packets are 576 bytes or smaller [19]. A MTU

size of 1500 is characteristic of Ethernet attached hosts. The distribution of packet sizes

shows that nearly 50% of the packets 40-44 bytes length, almost 10% of the traffic peaks at

256 bytes, about 10% of traffic peak at 576 bytes and remaining 15% at 1500 bytes. In

terms of bytes, 40-44 byte packets constitute a total of 7% by the byte volume and over half

of the bytes are carried in packets of size 1500 bytes or larger.

64

Figure 6.2 Internet Packet Distribution: Relative Frequency of Various Sizes (MCI

Study[19], 1997)

Figure 6.3 Internet Packet Distribution: Accumulated Distribution (MCI Study[19], 1997)

6.3.2 Distribution of IP packets by Class of Service (CoS)

The CoS feature for IP packets enables network administrators to provide

differentiated types of service across the switching network. Differentiated service satisfies

65

a range of requirements by supplying for each packet transmitted the particular kind of

service specified for that packet by its CoS. The hybrid switch offers traffic management

through CoS mechanisms enabling prioritization of customer applications. The CoS with

three levels of priority for customer traffic according to the selected service type for each

access; Traffic is modeled according to class using the following assumption:

Class 1: 10% customer traffic generated by the load model is class 1 traffic.

Class 2: 40% of the traffic generated by the load model is class 2 traffic.

Class 3: 50% customer traffic generated by the load model is class 3 traffic.

Each data Class of Service is allowed to use all the available IP bandwidth on the access up

to 100% of the configured IP bandwidth, when not limited by higher priority traffic.

6.3.3 Distribution of IP Packets by Offered Load

Offered load is the measure of link bandwidth consumed by the ingress traffic. The

load model consists of a parameter to control the IP load injected into the system. Varying

the value of that parameter changes the offered load in the system. We begin by evaluating

the effect of varying load on the performance of our hybrid switch to determine the offered

load that maximizes throughput in circuit-switched hybrid networks, subject to QoS

constraints for blocking probability. This problem is of interest in network design for sizing

the service capabilities that can be provided, and thereby providing a measure of network

capacity. We use a simulation technique, in which we increase or decrease the offered load

and monitor the throughput graph that guides the search more directly toward the optimal

solution, thereby resulting in faster and more-reliable convergence.

6.3.4 Distribution of IP Packets by Hotspot Port

Due to the bursty traffic, the load may exceed the capacity of any egress port. A port

with heavy traffic is called a hot-spot port. It arises when one of the outputs of the network

becomes very popular among the other ports and the bandwidth resources available at that

location in the network are not enough to sustain the needs of the users. Hotspots are

66

representative of the most common types of non-uniform traffic that is likely to occur and

cause severe congestion. Performance degradation due to hotspot load is not restricted to

hotspot traffic (i.e., traffic destined at the hotspot). In typical networks, hotspot and non-

hotspot traffic compete for the same network resources, i.e. buffer space, link bandwidth

and router ports. Therefore, hotspots may hinder the delivery of non-hotspot packets.

 Under uniform load, all traffic coming to an ingress port is distributed equally

among all the egress ports. Under hotspot load, a proportion of the traffic from each input

goes to one output, the hotspot, while the rest of the traffic is assumed to be uniformly

distributed over all the outputs.

6.4 Performance Matrices

 The performance matrices for the simulation evaluation of the hybrid switch were:

6.4.1 Throughput

The hybrid switch has NxC incoming FIFO queues per port. At each time unit, new

packets may arrive at the queues, each packet belonging to a specific input queue. A packet

can only be stored in its input queue if there is enough space. Since the NxC queues have

bounded capacity, which means the faster the packets arrive the greater the chances that

packet loss will occur. The switch’s throughput is the measure of the maximum load the

switch can handle before queues start dropping packets.

It has been shown that if a suitable queueing policy and scheduling algorithm are

used with IB-VOQ packet switch, then it is possible to achieve 100% throughput for all

independent arrival processes [9]. However, they do not provide any strict delay guarantees

and require a sophisticated arbiter which is based on computing a maximum weighted

matching that requires a running time of O(N 2.5~3) [20]. Our hybrid switch is not

designed to achieve 100% throughput due to the fact that arbitration problem of finding and

assigning time slots is hard and we have reduced the algorithms to make them faster,

smaller and simpler. With a full slot rearrangement scheme the switch may achieve 100%

67

throughput, however, achieving 100% throughput would make the arbitration process very

slow which would have a negative impact on the queue performance (rapid growth) and

make the switch unable to react to the current network condition. So instead of focusing on

achieving 100% throughput we have focused on efficient implementation of the scheduling

algorithm without any speedup and slot reassignment. Thus we expect reduced throughput

utilization of our switch’s data paths. To compensate, appropriate speed up will be built into

any product based on these ideas. For instance, if we discover that our arbiter is limited to

effectively allocating 70% of the datapath’s bandwidth, then the entire switch will be speed

up by 1.43 (1/0.7) to produce a design which will run effectively with a saturated (100%)

traffic load.

