465 research outputs found

    The quantum complexity of approximating the frequency moments

    Get PDF
    The kk'th frequency moment of a sequence of integers is defined as Fk=jnjkF_k = \sum_j n_j^k, where njn_j is the number of times that jj occurs in the sequence. Here we study the quantum complexity of approximately computing the frequency moments in two settings. In the query complexity setting, we wish to minimise the number of queries to the input used to approximate FkF_k up to relative error ϵ\epsilon. We give quantum algorithms which outperform the best possible classical algorithms up to quadratically. In the multiple-pass streaming setting, we see the elements of the input one at a time, and seek to minimise the amount of storage space, or passes over the data, used to approximate FkF_k. We describe quantum algorithms for F0F_0, F2F_2 and FF_\infty in this model which substantially outperform the best possible classical algorithms in certain parameter regimes.Comment: 22 pages; v3: essentially published versio

    A New Quantum Lower Bound Method, with Applications to Direct Product Theorems and Time-Space Tradeoffs

    Full text link
    We give a new version of the adversary method for proving lower bounds on quantum query algorithms. The new method is based on analyzing the eigenspace structure of the problem at hand. We use it to prove a new and optimal strong direct product theorem for 2-sided error quantum algorithms computing k independent instances of a symmetric Boolean function: if the algorithm uses significantly less than k times the number of queries needed for one instance of the function, then its success probability is exponentially small in k. We also use the polynomial method to prove a direct product theorem for 1-sided error algorithms for k threshold functions with a stronger bound on the success probability. Finally, we present a quantum algorithm for evaluating solutions to systems of linear inequalities, and use our direct product theorems to show that the time-space tradeoff of this algorithm is close to optimal.Comment: 16 pages LaTeX. Version 2: title changed, proofs significantly cleaned up and made selfcontained. This version to appear in the proceedings of the STOC 06 conferenc

    Wiring optimization explanation in neuroscience: What is Special about it?

    Get PDF
    This paper examines the explanatory distinctness of wiring optimization models in neuroscience. Wiring optimization models aim to represent the organizational features of neural and brain systems as optimal (or near-optimal) solutions to wiring optimization problems. My claim is that that wiring optimization models provide design explanations. In particular, they support ideal interventions on the decision variables of the relevant design problem and assess the impact of such interventions on the viability of the target system

    Element Distinctness, Frequency Moments, and Sliding Windows

    Full text link
    We derive new time-space tradeoff lower bounds and algorithms for exactly computing statistics of input data, including frequency moments, element distinctness, and order statistics, that are simple to calculate for sorted data. We develop a randomized algorithm for the element distinctness problem whose time T and space S satisfy T in O (n^{3/2}/S^{1/2}), smaller than previous lower bounds for comparison-based algorithms, showing that element distinctness is strictly easier than sorting for randomized branching programs. This algorithm is based on a new time and space efficient algorithm for finding all collisions of a function f from a finite set to itself that are reachable by iterating f from a given set of starting points. We further show that our element distinctness algorithm can be extended at only a polylogarithmic factor cost to solve the element distinctness problem over sliding windows, where the task is to take an input of length 2n-1 and produce an output for each window of length n, giving n outputs in total. In contrast, we show a time-space tradeoff lower bound of T in Omega(n^2/S) for randomized branching programs to compute the number of distinct elements over sliding windows. The same lower bound holds for computing the low-order bit of F_0 and computing any frequency moment F_k, k neq 1. This shows that those frequency moments and the decision problem F_0 mod 2 are strictly harder than element distinctness. We complement this lower bound with a T in O(n^2/S) comparison-based deterministic RAM algorithm for exactly computing F_k over sliding windows, nearly matching both our lower bound for the sliding-window version and the comparison-based lower bounds for the single-window version. We further exhibit a quantum algorithm for F_0 over sliding windows with T in O(n^{3/2}/S^{1/2}). Finally, we consider the computations of order statistics over sliding windows.Comment: arXiv admin note: substantial text overlap with arXiv:1212.437

    Quantum and Classical Strong Direct Product Theorems and Optimal Time-Space Tradeoffs

    Full text link
    A strong direct product theorem says that if we want to compute k independent instances of a function, using less than k times the resources needed for one instance, then our overall success probability will be exponentially small in k. We establish such theorems for the classical as well as quantum query complexity of the OR function. This implies slightly weaker direct product results for all total functions. We prove a similar result for quantum communication protocols computing k instances of the Disjointness function. Our direct product theorems imply a time-space tradeoff T^2*S=Omega(N^3) for sorting N items on a quantum computer, which is optimal up to polylog factors. They also give several tight time-space and communication-space tradeoffs for the problems of Boolean matrix-vector multiplication and matrix multiplication.Comment: 22 pages LaTeX. 2nd version: some parts rewritten, results are essentially the same. A shorter version will appear in IEEE FOCS 0

    Adversary Lower Bound for Element Distinctness with Small Range

    Full text link
    The Element Distinctness problem is to decide whether each character of an input string is unique. The quantum query complexity of Element Distinctness is known to be Θ(N2/3)\Theta(N^{2/3}); the polynomial method gives a tight lower bound for any input alphabet, while a tight adversary construction was only known for alphabets of size Ω(N2)\Omega(N^2). We construct a tight Ω(N2/3)\Omega(N^{2/3}) adversary lower bound for Element Distinctness with minimal non-trivial alphabet size, which equals the length of the input. This result may help to improve lower bounds for other related query problems.Comment: 22 pages. v2: one figure added, updated references, and minor typos fixed. v3: minor typos fixe

    Finding the Median (Obliviously) with Bounded Space

    Full text link
    We prove that any oblivious algorithm using space SS to find the median of a list of nn integers from {1,...,2n}\{1,...,2n\} requires time Ω(nloglogSn)\Omega(n \log\log_S n). This bound also applies to the problem of determining whether the median is odd or even. It is nearly optimal since Chan, following Munro and Raman, has shown that there is a (randomized) selection algorithm using only ss registers, each of which can store an input value or O(logn)O(\log n)-bit counter, that makes only O(loglogsn)O(\log\log_s n) passes over the input. The bound also implies a size lower bound for read-once branching programs computing the low order bit of the median and implies the analog of PNPcoNPP \ne NP \cap coNP for length o(nloglogn)o(n \log\log n) oblivious branching programs
    corecore