4 research outputs found

    Routing in Mobile Ad-Hoc Networks using Social Tie Strengths and Mobility Plans

    Full text link
    We consider the problem of routing in a mobile ad-hoc network (MANET) for which the planned mobilities of the nodes are partially known a priori and the nodes travel in groups. This situation arises commonly in military and emergency response scenarios. Optimal routes are computed using the most reliable path principle in which the negative logarithm of a node pair's adjacency probability is used as a link weight metric. This probability is estimated using the mobility plan as well as dynamic information captured by table exchanges, including a measure of the social tie strength between nodes. The latter information is useful when nodes deviate from their plans or when the plans are inaccurate. We compare the proposed routing algorithm with the commonly-used optimized link state routing (OLSR) protocol in ns-3 simulations. As the OLSR protocol does not exploit the mobility plans, it relies on link state determination which suffers with increasing mobility. Our simulations show considerably better throughput performance with the proposed approach as compared with OLSR at the expense of increased overhead. However, in the high-throughput regime, the proposed approach outperforms OLSR in terms of both throughput and overhead

    Fuzzy Based Optimal QoS Constraint Services Composition in Mobile Ad Hoc Networks

    Get PDF
    In recent years, computational capability of mobile devices such as Laptops, mobile phones, PDAs, etc., are greatly improved. Implementation of SOA ("Service Oriented Architectures") in mobile ad hoc networks increases the flexibility of using mobile devices. On composing different available services to satisfy end user requirement is a critical challenge in MANETs ("Mobile Ad Hoc Network") due to dynamic topology, Resource heterogeneity, Band width constraint and highly distributed service providers. Existing composition services approaches are not suitable for MANETs due to lack of constraints consideration while choosing services. In this paper, we proposed Fuzzy based optimal QoS constrained Service Composition in MANETs. We consider Energy constraint, hop count, Response time & service throughput as QoS Constraints composing optimal services. We proposed fuzzy logic based system to provide rating to the services for optimal selection of services. We also considered that each node can provide one or more services. The service composition failure rate will be reduced by selecting optimal services in available services. The simulation result demonstrates that the proposed method outperformed than the traditional AODV in terms of average packet delay, energy constraint, throughput and turnaround time

    Improving MANET routing with satellite out-of-band signaling

    Get PDF
    International audienceRouting in mobile ad hoc networks is a complex task due to the mobility of the nodes and the constraints linked to a wireless multihop network (e.g., limited bandwidth, collisions, and bit errors). These adverse conditions impair not only data traffic but also routing signaling traffic, which feeds route computation. In this contribution, we propose to use satellite communications to help in the distribution of mobile ad hoc network routing signaling. The optimized link-state routing (OLSR) is chosen among several routing protocols to be extended with satellite-based signaling, yielding a version we call OLSR hybrid signaling (OLSR-H). This new scheme is evaluated through simulations and yields improvements of approximately 10% in the data delivery ratio compared with a regular OLSR. This evaluation is conducted using two different network topology models, one being fit for representing forest firefighting operations

    Impacts of Mobility Models on RPL-Based Mobile IoT Infrastructures: An Evaluative Comparison and Survey

    Get PDF
    With the widespread use of IoT applications and the increasing trend in the number of connected smart devices, the concept of routing has become very challenging. In this regard, the IPv6 Routing Protocol for Low-power and Lossy Networks (PRL) was standardized to be adopted in IoT networks. Nevertheless, while mobile IoT domains have gained significant popularity in recent years, since RPL was fundamentally designed for stationary IoT applications, it could not well adjust with the dynamic fluctuations in mobile applications. While there have been a number of studies on tuning RPL for mobile IoT applications, but still there is a high demand for more efforts to reach a standard version of this protocol for such applications. Accordingly, in this survey, we try to conduct a precise and comprehensive experimental study on the impact of various mobility models on the performance of a mobility-aware RPL to help this process. In this regard, a complete and scrutinized survey of the mobility models has been presented to be able to fairly justify and compare the outcome results. A significant set of evaluations has been conducted via precise IoT simulation tools to monitor and compare the performance of the network and its IoT devices in mobile RPL-based IoT applications under the presence of different mobility models from different perspectives including power consumption, reliability, latency, and control packet overhead. This will pave the way for researchers in both academia and industry to be able to compare the impact of various mobility models on the functionality of RPL, and consequently to design and implement application-specific and even a standard version of this protocol, which is capable of being employed in mobile IoT applications
    corecore