6.4.2 Queue Depth Vs Arbitration Cycles

Ingress port queue depth is the indication of how fast the switch is able to make a

connection between an ingress ports to an egress port for all requests. For our hybrid

switch, the switching decision is made per class basis and the higher priority class should be

served first before granting any bandwidth to the lower priority traffic. In our simulation

result, the queue flow graph should be increasing for some initial arbitration cycles when

the switch is open, indicating increase in the traffic at queue while switch is open, and the

graph should go down as time passes. This indicates the switch is allocating bandwidth

appropriately. In the long run, the queue depth graph for the first priority traffic should be

near zero and the queue depth for the second priority traffic should be higher level than first

but still near zero, and the flow graph for third priority should be on the highest level, well

above other two, when saturating traffic onward.

6.4.3 Non-blocking and Uniform Loads

The hybrid switch is non blocking, which means any traffic going to one destination

should not block the traffic going to the other destination(s). Under a uniform, non-hotspot

load, the performance graph for all ports should look similar, indicating a distribution of

bandwidth fairly among all ports. Under a hotspot load, the queue depth graph for the

68

hotspot destination should be increasing even for the longer simulation period because it

has exceeded the maximum throughput and all the traffic that contends for that destination

port cannot be drained by the switch. The queue depth graph for other non-hotspot ports

should look similar and should show systematically lower queue depths.

6.5 Simulations and Performance Results

6.5.1 Objectives

The main objective of the simulation is to evaluate the performance of the hybrid

switch. The simulation results are used to verify if the following issues are addressed by the

switch:

(1) provision of high performance and high throughput,

(2) respect for QoS by serving according to packet priority, and

(3) statistically non blocking for both uniform and hotspot traffic.

6.5.2 The Simulations

In order to examine the switch’s performance, the RTL simulation was carried out

for a switch of size 4x4. This simulation used the load model described in Section 6.1. The

first part of the simulation experiment is carried out to determine the operating load of the

switch under uniform load. The second part was used to study the switch performance at

maximal throughput under uniform traffic, and the third part to study the switch

performance for hotspot traffic while the switch is operating at its operating load.

The simulation run is parameterized with some input data. The following input data

are required for the simulation experiments:

Offered load: the percentage of full load injected to the switch for a given experiment.

69

Port bandwidth distribution: the percentage of traffic going to different destinations. This

input is used for simulation under hotspot loads.

Ingress buffered queue length: the size of the ingress queues which are used to store the

delayed packets. Longer queues are required if the arbitration period is high, or the offered

load is high, or the simulation time is long, or there is a hotspot port.

Length of simulation: the length of the simulation time.

6.5.3 Determining the Operating Load

Operating load represents the maximal offered non-hotspot load that the switch can

handle without dropping packets. In order to determine the operating load, the rate of

packet stream was varied from 33% to 90%. From 33% to 67%, the rate is increased by two

steps of 17%. After 67% offered load, the simulation was carried out for 70% of the offered

load and then by increment of 5% after that. Figure 6.4 shows the results of the simulation.

The X-axis of the graph is the time in terms of arbitration cycles and the Y-axis is the

ingress queue depth computed in the unit of byte. A maximal offered load at which the

queue depth graphs seems to be saturated and traffic seems to be performing well is chosen

as the operating load of the switch.

6.5.4 Results and Discussions

The results obtained from simulation are shown graphically. In the next sub-

sections, first we present the results for queue depths for uniform traffic and different

offered load conditions (Figure 6.4). These graphs show how the switch performs under

different load factors, which tells about the maximum throughput (M) of the switch. The

second graph (Figure 6.5) shows for a load of M, how the queue depth of the logical egress

port for each class changes with respect to the arbitration cycle. The third graph (Figure

6.6) shows the queue depths for a hotspot port and the other non hotspot ports which prove

70

the uniform distribution of port’s bandwidth among all ports. On the fourth graph (Figure

6.7) we show queue depth graph of different CoS traffic.

6.5.4.1 Variation of Queue Depth with Offered Load for Uniform Traffic

In order to determine the throughput, the simulation was carried out for different

load factors. The resulting graph is shown in Figure 6.4.

The queue depth of the ingress VOQ varies with respect to the load applied to the

switch and the simulation time. As the load of the network is increased, there are more

packets to be injected. As long as the new packets are allowed through the crossbar by the

arbiter they are not delayed at the injection point. But, as the number of packets in the

network increases it becomes harder and harder for new packets to find channels at the

output link. So the average delay of packets starts increasing. If the packet injection is too

high, the switch may not be able to handle all the incoming traffic which eventually leads to

packet drop.

