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Abstract. A simple Henkin-style completeness proof for Gödel 3-valued
propositional logic G3 is provided. The idea is to endow G3 with an under-
determined semantics (u-semantics) of the type defined by Dunn. The
key concept in u-semantics is that of “under-determined interpretation”
(u-interpretation). It is shown that consistent prime theories built upon
G3 can be understood as (canonical) u-interpretations. In order to prove
this fact we follow Brady by defining G3 as an extension of Anderson and
Belnap’s positive fragment of First Degree Entailment Logic.
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1. Introduction

The aim of this paper is to present a simple Henkin-style completeness
proof for Gödel 3-valued propositional logic G3. As it is well-known,
Gödel logics were introduced in [9]. The aim of Gödel was simply to
show that intuitionistic logic does not have a characteristic finite matrix,
but Gödel logics are currently important, from several points of view,
non-classical logics (see, e.g., [2] on Gödel logics). The strategy of the
completeness proof we present is the following. Firstly, G3 is endowed
with an under-determined semantics (u-semantics, for short) of the type
defined by Dunn in [5, 7] (this semantics is briefly discussed below). The
key concept in this semantics is that of “under-determined interpreta-
tion” (u-interpretation, for short). A u-interpretation is a function from
the set of wffs to the set of proper subsets of the set {T, F} (T and F rep-
resent truth and falsity in the classical sense; cf. Definition 7). It is then
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shown that this u-semantics is equivalent to the standards G3-semantics
based upon the 3-valued matrix MG3 (cf. Definition 5). Finally, con-
sistent prime theories are used as canonical u-interpretations, and it is
shown that each non-theorem fails to belong to a consistent prime theory
(to a canonical u-interpretation). In order to prove that consistent prime
theories can be understood as u-interpretations, Brady’s method in [3] is
followed by axiomatizing G3 as an extension of Anderson and Belnap’s
positive fragment, FD+, of First Degree Entailment Logic (FD) (cf. [1]).

As it is known, Dunn provided long ago a bivalent semantics (with
“gaps” and “gluts”) for the logic FD (see [5, 7]). (These semantics go
back to Dunn’s doctoral dissertation [4], but, as remarked by Dunn him-
self ([5, p. 150]) essentially equivalent semantics are defined in [15] and
[18].) Then, after considerable time, Dunn resumed this semantics (now
with “gaps” and/or “gluts”) in [7] where he investigates some logics in
the vicinity of intuitionistic logic. The u-semantics in this paper only
allows “gaps”, not “gluts”, and differs from that in [7] in the following
aspects: (1) the interpretation of the conditional (missing, of course, in
[5]); (2) the interpretation of negation (cf. Remark 6 below); and, most
of all, in the following point: Dunn notes in [7, p. 5], concerning part of
the aims of his paper: “I investigate twelve natural extensions containing
nested implications, all of which can be viewed as coming from natural

variations on Kripke’s semantics for intuitionistic logic”. (The italics are
ours.) A similar remark could be applied to the results in [19] (where
G3 is precisely one of the logics treated), but not to the developments
in the present paper, that are instead related to the standard semantics
of propositional classical logic: the bivalent set of truth values and a set
of functions from the set of all wffs to this bivalent set. (The Deduction
Theorem is used nowhere in the sequel.)

The present paper connects G3 with relevant logics trough Dunn’s
under-determined semantics and Anderson and Belnap’s FD. And al-
though it is known since long ago that such connection exists (cf. [8], [1,
§29.4]), our results take it back to the most basic foundations of relevant
logics, FD and Dunn’s semantics for it.

The structure of the paper is as follows. In Section 2, the logic
G3(FD+) is defined and we prove some of its theorems to be used in
the following sections of the paper. In Section 3, we prove some facts
(essential in the completeness proofs) about prime theories and consis-
tent prime theories built upon G3(FD+). In Section 4, u-semantics for
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G3(FD+) (uG3-semantics) is defined. It is proved that this semantics is
equivalent to the standard semantics definable on the 3-valued matrix
MG3. In Section 5, simple (i.e., w.r.t. theoremhood) soundness and
completeness of G3(FD+) are proved. Finally, in Section 6, we prove

strong (i.e., w.r.t. deducibility) soundness and completeness of G3(FD+).
The paper is ended with a couple of remarks. The first one is on the
Routley and Meyer semantics; the second one, on the extension of the
present semantics.

