196 research outputs found

    Kinematic analysis of a Meso-Scale Parallel robot for laser Phonomicrosurgery.

    No full text
    International audienceThe paper presents the kinematic model of a new meso-scale (~ 1 cm3) parallel kinematic machine intended for laser phono-microsurgery of the vocal folds. The proposed mechanism uses the displacement generated by piezoelectric cantilever actuators manufactured via a Smart Composite Microstructure technique. The architecture, the geometry, and the position kinematics of the device, modeled as a spatial linkage, are discussed briefly. Then, the paper presents a velocity and singularity analysis and concludes that the new meso-scale parallel kinematic machine does not have singularities in the neighborhood of the reference configuration where it is required to operate

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Representation and control of coordinated-motion tasks for human-robot systems

    Get PDF
    It is challenging for robots to perform various tasks in a human environment. This is because many human-centered tasks require coordination in both hands and may often involve cooperation with another human. Although human-centered tasks require different types of coordinated movements, most of the existing methodologies have focused only on specific types of coordination. This thesis aims at the description and control of coordinated-motion tasks for human-robot systems; i.e., humanoid robots as well as multi-robot and human-robot systems. First, for bimanually coordinated-motion tasks in dual-manipulator systems, we propose the Extended-Cooperative-Task-Space (ECTS) representation, which extends the existing Cooperative-Task-Space (CTS) representation based on the kinematic models for human bimanual movements in Biomechanics. The proposed ECTS representation can represent the whole spectrum of dual-arm motion/force coordination using two sets of ECTS motion/force variables in a unified manner. The type of coordination can be easily chosen by two meaningful coefficients, and during coordinated-motion tasks, each set of variables directly describes two different aspects of coordinated motion and force behaviors. Thus, the operator can specify coordinated-motion/force tasks more intuitively in high-level descriptions, and the specified tasks can be easily reused in other situations with greater flexibility. Moreover, we present consistent procedures of using the ECTS representation for task specifications in the upper-body and lower-body subsystems of humanoid robots in order to perform manipulation and locomotion tasks, respectively. Besides, we propose and discuss performance indices derived based on the ECTS representation, which can be used to evaluate and optimize the performance of any type of dual-arm manipulation tasks. We show that using the ECTS representation for specifying both dual-arm manipulation and biped locomotion tasks can greatly simplify the motion planning process, allowing the operator to focus on high-level descriptions of those tasks. Both upper-body and lower-body task specifications are demonstrated by specifying whole-body task examples on a Hubo II+ robot carrying out dual-arm manipulation as well as biped locomotion tasks in a simulation environment. We also present the results from experiments on a dual-arm robot (Baxter) for teleoperating various types of coordinated-motion tasks using a single 6D mouse interface. The specified upper- and lower-body tasks can be considered as coordinated motions with constraints. In order to express various constraints imposed across the whole-body, we discuss the modeling of whole-body structure and the computations for robotic systems having multiple kinematic chains. Then we present a whole-body controller formulated as a quadratic programming, which can take different types of constraints into account in a prioritized manner. We validate the whole-body controller based on the simulation results on a Hubo II+ robot performing specified whole-body task examples with a number of motion and force constraints as well as actuation limits. Lastly, we discuss an extension of the ECTS representation, called Hierarchical Extended-Cooperative-Task Space (H-ECTS) framework, which uses tree-structured graphical representations for coordinated-motion tasks of multi-robot and human-robot systems. The H-ECTS framework is validated by experimental results on two Baxter robots cooperating with each other as well as with an additional human partner

    Optimization of a Reconfigurable Manipulator with Lockable Cylindrical Joints

    Get PDF
    This thesis presents a global optimization methodology to find the optimal Denavit-Hartenbeg parameters of a serial reconfigurable robotic manipulator maximizing a cost function over a pre-specified workspace volume and given lower and upper bounds on the design parameters. Several cost functions are investigated such as the manipulability measure, maximum force/torque capability of the manipulator at its end-effector, and maximum velocity capability of the manipulator, therefore improving the general kinetostatic performance of the manipulator. A modified global and posture-independent parameter of singularity (MPIPS) is presented, and a generic global optimization approach is proposed, using combined genetic algorithm (GA) and sequential quadratic programming (SQP). Different case studies are provided for a 3-DOF and a 6-DOF reconfigurable manipulator. Finally, a weighted objective function that balances between the opposing actions of the end effector velocity and force is proposed. The results are illustrated to demonstrate the performance of the generated manipulators, and are validated. Post-optimality analysis has also been conducted to investigate the sensitivity of the index to the variation in optimal parameters