Time in the unit of Arbitration Cycles (4 STS-12 frame time)

Q
u
eu

e
D

ep
th

 (
B

y
te

s)

Ingress Queue Depth @ various load factors

 Figure 6.4 Ingress Queue Length for Various Load Factors

71

Figure 6.4 shows the queue depth is minimum for low load factor and higher as the

load factor increases. The switch seems to be able to handle all the incoming traffic when

the offered load is around 80%. When the load is at 85% switch is unable to cope with the

incoming traffic and the backlog traffic increases continually, which is indicated by the

linear increase in the queue depth. Thinking the load factor of 82% might be a good

compromise between good performance (80%) and bad performance (85%), simulation was

carried out for 82% of offered load. The graph for 82% shows a very good response in

terms of the overall queue depth; however, it seems to suffer from a spike of traffic at

arbitration cycle 60. Although it seems to recover from that spike, it takes about 5

arbitration cycles for the recovery (unless the traffic spike was for more than one cycle).

With some safety margin, the maximum throughput of the switch is considered to be 80%

and used for other hotspot and non-hotspot uniform traffic simulation.

6.5.4.2 Variation of Queue Depth with Packet Classes for Uniform Traffic

The hybrid switch must be able to process all the backlog traffic at the ingress ports

fairly while respecting the customer QoS requirements. The following graph (Figure 6.5)

shows the performance of the switch for different traffic classes when the switch is running

at the maximum allowed load (80% load factor).

Time in the unit of Arbitration Cycles (4 STS-12 frame time)

Q
u

eu
e

D
ep

th
 (

B
y

te
s)

Logical Egress Queue Depth for Different Traffic Classes at 80% Load Factor

Figure 6.5 Egress Queue Depth for Various Load Classes of Traffic at Operating Load

72

Our hybrid switch gives more bandwidth access to the higher priority traffic. From

this simulation we show that the bandwidth is actually allocated according to traffic

priority. As shown in Figure 6.5, the higher priority traffic (class 1 and class 2) perform

very well and their backlog traffic is much lower than lower priority traffic (class 3). This

can be explained in the following way. As more and more packets are injected into the

system, the increasing routing conflict disturbs the natural packet flow and tries to restrict

original forward motion of the traffic because of the conflicts over resources. To resolve

these conflicts, arbitration of the port and bandwidth is carried out by the switch. The

arbiter’s channel distribution for forwarding packets from ingress to egress port is based on

the priority. As the higher priority traffic (class 1 and class 2) get all the bandwidth

resources before class 3 traffic, it is easy to find forwarding channels for these packets and

hence their backlog traffic, represented by queue depth, is smaller.

6.5.4.3 Variation of Queue Depth with Hotspot Port

This part of the simulation compares the switch performance from the viewpoint of

queue depth for one hotspot egress port in the presence of other non-hotspot traffic. The

traffic injected for the hotspot port is greater than M. The offered load to the switch is 80%

of the full load. The goal was to identify the links which are the most heavily used (network

hotspot) and see how the location and intensity of hotspots relates to the overall

performance result seen in the previous simulation and see if it maintains the strictly non-

blocking characteristic. For hotspot simulations, 30% of the traffic at each ingress port is

directed to one particular egress port and 25% of the traffic is directed to each of the

remaining egress ports. In this way the hotspot gets 4x30%=120% of the offered load while

the other ports get 100% of the offered load. In this simulation, each ingress port sends

traffic at 105% of 80%= 84% of the full load and the hotspot port gets load of 120% of

80%=96% of full load and the other port get load of 100% of 80% =80% of the full load.

Figure 6.6 shows the performance of the hybrid switch under this hotspot load. The

graph shows that the overall queue depth for the hotspot destination is increasing while the

other non hotspot destination queues are performing very well. The hotspot backlog is

73

increasing because the packet injection ration of the load model for that particular port is

way higher than the egress port can handle. The queue size is increasing, which indicates

the egress port is unable to cope with traffic incoming rate. This will eventually cause

packet loss for traffic going to that particular destination.

Time in the unit of Arbitration Cycles (4 STS-12 frame time)

10 20 30 40 50 60 80 90 100700

x104

Q
u
eu

e
D

ep
th

 (
B

y
te

s)

2

4

6

8

10

12

0

Non Hotspot

Hotspot

 Figure 6.6 Egress Queue Depths for Various Load Classes of Traffic at Operating Load

The important result from this graph records the non-blocking nature of the switch.