2. The logic G3(FD
+

)

As remarked out in the preceding section, G3 can be axiomatized as an
extension of FD+, namely, the logic G3(FD+). In this section, we shall
define this logic and will record some of its theorems to be used in the
following sections. Firstly, we shall specify the logical language used in
the paper and then we shall define the logic FD+, the positive fragment
of the logic First Degree Entailments FD (see [1]).

Remark 1 (Language, logics). The propositional language consists of a
denumerable set of propositional variables p0, p1, . . . , pn, . . . , and some
or all of the following connectives: → (conditional), ∧ (conjunction), ∨
(disjunction) and ¬ (negation). The biconditional (↔) and the set of
wffs are defined in the customary way. A, B (possibly with subscripts
0, 1, . . . , n), etc., are metalinguisitic variables; we shall refer by P and
F to the set of all propositional variables and all formulas, respectively.
Except for the last section of the paper, we shall consider, from the
proof-theoretical point of view, propositional logics formulated in the
Hibert-style way. That is, formulated by means of a finite set of axioms
(actually, axiom schemes) and a finite set of rules of derivation. The
notions of “proof” and “theorem” are understood as it is customary
in Hilbert-style axiomatic systems. That is, a proof is a sequence of
formulas each one of which is an axiom or the result of applying any of
the rules to one or two more previous formulas in the sequence. And a
theorem is a proved formula. Let S be a logic. By ⊢S A it is indicated
that A is a theorem of S.

Definition 1 (The logic FD+). The logic FD+ is axiomatized as follows:
Axioms:

A1. A → A
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A2. (A ∧ B) → A and (A ∧ B) → B
A3. A → (A ∨ B) and B → (A ∨ B)
A4. [A ∧ (B ∨ C)] → [(A ∧ B) ∨ (A ∧ C)]

Rules

(Adj) A & B ⇒ A ∧ B Adjunction

(MP) A → B & A ⇒ B Modus Ponens

(Trans) A → B & B → C ⇒ A → C Transitivity

(CI∧) A → B & A → C ⇒ A → (B ∧ C)
Conditioned introduction of conjunction

(E∨) A → C & B → C ⇒ (A ∨ B) → C Elimination of disjunction

Remark 2 (On the definition of FD+). We have defined FD+ following
[17, §4.3, pp. 51–52], but dropping T , F , t, ◦ and the rules establishing
the antisymmetry of →. The present definition of FD+ differs from the
classical one in [1, p. 158] in the addition of the rules Adj and MP. These
rules are added (as in [17]) in order to extend FD+.

The following, provable in FD+ will be useful:

T1. [A ∧ (B ∧ C)] → [(A ∧ B) ∧ (A ∧ C)]
T2. [(A ∨ B) ∧ (C ∧ D)] → [(A ∧ C) ∨ (B ∧ D)]
R∧. A → C & B → D ⇒ (A ∧ B) → (C ∧ D)

Consider now the axioms that follow:

A5. [(A → B) ∧ A] → B
A6. A → (B → A)
A7. (A → ¬B) → (B → ¬A)
A8. ¬(A ∧ B) → (¬A ∨ ¬B)
A9. ¬A → (A → B)

A10. (A ∨ ¬B) ∨ (A → B)

The logic G3(FD+) (Gödel 3-valued logic G3 built upon FD+) is de-
fined as follows:

Definition 2 (G3(FD+)). The logic G3(FD+) is axiomatized by adding
A5–A10 to FD+.

On the axiomatization of G3(FD+), we have the following remark and
proposition:

Remark 3 (On the axiom A10). The axiom A10 originates in [11], as a
referee of the LLP has called to our attention.
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Proposition 1 (On the axiomatization of G3(FD+)). Given the logic
FD+, the axioms A5–A10 are independent from each other.

Proof. See Appendix 1. ⊣

Therefore, G3(FD+) is well-axiomatized w.r.t. FD+. Next, we shall
record some theorems and rules of this logic. We note that the following
are provable in G3(FD+) (a proof is sketched to the right of each one of

them).