    Virtual articulation and kinematic abstraction in robotics

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 279-292).This thesis presents the theory, implementation, novel applications, and experimental validation of a general-purpose framework for applying virtual modifications to an articulated robot, or virtual articulations. These can homogenize various aspects of a robot and its task environment into a single unified model which is both qualitatively high-level and quantitatively functional. This is the first framework designed specifically for the mixed real/virtual case. It supports arbitrary topology spatial kinematics, a broad catalog of joints, on-line structure changes, interactive kinostatic simulation, and novel kinematic abstractions, where complex subsystems are simplified with virtual replacements in both space and time. Decomposition algorithms, including a novel method of hierarchical subdivision, enable scaling to large closed-chain mechanisms with 100s of joints. Novel applications are presented in two areas of current interest: operating high- DoF kinematic manipulation and inspection tasks, and analyzing reliable kinostatic locomotion strategies based on compliance and proprioception. In both areas virtual articulations homogeneously model the robot and its task environment, and abstractions structure complex models. For high-DoF operations the operator attaches virtual joints as a novel interface metaphor to define task motion and to constrain coordinated motion (by virtually closing kinematic chains); virtual links can represent task frames or serve as intermediate connections for virtual joints. For compliant locomotion, virtual articulations model relevant compliances and uncertainties, and temporal abstractions model contact state evolution.(cont.) Results are presented for experiments with two separate robotic systems in each area. For high-DoF operations, NASA/JPL's 36 DoF ATHLETE performs previously challenging coordinated manipulation/inspection moves, and a novel large-scale (100s of joints) simulated modular robot is conveniently operated using spatial abstractions. For compliant locomotion, two experiments are analyzed that each achieve high reliability in uncertain tasks using only compliance and proprioception: a novel vertical structure climbing robot that is 99.8% reliable in over 1000 motions, and a mini-humanoid that steps up an uncertain height with 90% reliability in 80 trials. In both cases virtual articulation models capture the essence of compliant/proprioceptive strategies at a higher level than basic physics, and enable quantitative analyses of the limits of tolerable uncertainty that compare well to experiment.by Marsette Arthur Vona, III.Ph.D

    Planning dextrous robot hand grasps from range data, using preshapes and digit trajectories

    Get PDF
    Dextrous robot hands have many degrees of freedom. This enables the manipulation of objects between the digits of the dextrous hand but makes grasp planning substantially more complex than for parallel jaw grippers. Much of the work that addresses grasp planning for dextrous hands concentrates on the selection of contact sites to optimise stability criteria and ignores the kinematics of the hand. In more complete systems, the paradigm of preshaping has emerged as dominant. However, the criteria for the formation and placement of the preshapes have not been adequately examined, and the usefulness of the systems is therefore limited to grasping simple objects for which preshapes can be formed using coarse heuristics.In this thesis a grasp metric based on stability and kinematic feasibility is introduced. The preshaping paradigm is extended to include consideration of the trajectories that the digits take during closure from preshape to final grasp. The resulting grasp family is dependent upon task requirements and is designed for a set of "ideal" object-hand configurations. The grasp family couples the degrees of freedom of the dextrous hand in an anthropomorphic manner; the resulting reduction in freedom makes the grasp planning less complex. Grasp families are fitted to real objects by optimisation of the grasp metric; this corresponds to fitting the real object-hand configuration as close to the ideal as possible. First, the preshape aperture, which defines the positions of the fingertips in the preshape, is found by optimisation of an approximation to the grasp metric (which makes simplifying assumptions about the digit trajectories and hand kinematics). Second, the full preshape kinematics and digit closure trajectories are calculated to optimise the full grasp metric.Grasps are planned on object models built from laser striper range data from two viewpoints. A surface description of the object is used to prune the space of possible contact sites and to allow the accurate estimation of normals, which is required by the grasp metric to estimate the amount of friction required. A voxel description, built by ray-casting, is used to check for collisions between the object and the robot hand using an approximation to the Euclidean distance transform.Results are shown in simulation for a 3-digit hand model, designed to be like a simplified human hand in terms of its size and functionality. There are clear extensions of the method to any dextrous hand with a single thumb opposing multiple fingers and several different hand models that could be used are described. Grasps are planned on a wide variety of curved and polyhedral object

    Scaled Autonomy for Networked Humanoids

    Get PDF
    Humanoid robots have been developed with the intention of aiding in environments designed for humans. As such, the control of humanoid morphology and effectiveness of human robot interaction form the two principal research issues for deploying these robots in the real world. In this thesis work, the issue of humanoid control is coupled with human robot interaction under the framework of scaled autonomy, where the human and robot exchange levels of control depending on the environment and task at hand. This scaled autonomy is approached with control algorithms for reactive stabilization of human commands and planned trajectories that encode semantically meaningful motion preferences in a sequential convex optimization framework. The control and planning algorithms have been extensively tested in the field for robustness and system verification. The RoboCup competition provides a benchmark competition for autonomous agents that are trained with a human supervisor. The kid-sized and adult-sized humanoid robots coordinate over a noisy network in a known environment with adversarial opponents, and the software and routines in this work allowed for five consecutive championships. Furthermore, the motion planning and user interfaces developed in the work have been tested in the noisy network of the DARPA Robotics Challenge (DRC) Trials and Finals in an unknown environment. Overall, the ability to extend simplified locomotion models to aid in semi-autonomous manipulation allows untrained humans to operate complex, high dimensional robots. This represents another step in the path to deploying humanoids in the real world, based on the low dimensional motion abstractions and proven performance in real world tasks like RoboCup and the DRC

    Proceedings of the NASA Conference on Space Telerobotics, volume 2

    Get PDF
    These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    Proceedings of the NASA Conference on Space Telerobotics, volume 3

    Get PDF
    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    Proceedings of the NASA Conference on Space Telerobotics, volume 1

    Get PDF
    The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty
    corecore