Figure 6.6 also shows that even though the queue backlog for hotspot traffic is increasing,

the backlog for other destinations is stable and all the flows are behaving in a similar

fashion in terms of queue depth. This shows that even though there are many packets

requesting bandwidth to the hotspot port, the switch is non-blocking in nature, so traffic

going to the non-hotspot destinations proceeds normally, regardless of the hotspot traffic.

6.5.4.4 Variation of Queue Depth with Hotspot Classes

In this part of the hotspot load model simulation the switch performance is

evaluated to see if the priority order is respected for hotspot traffic as in the uniform traffic

model. Figure 6.7 shows the performance result for simulation of different priorities of

hotspot traffic and their performance in terms of the queue depth.

74

 Figure 6.7 Egress Queue Length for Various Classes of Hotspot Traffic

The above graph shows that the overall queue depth for the hotspot destination

increases with time (arbitration cycle) and that this increase comes from class 3 traffic. This

was because the incoming packets are queued according to their destination and class, and

as more and more packets come to the ingress port, the lower priority traffic has more and

more conflicts that restricts their forward motion, and hence remains in queue as backlog

packets for a long time. The other higher priority traffic has more access to the channel’s

bandwidth and is performing well without any service deterioration. The graph for the

hotspot destination classes is similar to the one in the case uniform load model case.

6.5.5 Summary of the Results

This chapter described the simulation experiments analyzed by the obtained results.

The performance metrices of the hybrid switch in order to evaluate the performance of the

switch were described. The objectives of the simulation and the load model for the

simulation were described. The simulation results were presented in graphical form and

were analyzed in detail. The first simulation result showed that the maximal operating load

75

of the hybrid switch is 80%. The second simulation result showed the bandwidth allocation

in hybrid switch is strictly in the priority order. The third simulation showed under the

hotspot destination port, the hybrid switch is non-blocking for non-hotspot traffic. The

fourth and final simulation result showed higher priority traffic is not blocked to the hotspot

destination.

76

Chapter 7

FPGA Mapping: Logic Utilization, Delay and

Power Estimation

The purpose of this chapter is to provide a hardware implementation cost analysis

for our hybrid switch. The basic elements of the hybrid switch are implemented using

HDL-based design. The cost of the system implementation on FPGA is calculated in terms

of logic utilization, maximum clock speed, and the power consumption.

7.1 Introduction

A fast estimation of the resources is an important basic principle in order to be able

to generate optimal digital circuits that can be mapped into FPGAs or Application Specific

Integrated Circuits (ASICs). In the scientific field several methods exist to determine the

utilization of individual IC resources such as area, size, and power consumption. In this

section we present our approach of estimating the cost and area of hybrid switch for an

FPGA. The estimation is based on the simulation of RTL code.

7.2 Field-Programmable Gate Arrays (FPGA)

A typical FPGA device consists of a pre-fabricated array of configurable logic

blocks (CLBs) surrounded by configurable routing. Each logic block consists of resources

which can be configured to define logics, registers, mathematical functions and even

Random Access Memory (RAM). A periphery of configurable pads (I/O ports) provides

connection to other electronic devices. The function of all of these configurable resources

can be defined at any time during the operation of the device to form a large logic circuit.

Configurable logic and routing can be formed together to ensure the exact function of a

77

digital processing algorithm. Parallel and pipelined data flows are possible, providing an

excellent resource for execution of a signal processing algorithm.

In case of hybrid switch‟s integrated circuits we focused on the following resources

of interest:

7.2.1 Logic Utilization

 FPGA architectures is constructed from a sea of basic logic units, where each unit

consists of a four-input look-up table (LUT), programmable register, and any associated

specialized circuits, such as a carry chain, cascade logic, primitive logic gates and

multiplexers. Even when a FPGA contains additional dedicated circuits such as multipliers,

the bulk of a typical design‟s logic functions are still implemented by these basic units [21].

In the case of FPGAs, logic resource is measured in terms of number of logic blocks

and embedded components (like multipliers, memories, shift registers, etc.). Routing,

powering and the clock network are excluded, because they are pre-fabricated on the FPGA

board. Altera uses the “Logic Element” (LE) methodology to measure the logic capacity of

a FPGA design. This is a generic basic unit that can be used to fairly measure the size of a

design across different FPGA architectures.

7.2.2 Propagation Delay

Propagation delay is the time required for a digital signal to travel from the input(s)

of a component to its output. Propagation delay is important because it has a direct effect on

the speed at which a digital device can operate. The frequency f measured in Hertz (which

means cycles per second) of an oscillator used to time or synchronize the operations of a

circuitry. The higher the clock frequency, the faster the operation of the circuit is. The

period of the clock (Tperiod) is the time taken to complete one cycle and is the inverse of

the frequency f: Tperiod = 1/f . The maximum clock frequency (Fmax) of the circuitry is the

measure of maximum frequency that can be applied to the circuit without any timing

78

violation. This depends on the components‟ propagation delay and on their routing delay:

the slowest component and the wiring delays limit the maximum frequency. We evaluate

the propagation delay in terms of Fmax.