T3. A → ¬¬A A1, A7
Con A → B ⇒ ¬B → ¬A A7, T3
T4. A → (¬A → B) A9, T3
T5. (A ∧ ¬A) → B A5, A9
T6. ¬¬(A → A) A1, T3
T7. ¬(A ∧ ¬A) T5, T6, Con
T8. ¬A ∨ ¬¬A T7, A8
T9. ¬(A → B) → ¬¬A A9, Con

T10. ¬(A ∨ B) ↔ (¬A ∧ ¬B) Con, A7
T11. ¬(A ∧ B) ↔ (¬A ∨ ¬B) A8, Con
T12. ¬(A → B) → ¬B A6, Con
T13. ¬B → [¬A ∨ ¬(A → B)] A5, T11, Con

3. Theories, primeness, consistency

In this section, we shall prove some facts about prime and consistent
prime theories built upon the logic G3(FD+). We begin by defining the
notion of a theory.

Definition 3 (Theories). A theory is a set of formulas closed under
Adjunction (Adj) and G3(FD+)-implication (G3(FD+)-imp). That is, a
is a theory iff if whenever A, B ∈ a, then A ∧ B ∈ a, and if whenever
A → B is a theorem of G3(FD+) and A ∈ a, then B ∈ a.

The following definition classifies G3(FD+)-theories into different spe-
cial classes.

Definition 4 (Prime and consistent prime theories). Let a be a theory.
We set: (1) a is prime iff if A ∨ B ∈ a, then A ∈ a or B ∈ a; (2) a is
inconsistent iff for some wff A, A ∧ ¬A ∈ a. Then, a is consistent iff it is
not inconsistent.
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Next, we prove an easy but very useful proposition, immediate by
using A5 and A6.

Proposition 2 (Closure of theories under MP and Veq). Any theory
a is closed under MP and Veq. That is, for any A, B ∈ F , (1) if
A → B ∈ a and A ∈ a, then B ∈ a; (2) if A ∈ a, then B → A ∈ a. (Veq
is an abbreviation for “Verum e quodlibet”  “a true proposition follows
from any proposition”.)

Moreover, by T5, we obtain:

Proposition 3 (Closure under Ecq). Any theory is closed under Ecq.
That is, if A ∧ ¬A ∈ a, then B ∈ a. (Ecq is an abbreviation for “E con-
tradictione quodlibet”  “any proposition follows from a contradiction”.)

Remark 4 (Regular, complete theories). Notice that any non-empty the-
ory contains all theorems of G3(FD+), that is, it is regular (by closure

under Veq); but, on the other hand, non-empty theories are not, in
general, complete since the “Principium of Excluded Middle” is provable
in G3(FD+) only in the restricted form ¬A ∨ ¬¬A (T8).

Next, we prove some properties of prime theories. Firstly, we shall
prove the primeness lemma.

Lemma 1 (Extension to consistent prime theories). Let a be a theory
and A a wff such that A /∈ a. Then, there is a consistent prime theory x
such that a ⊆ x and A /∈ x.

Proof. We prove Lemma 1 for any extension S of FD+ with T5 as
a theorem. Assume the hypothesis of Lemma 1. Next, extend a to a
maximal S-theory x such that a ⊆ x and A /∈ x. Now, suppose that
x is not prime. Then, B ∨ C ∈ x, B /∈ x, C /∈ x for some wffs B,
C. Define the set [x, B] = {D : ∃F [F ∈ x and ⊢S (B ∧ F ) → D]};
define [x, C] similarly. Then, we have: (1) [x, B] and [x, C] are closed
under S-imp (cf. Definition 3): by Trans. (2) [x, B] and [x, C] are closed
under (Adj): by (R∧), T1 and Trans. Therefore, [x, B] and [x, C] are
S-theories. Moreover: (3) x ⊂ [x, B] and x ⊂ [x, C]: by A2 and the
supposition that B /∈ x and C /∈ x. Now, as x is the maximal S-theory
without A, we are entitled to conclude: (4) A ∈ [x, B] and A ∈ [x, C].
But then: A ∈ x (by T2 and Trans), which is impossible. Consequently,
x is prime. Finally, x is -consistent: immediate by Proposition 3. ⊣
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It what follows we shall prove the basic properties of conjunction,
disjunction and negation in prime theories. By T3 and T8, respectively,
we obtain:

Lemma 2 (Theories, prime theories and double negation). Let A be a
wff. Then, (1) for any theory a, if A ∈ a, then ¬¬A ∈ a. (2) For any
prime theory a, ¬A ∈ a or ¬¬A ∈ a.

