1,247 research outputs found

    On formal aspects of the epistemic approach to paraconsistency

    Get PDF
    This paper reviews the central points and presents some recent developments of the epistemic approach to paraconsistency in terms of the preservation of evidence. Two formal systems are surveyed, the basic logic of evidence (BLE) and the logic of evidence and truth (LET J ), designed to deal, respectively, with evidence and with evidence and truth. While BLE is equivalent to Nelson’s logic N4, it has been conceived for a different purpose. Adequate valuation semantics that provide decidability are given for both BLE and LET J . The meanings of the connectives of BLE and LET J , from the point of view of preservation of evidence, is explained with the aid of an inferential semantics. A formalization of the notion of evidence for BLE as proposed by M. Fitting is also reviewed here. As a novel result, the paper shows that LET J is semantically characterized through the so-called Fidel structures. Some opportunities for further research are also discussed

    Hybrid type theory: a quartet in four movements

    Get PDF
    This paper sings a song -a song created by bringing together the work of four great names in the history of logic: Hans Reichenbach, Arthur Prior, Richard Montague, and Leon Henkin. Although the work of the first three of these authors have previously been combined, adding the ideas of Leon Henkin is the addition required to make the combination work at the logical level. But the present paper does not focus on the underlying technicalities (these can be found in Areces, Blackburn, Huertas, and Manzano [to appear]) rather it focusses on the underlying instruments, and the way they work together. We hope the reader will be tempted to sing along

    The Power of Naive Truth

    Get PDF
    While non-classical theories of truth that take truth to be transparent have some obvious advantages over any classical theory that evidently must take it as non-transparent, several authors have recently argued that there's also a big disadvantage of non-classical theories as compared to their “external” classical counterparts: proof-theoretic strength. While conceding the relevance of this, the paper argues that there is a natural way to beef up extant internal theories so as to remove their proof-theoretic disadvantage. It is suggested that the resulting internal theories should seem preferable to their external counterparts

    One-variable fragments of intermediate logics over linear frames

    Get PDF
    A correspondence is established between one-variable fragments of (first-order) intermediate logics defined over a fixed countable linear frame and Gödel modal logics defined over many-valued equivalence relations with values in a closed subset of the real unit interval. It is also shown that each of these logics can be interpreted in the one-variable fragment of the corresponding constant domain intermediate logic, which is equivalent to a Gödel modal logic defined over (crisp) equivalence relations. Although the latter modal logics in general lack the finite model property with respect to their frame semantics, an alternative semantics is defined that has this property and used to establish co-NP-completeness results for the one-variable fragments of the corresponding intermediate logics both with and without constant domains

    Fuzzy Description Logics with General Concept Inclusions

    Get PDF
    Description logics (DLs) are used to represent knowledge of an application domain and provide standard reasoning services to infer consequences of this knowledge. However, classical DLs are not suited to represent vagueness in the description of the knowledge. We consider a combination of DLs and Fuzzy Logics to address this task. In particular, we consider the t-norm-based semantics for fuzzy DLs introduced by Hájek in 2005. Since then, many tableau algorithms have been developed for reasoning in fuzzy DLs. Another popular approach is to reduce fuzzy ontologies to classical ones and use existing highly optimized classical reasoners to deal with them. However, a systematic study of the computational complexity of the different reasoning problems is so far missing from the literature on fuzzy DLs. Recently, some of the developed tableau algorithms have been shown to be incorrect in the presence of general concept inclusion axioms (GCIs). In some fuzzy DLs, reasoning with GCIs has even turned out to be undecidable. This work provides a rigorous analysis of the boundary between decidable and undecidable reasoning problems in t-norm-based fuzzy DLs, in particular for GCIs. Existing undecidability proofs are extended to cover large classes of fuzzy DLs, and decidability is shown for most of the remaining logics considered here. Additionally, the computational complexity of reasoning in fuzzy DLs with semantics based on finite lattices is analyzed. For most decidability results, tight complexity bounds can be derived

    A simple Henkin-style completeness proof for Gödel 3-valued logic G3

    Get PDF
    A simple Henkin-style completeness proof for Gödel 3-valued propositional logic G3 is provided. The idea is to endow G3 with an under-determined semantics (u-semantics) of the type defined by Dunn. The key concept in u-semantics is that of “under-determined interpretation” (u-interpretation). It is shown that consistent prime theories built upon G3 can be understood as (canonical) u-interpretations. In order to prove this fact we follow Brady by defining G3 as an extension of Anderson and Belnap’s positive fragment of First Degree Entailment Logic

    Synchronous Online Philosophy Courses: An Experiment in Progress

    Get PDF
    There are two main ways to teach a course online: synchronously or asynchronously. In an asynchronous course, students can log on at their convenience and do the course work. In a synchronous course, there is a requirement that all students be online at specific times, to allow for a shared course environment. In this article, the author discusses the strengths and weaknesses of synchronous online learning for the teaching of undergraduate philosophy courses. The author discusses specific strategies and technologies he uses in the teaching of online philosophy courses. In particular, the author discusses how he uses videoconferencing to create a classroom-like environment in an online class

    Gödel Description Logics

    Get PDF
    In the last few years there has been a large effort for analysing the computational properties of reasoning in fuzzy Description Logics. This has led to a number of papers studying the complexity of these logics, depending on their chosen semantics. Surprisingly, despite being arguably the simplest form of fuzzy semantics, not much is known about the complexity of reasoning in fuzzy DLs w.r.t. witnessed models over the Gödel t-norm. We show that in the logic G-IALC, reasoning cannot be restricted to finitely valued models in general. Despite this negative result, we also show that all the standard reasoning problems can be solved in this logic in exponential time, matching the complexity of reasoning in classical ALC
    • …
    corecore