7.2.3 Power Consumption

Power consumption is in general the energy over time (P = E/t) that is supplied to a

system to maintain its operation. In the case of integrated circuits there are two main

components of power consumption: dynamic and static consumption. Static power is the

minimum power required to keep the device „powered-up‟ with the clock inputs not

switching and the I/Os drawing minimal power. Dynamic power is the power consumed

when both the I/Os and logic cells are switching. Dynamic power dissipation accounts for

over 95 percent of power consumed and is predicted by three factors supply voltage (Vdd),

physical capacitance being switched (C) and switching frequency (f) [22].

Power consumed (P) = 1/2CVdd
2
feff (7.1)

This means, that power consumed is proportional to the capacitance (C), operating

voltage (Vdd) and effective frequency (feff). Reducing any one of these variables reduces

power dissipation.

7.3 FPGA Cost Estimation Methodology

A methodology that embodies the estimation of area and power in this thesis

involves the use of RTL code simulation tool in the IC design flow as shown in Figure 7.1.

The design flow begins with HDL coding, test bench generation, and simulation. The code

coverage (area) in terms of the logic elements (LEs) utilized is determined before

optimizing the code. If code is too big to fit in FPGA, iteration through test bench

generation and simulation is necessary. Once acceptable code coverage is achieved power

estimation and optimization are performed.

79

FPGA vendors provide tools to estimates the design area, maximum frequency the

design can run (Fmax), and the board power supply. These tools also help designers optimize

device‟s area, performance and power consumption. Altera tools generate area estimates

based on the RTL code and delay and power estimates based on the parameters such as

design resource utilization, routing utilization, clock frequencies, device, I/O loading,

temperature, and silicon process. Each of these parameters can affect static power, dynamic

power, or both.

The flow Summary section of the Quartus II compilation results was used to

determine the resource utilization and delay (in terms of Fmax), and the Quartus II

PowerPlay Power Analyzer was used for the power estimation. The PowerPlay power

analyzer is integrated in the Quartus II software and generates design power estimates

based on Quartus II software place-and-route information and toggle rate data from a

variety of sources. The power analyzer performs power analysis based on the exact

resources, logic functions, and routing paths used in the target design. It can derive toggle

rates from user entry, statistical circuit analysis techniques, RTL simulation, and gate-level

simulation. The power analyzer can optionally filter out pulses, or glitches, from simulation

data when those glitches are too fast to toggle the logic and routing of an actual FPGA [23].

Write RTL Code

Generate Testbench

Simulate RTL Code

Analyze Area and Power at RTL

Synthesize and Simulate

 Analyze Power at Gate Level

Layout and Verify

 Figure 7.1 RTL Area and Power Analysis in IC Design Flow

80

7.4 Synthesis Results and Analysis

 The synthesis for 4x4 switch fabric was carried out. The device chosen for synthesis

was Altera‟s Stratic III FPGA. The Table 7.1 shows the result of the synthesis of Verilog

HDL code.

Table 7.1 FPGA Resource Utilization Table for 4x4 Hybrid Switch

Implementation Module Logic Elements (ALUTs) Fmax (MHz) Power(mW)

Ingress Port Queue 12351 150.40 689

TDM Filler 351 263.78 628

Egress Port TDM Extractor 150 413.56 629

Request Matrix Generator 1683 125.85 634

Arbiter FPA 4770 78.99 642

TSA 6690 69.65 640

Switch Core SwitchCore 702 219.39 632

Total 26697 4494

 The resource utilization for the 4x4 hybrid switch fabric is 26697 logic elements.

This represents 23.5% of the Stratix III EP3SL150 device (target board) from Altera. Table

7.1 shows the resource utilization for each component of the Ingress Port, Egress Port,

Arbiter, and Switch Core blocks. Note that the actual logic utilization generally does not

match the sum of the individual sizes due to glue logic and optimization. The power

consumed by the switch fabric is about 4.5W and the Fmax for the digital circuit is about 70

MHz. However, the logic utilization reported by the synthesis tool should only be treated as

a rough estimate because of advanced fitting algorithms, such as register packing, and other

factors such as megafunctions, and Quartus II netlist optimization techniques were not

considered.