Lemma 3 (Conjunction and disjunction in prime theories). Let a be a
prime theory and A, B ∈ F . Then, (1) (a) A ∧ B ∈ a iff A ∈ a and
B ∈ a; (b) ¬(A ∧ B) ∈ a iff ¬A ∈ a or ¬B ∈ a; (2) (a) A ∨ B ∈ a iff
A ∈ a or B ∈ a; (b) ¬(A ∨ B) ∈ a iff ¬A ∈ a and ¬B ∈ a.

Proof. The case (1a) follows by A2 and the fact that a is closed under
(Adj). The case (1b) follows by T11 and the fact that a is prime. The
case (2a): by A3 and the fact that a is prime. The case (2b): by T10
and the fact that a is closed under (Adj). ⊣

Finally, in the lemma that follows we shall establish the behavior of
the conditional in consistent prime theories.

Lemma 4 (The → in consistent prime theories). Let a be a consistent
prime theory and A, B ∈ F . Then, (1) A → B ∈ a iff ¬A ∈ a or B ∈ a
or (A /∈ a and ¬B /∈ a); (2) ¬(A → B) ∈ a iff ¬A /∈ a and ¬B ∈ a.

Proof. Let a be a consistent prime theory.
(1) (a) A → B ∈ a ⇒ ¬A ∈ a or B ∈ a or (A /∈ a & ¬B /∈ a):
Suppose that A and B are wffs such that A → B ∈ a and, for

reductio, (i) ¬A /∈ a & B /∈ a & A ∈ a or (ii) ¬A /∈ a & B /∈ a &
¬B ∈ a. Now the first alternative is impossible: as a is closed under
MP (Proposition 2(1)), B ∈ a. But B /∈ a. Then, the second one is
impossible as well: by T13, ¬B → [¬A ∨ ¬(A → B)]. So, ¬A ∨ ¬(A →
B) ∈ a, whence ¬A ∈ a or ¬(A → B) ∈ a. By hypothesis, ¬A /∈ a. So,
¬(A → B) ∈ a, contradicting the consistency of a.

(b) [(¬A ∈ a or B ∈ a) or (A /∈ a & ¬B /∈ a)] ⇒ A → B ∈ a:
Let ¬A ∈ a. By A9, ¬A → (A → B). So, A → B ∈ a. Next, let

B ∈ a. Then, A → B ∈ a, as a is closed under Veq (Proposition 2(2)).
Finally, let A /∈ a and ¬B /∈ a. Then, by A10, (A ∨ ¬B) ∨ (A → B). So,
A → B ∈ a.

(2) (a) ¬(A → B) ∈ a ⇒ (¬A /∈ a & ¬B ∈ a):
Suppose that A and B are wffs such that ¬(A → B) ∈ a. By T12,

¬(A → B) → ¬B. So, ¬B ∈ a. Now, suppose for reductio ¬A ∈ a. By
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T9, ¬(A → B) → ¬¬A. Then ¬¬A ∈ a contradicting the consistency
of a. Therefore, ¬A /∈ a, and thus ¬A /∈ a and ¬B ∈ a, as was to be
proved.

(b) (¬A /∈ a & ¬B ∈ a) ⇒ ¬(A → B) ∈ a:
Suppose that A and B are wffs such that ¬A /∈ a and ¬B ∈ a. By

T13, ¬B → [¬A ∨ ¬(A → B)]. So, ¬(A → B) ∈ a. ⊣

4. U-semantics for G3(FD
+

)

In this section we provide an underdetermined semantics for G3. We
begin by recalling the 3-valued matrix MG3.

Definition 5 (The 3-valued matrice MG3). Let S3 be the set {0, 1
2 , 1}

and 1 is the only designated value. Then, the 3-valued matrix MG3 is
defined by the following truth tables:

→ 0 1
2 1

0 1 1 1
1
2 0 1 1
1 0 1

2 1

∧ 0 1
2 1

0 0 0 0
1
2 0 1

2
1
2

1 0 1
2 1

∨ 0 1
2 1

0 0 1
2 1

1
2

1
2

1
2 1

1 1 1 1

¬

0 1
1
2 0
1 0

Given MG3, interpretations and validity are defined as follows.

Definition 6 (Interpretations, validity). A G3-interpretation, I, is a
function from F to S3 according to the truth tables in MG3. Then, a
wff is G3-valid (in symbols �G3 A) iff I(A) = 1 for all G3-interpretations
I. A rule of derivation A1, ..., An ⇒ B preserves G3-validity iff B is
G3-valid if each Ai (1 6 i 6 n) is G3-valid.