The 4×4 hybrid switch can be potentially scaled up to enhance the network capacity

in optical communication systems where non-blocking large-scale optical cross-connect

switching is required. For the purpose of modeling costs of the switch architecture, we

approximate the resources utilized when the switch scales up. The following table shows

the scaling factors of different components of the switch when the switch scales up:

81

 Table 7.2 Scale-up Cost for Hybrid Switch

Parts Scaling Factor

Ingress/Egress Port N

Arbiter NxR+C(T+F)

Switch Core N
2

Memories (NxC)
2

Where,

N= number of ports

C= number of traffic classes

R= Request Matrix Generator Block

T= TSA Block

F = FPA Block

The number of logic elements increases linearly for any increase in the size of our

hybrid switch. This is because every port is independent of the other and a separate logic is

needed in every port in order to differentiate traffic, maintain queue, and regulate packet

flows. The arbiter block changes with N and C. We need separate Request Matrix

Generator block because all the ingress ports are synchronized and the bandwidth request

from each ingress flow occurs at the same time. So the Request Matrix Generator is scaled

by N. The FPA and TSA are done per class basis, and thus they are scaled-up by C. The

switch core is scaled up by N
2
 because now it needs a lookup table to set N

2
 crossbar

points. However, the crossbar setup in switch core is implemented using multiplexer whose

logic cost is relatively low. The exponential scaling factor on crossbar does not have the

same overall impact on the switch. Ignoring the memory cost, the following calculation

shows logic cost for 16x16 switch fabric with three classes of traffic:

 Ingress Port LE‟s = (12351+351) x 16/4 = 50808

82

 Arbiter LE‟s = (1683x16/4+4770+6690) = 18192

 Switch Core LE‟s = 702 x (16/4)
2
 = 11232

Total LE’s = 80232

From the preliminary analysis, the 16x16 switch can be implemented in our target board

with 70.6% logic utilization.

7.5 Summary of FPGA Mapping

 The logic utilization and speed for our hybrid switch are reasonable for hardware

implementation. The estimated logic cost for 16x16 switch architecture in Stratix III

EP3SL150 device is 80232 ALUTs, and the architecture can be clocked at 70 MHz

frequency. However, with some logic and timing optimizations, the required logic elements

can be decreased and the overall timing can be improved. The power consumption estimate

of 4.5 W for our switch is high relative to most of the FPGA designs experienced.

However, switch datapaths are notorious for high power consumption because most signals

and most flops change value on each clock tick. Only further work can determine the

accuracy of our estimate.

83

Chapter 8

Conclusions and Future work

8.1 Conclusions

 In this thesis, the current internet trends at LAN and MAN were introduced. A new

concept for data switching named “hybrid switching” and its implementation were

proposed. The switch is able to support both, TDM based voice traffic and Internet based

packet traffic on a converged platform. This switch offers simple and low cost hardware

and a lower level of management because of its capability to support multiple protocols in

one platform by using a rack-mounted chassis approach in which a wide variety of interface

and function cards can be inserted to perform the specific roles. The logic circuit for the

switch was implemented in Verilog HDL and the simulation was done in ModelSim.

 We began this thesis with a “big picture” of the internet and the network equipments

in LAN and MAN environments. Based on the motivation described in Chapter 1, we

introduce the architectural overview of the hybrid switch in Chapter 2. This chapter also

discussed the problem of the multiple queue scheduling and maintaining QoS commitment

to customers. To provide QoS and the ability of switch traffic without HoL blocking, the IP

packet traffic coming to the ingress port is differentiated into three classes and virtual

output queue is maintained for each traffic class.

A major part of the architecture was the design of the arbiter. For our hybrid switch,

we need an arbiter to make a scheduling decision for a number of ingress lines connecting

to the egress lines. This is called the traffic scheduling problem. The arbiter of our hybrid

switch gives higher priority to TDM voice traffic and thus the bandwidth allocation for

TDM flows are done first, followed by the packet traffic. All the TDM flows get guaranteed

bandwidth while the packet traffic gets bandwidth per flow basis, based on the priority and

the weight (amount of bandwidth requested) of the request.

84

The first step of packet traffic scheduling is the generation and communication of

bandwidth requests from the ingress ports to the arbiter. The bandwidth requests are

generated at ingress ports using the current queue depth and the recent traffic flow as shown

in Equation 4.1. These requests are communicated to the arbiter by SONET overheads. The

proportional arbitration scheme (or FPA) used by the arbiter allocates bandwidth to these

requests fairly and on the strict priority basis; i.e. bandwidth requested by any ingress flow

is weighted against the total requests and the bandwidth is granted accordingly, and the

traffic with highest priority is served first and the residual bandwidth is allocated to lower

order traffic.

The FPA has the simplest implementation and provides differentiated services. The

bandwidth allocated by this block is then assigned VT1.5 channels. This process of VT1.5

TDM channel assignment for each flow is called Time Slot Algorithm (TSA). The time slot

assignment involves reading the bandwidth allocated by FPA, calculating the free channels

at both ends, and assigning channels without any port conflict or channel over-allocation.