Next, we define the general concept of u-semantics. Consider the
following definitions where T and F represent the logical truth values
truth and falsity in the classical sense.

Definition 7 (U-interpretations). Let K be the set {T, F} and Ku be
the set of all proper subsets of K; that is, Ku is the set {{T}, {F}, ∅}. A
u-interpretation (under-determined interpretation) I is a function from
F to Ku.

Definition 8 (U-structures). A u-structure (under-determined struc-
ture), Su, is a pair (Ku, Iu) where Ku is as in Definition 7 and Iu is a
class of interpretations.
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Definition 9 (U-semantics). A u-semantics (under-determined seman-
tics), Σu, is a pair (Su, �u) where Su is a u-structure and �u is a (valu-
ation) relation such that for any A ∈ F , A is u-valid (in symbols, �u A)
iff T ∈ I(A) for all I in Iu.

Remark 5 (On the value of wffs in u-semantics). Let Σu be a u-semantics
and I ∈ Iu. Notice that if T ∈ I(A) (F ∈ I(A)), then F /∈ I(A)
(T /∈ I(A)), but the converse does not hold generally: A can be assigned
neither {T} nor {F}.

We shall provide u-semantics (uG3-semantics) for G3(FD+). More

precisely, it will be proved that uG3-validity (as defined in this uG3-
semantics) and G3-validity (defined on the matrix MG3. Cf. Definition
6) are coextensive in the sense that a wff A is uG3-valid iff A is G3-valid.
Then, in the next section it will be proved that G3(FD+) is sound and
complete w.r.t. uG3-validity and, consequently, w.r.t. G3-validity.

Firstly, uG3-semantics is defined:

Definition 10 (UG3-semantics). A uG3-semantics is the u-semantics
(Ku, IuG3,�uG3) where IuG3 is the set of all uG3-interpretations, a uG3-
interpretation I being defined according to the following conditions for
each p ∈ P and A, B ∈ F , (1) I(p) ∈ Ku; (2) (a) T ∈ I(¬A) iff
F ∈ I(A); (b) F ∈ I(¬A) iff T ∈ I(A) or F /∈ I(A); (3) (a) T ∈ I(A∧B)
iff T ∈ I(A) and T ∈ I(B); (b) F ∈ I(A ∧ B) iff F ∈ I(A) or F ∈ I(B);
(4) (a) T ∈ I(A ∨ B) iff T ∈ I(A) or T ∈ I(B); (b) F ∈ I(A ∨ B)
iff F ∈ I(A) and F ∈ I(B); (5) (a) T ∈ I(A → B) iff F ∈ I(A) or
T ∈ I(B) or (T /∈ I(A) and F /∈ I(B)); (b) F ∈ I(A → B) iff F /∈ I(A)
and F ∈ I(B).

Then uG3-validity is defined following Definition 9: A is uG3-valid
(in symbols �uG3 A) iff T ∈ I(A) for all uG3-interpretations I. Finally,
a rule A1 & A2 & ... & An ⇒ B preserves uG3-validity iff B is
uG3-valid if each Ai (1 6 i 6 n) is uG3-valid.

Remark 6 (Alternative interpretation of negation). We note that nega-
tion is interpreted in [5, 7, 13] as follows: by clause (2a) and the following
clause (2b′) instead of (2b): F ∈ I(¬A) iff T ∈ I(A).

Next, we shall put in correspondence uG3-interpretations and G3-
interpretations.

Definition 11 (Corresponding uG3- and G3-interpretations). Let IG3

be a G3-interpretation (cf. Definition 6). Then, a uG3-interpretation



380 Gemma Robles

Iu is defined as follows: for each p ∈ P, we set: (1) Iu(p) = {T} iff
IG3(p) = 1; (2) Iu(p) = ∅ iff IG3(p) = 1

2 ; (3) Iu(p) = {F} iff IG3(p) = 0.
Next, Iu assigns {T}, {F} or ∅ to each A ∈ F according to conditions

2-5 in Definition 10. It is said then that Iu is the corresponding uG3-
interpretation to IG3.

On the other hand, suppose given a uG3-interpretation Iu. The
G3-interpretation IG3 corresponding to Iu is defined in a similar way.
Therefore, given a uG3-interpretation (G3-interpretation) it is always
possible to define the corresponding G3-interpretation (uG3-interpreta-
tion).