The entire process is described in detail in Chapter 4.

Based on the arbitration scheme, we had two options for the implementation of the

arbiter. The first option was the software approach, programmed in C or assembly language

and the second option was hardware based, programmed in Verilog HDL. The preliminary

analysis of both approaches showed that the software approach would be too slow to

respond to sudden changes in the traffic (traffic bursts) and would result in a switch that

would not be useful as a real world implementation. The hardware solution, however, was

found to react more quickly to the arriving traffic burst and was more suitable for practical

implementation.

To verify the correctness of our hybrid switch, a modular based verification and

testing procedure was followed. The procedure is shown in Figure 5.1. As described in

Chapter 5, the verification work starts from the bottom and proceeds to the top, validating

at each level before moving up. The obtained simulation result in Chapter 6 showed that all

the circuits functioned properly as expected. From the performance results, we can draw the

following conclusions about the switch:

85

 The maximum offered load that switch can handle for the uniform traffic is

80%.

 The switch guarantees QoS requirement by offering differentiated service by

traffic type.

 The switch is completely non-blocking in the presence of hotspots.

 Hotspot traffic does not affect the switch’s ability to provide differentiated

service.

8.2 Thesis Contributions

 The major contributions of this research were:

 The design of probably the first switch that can support both TDM and

packet flows over a single backplane.

 Definition of a data path to carry TDM and packet flows over a single

channel.

 Developed a simple arbitration scheme. The time slot assignment problem is

solved by using a novel binary add algorithm.

 Verification and performance testing were done in order to make sure the

hybrid switch meets QoS objectives and has reasonable performance.

8.3 Future Work

There are numerous things that remain to be investigated for the hybrid switch. The

following summarizes the work needed to be done in order to build a more practical hybrid

switch.

86

8.3.1 Prototype Fabrication in FPGA

The initial goal of this thesis was the design and implementation of the hybrid

switch. We were able to design and see the implementation result by simulation. Our effort

was successful: the hybrid switch has met the design specification and performance goals.

The next step would be advancing our work in rapid prototyping, in particular with regard

to FPGA. Results obtained from functioning machines are inherently more credible than

simulation studies, and are more likely to be reproduced elsewhere.

8.3.2 Simulation for TDM and Packet Traffic

Although the bandwidth allocation for TDM traffic would be static, the simulation

result would prove this static bandwidth allocation will work with the dynamics of packet

traffic. The load modeling for TDM traffic and the simulation for both traffics is relegated

to future work.

8.3.3 Switch with Speed-up

The simulation result shows that the maximum throughput of the switch for uniform

random load is 80%. In order to maximize this throughput and align the switch speed with

the line speed we need speed-up in our switch. In order to obtain a practical switch for OC-

12, we need to have a speed-up factor of 1/0.80 = 1.25 in our switch. One of the ways to get

the required speed-up is to use STS-16 signaling in the switch. While SONET STS-16

frame does not exist in practice, this signaling can still be used in the internal

communication to get our required speed-up.

8.3.4 Broadband Switching by Scaling up Granularity to STS-1

With increasing demand for higher transmission speed of digital networks, the

switching system needs to meet the demands for path routing of broadband networks. Our

87

future work would be scaling the switch to broadband network by moving from VT1.5

channels to STS-1 channels. Moving into STS-1granularity, however, may require ingress

flows of smaller capacities to be aggregated into STS-1 frame before entering the switch

core, even if the full capacity of this STS-1 is not utilized. This may increase inefficiencies

of the resource usage. In order to avoid this inefficiency, we need an improved algorithm

that can overcome it while avoiding the unmanageable cost in the arbitration

8.3.5 Search for an Improved Arbitration Scheme

 Though we have come up with a useful flow arbitration algorithm, the arbitration

policy, for example, request generation, channel distribution, and time slot assignment were

developed by testing and evaluation method. The arbiter does not produce optimal results

for flow request as we discussed in Chapter 4, and also fails to implement the

rearrangement of the time slots, if required, to make the full utilization of the link’s

bandwidth. The arbitration may work well, but it is not perfect, and, by no means, the only

solution. It would be wise to continue to look for improved arbitration schemes.

88

References

[1] K. Y. Yun, "A terabit multiservice switch," IEEE Micro, vol. 21, pp. 58-70, January

2001.

[2] Nokia Siemens Networks, "Ethernet and TDM carrier-grade services over one single

network," SURPASS Multi-Service Optical Networks, July 2007. [Online]. Available:

http://www.nokiasiemensnetworks.com/NR/rdonlyres/AB0CCC4C-4E0D-4EE1-B668-

A9EFCBA8CBFA/0/SURPASSMultiServiceOpticalNetworks_V5.pdf. [Accessed July 23,

2008].

[3] C. McCrosky, K. Iniewski and D. Minoli, Network Infrastructure and Architecture

Designing High-Availability Networks. New York: John wiley & sons, 2008.

[4] S. Shepard, SONET/SDH Demystified. New York: Mc Graw Hills Inc., 2004.

[5] D. Pan and Y. Yang, "FIFO-based multicast scheduling algorithm for virtual output

queued packet switches," IEEE Trans. Computer, vol. 54, pp. 1283-97, October 2005.

[6] S. Keshav and R. Sharma, "Issues and trends in router design," IEEE Communications

Magazine, vol. 36, pp. 144-51, May 1998.

[7] I. Elhanany and D. Sadot, "Analysis of non-uniform cell destination distribution in

virtual output queueing systems," IEEE Communications Letters, vol. 6, pp. 367-369,

September 2002.

[8] Y. Tamir and G. L. Frazier, "High-Performance Multi Queue Buffers for VLSI

Communication Switches," 15th Annual International Symposium on Computer

Architecture, pp. 343-354, 30 May-2 June, 1988.

[9] N. McKeown, A. Mekkittikul, V. Anantharam and J. Walrand, "Achieving 100%

throughput in an input-queued switch," IEEE Trans. Communications, vol. 47, pp. 1260-7,

August 1999.

[10] J. G. Dai and B. Prabhakar, "Throughput of data switches with and without speedup,"

19th Annual Joint Conference of the IEEE Computer and Communications Societies - IEEE

INFOCOM2000, vol. 2, pp. 556-564, March 2000.

[11] D. Shah, "Maximal matching scheduling is good enough," IEEE Global

Telecommunications Conference GLOBECOM, vol.6, pp. 3009-3013, December 2003.

89

[12] E. Leonardi, M. Mellia, M. A. Marsan and F. Neri, "Stability of maximal size

matching scheduling in input-queued cell switches," IEEE International Conference on

Communications, vol. 3, pp. 1758-1763, June 2000.

[13] E. Leonardi, M. Mellia, F. Neri and M. Ajmone Marsan, "Bounds on average delays

and queue size averages and variances in input-queued cell-based switches," 20th Annual

Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 1095-

1103, April 2001.

[14] B. Vandalore, R. Jain, R. Goyal and S. Fahmy, "Design and analysis of queue control

functions for explicit rate switch schemes," Proceedings 7th International Conference on

Computer Communications and Networks , pp. 780-786, October 1998.

[15] N. Parlante, "Binary Trees," October 2000. [online]. Available: http://cslibrary.

stanford.edu/110/BinaryTrees.html [Accessed: September 25, 2008].

[16] D. D. Gajski and F. Vahid, "Specification and design of embedded hardware-software

systems," IEEE Design & Test of Computers, vol. 12, pp. 53-67, Spring 1995.

[17] Altera Corporation, "Nios II processor: The world's most versatile embedded

processor," May 2008. [online]. Available: http://www.altera.com/products/ip/processors/

nios2/ni2-index.html [Accessed: June 5, 2008].

[18] Altera Corporation, "Nios II Software Developer’s Handbook," May 2008. [online].

Available: http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf [Accessed: June 6,

2008].

[19] K. Thompson, G. J. Miller and R. Wilder, "Wide-area Internet traffic patterns and

characteristics," IEEE Network, vol. 11, pp. 10-23, November 1997.

[20] S. Mneimneh and Kai-Yeung Siu, "On achieving throughput in an input-queued

switch," IEEE/ACM Transactions on Networking, vol. 11, pp. 858-67, October 2003.

[21] Altera Corporation, "An analytical review of FPGA logic efficiency in stratix, virtex-II

& virtex-II pro devices" Altera White Page, May 2003.

[22] S. Deng. "Estimating IC power consumption at the RT level" EE Times Asia, October

1999.

[23] Altera Corporation. "Stratix II vs. virtex-4 power comparison & estimation accuracy,"

Altera White Paper, August 2005.

	TITLE.pdf
	PERMISSION TO USE.pdf
	ABSTRACT.pdf
	ACKNOWLEDGE.pdf
	TABLE OF CONTENTS.pdf
	LISTS OF FIGURE AND LIST OF TABLES.pdf
	LIST OF ABBREVIATIONS.pdf
	CHAPTER1.pdf
	CHAPTER2.pdf
	CHAPTER3.pdf
	CHAPTER4.pdf
	CHAPTER5.pdf
	CHAPTER6.pdf
	CHAPTER7.pdf
	CHAPTER8.pdf
	REFERENCES.pdf