Now, it can be proved that uG3-validity and G3-validity are coex-
tensive concepts by leaning on:

Lemma 5 (Isomorphism of uG3- and G3-interpretations). Let IG3 (Iu)
be a G3-interpretation (uG3-interpretation) and Iu (IG3) its correspond-
ing uG3-interpretation (G3-interpretation) as defined in Definition 11.
Then, for each wff A, it is proved: (1) Iu(A) = {T} iff IG3(A) = 1; (2)
Iu(A) = ∅ iff IG3(A) = 1

2 ; (3) Iu(A) = {F} iff IG3(A) = 0.

Proof. By an easy induction on the length of A (the proof is left to
the reader). ⊣

Immediate by definitions 6 and 10, and Lemma 5 we obtain:

Theorem 1 (Coextensiveness of uG3-validity and G3-validity).
For every wff A, �uG3 A iff �G3 A.

5. Soundness and completeness of G3(FD
+

)

In this section we will prove the soundness and completeness of G3(FD+)

w.r.t. G3-validity. Actually, we shall prove soundness w.r.t. G3-validity
and completenes w.r.t. uG3-validity, which is easier than a direct axiom-
atization of MG3. Then, leaning on the coextensiveness theorems in the
preceding section, it will be shown that G3(FD+) is sound and complete
w.r.t., equivalently G3-validity and uG3-validity. As pointed out above,
the strategy of the completeness proofs is to define u-interpretations via
consistent prime theories by using the results in Section 3.

We begin by proving soundness.

Theorem 2 (Soundness of G3(FD+) w.r.t. G3-validity). For every wff A,
if ⊢G3(FD+)

A, then �G3 A.
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Proof. It is easy to check that the axioms of G3(FD+) are G3-valid and

that the rules of derivation of G3(FD+) preserve G3-validity (in case a

tester is needed, the reader can use MaTest (cf. [10]). ⊣

We now proceed into proving the completeness of G3(FD+). We begin
by defining the concept of an interpretation induced by a prime theory
(a T -interpretation). Then, we shall define the class of T -interpretations
we are interested in in this paper.

Definition 12 (T -interpretations). Let K be the set {T, F}, as above,
and T be a prime theory. A T -interpretation, I, is a function from F to
K such that for each A ∈ F , (1) T ∈ I(A) iff A ∈ T ; (2) F ∈ I(A) iff
¬A ∈ T .

Definition 13 (T u
G3-interpretations). Let Ku be the set {{T}, {F}, ∅},

as in Definition 7 and let T be a consistent prime G3(FD+)-theory. A
T u

G3-interpretation, I, is a function from F to Ku defined as follows. For
each p ∈ P, we set: (a) T ∈ I(p) iff p ∈ T ; (b) F ∈ I(p) iff ¬p ∈ T .
Next, I assigns {T}, {F} or ∅ to each A ∈ F according to conditions 2–5
in Definition 10.

Next, we shall prove that T u
G3-interpretations are actually T -inter-

pretations.

Lemma 6 (T u
G3-interpretations are T -interpretations). Let I be a T u

G3
-

interpretation. Then, I is indeed a T -interpretation.

Proof. Let I be a T u
G3-interpretation. We prove, for any wff A, condi-

tions 1 and 2 in Definition 12. The proof is by induction on the length of
A (the clauses cited in points 2–5 below refer to clauses in Definition 10.
“H.I.” abbreviates “hypothesis of induction”).

(a) A is a propositional variable: By conditions a and b in Defini-
tion 13.

(b) A is of the form ¬B: (i) T ∈ I(¬B) iff (clause 2a) F ∈ I(B) iff
(H.I.) ¬B ∈ T . (ii) F ∈ I(¬B) iff (clause 2b) T ∈ I(B) or F /∈ I(B) iff
(H.I.) B ∈ T or ¬B /∈ T . Now if B ∈ T or ¬B /∈ T , then ¬¬B ∈ T
follows by Lemma 2(1) and Lemma 2(2); and if ¬¬B ∈ T then B ∈ T
or ¬B /∈ T follows by the consistency of T . Consequently, F ∈ I(¬B)
iff ¬¬B ∈ T , as was to be proved.

(c) A is of the form B ∧ C: (i) T ∈ I(B ∧ C) iff (clause 3a) T ∈ I(B)
and T ∈ I(C) iff (H.I.) B ∈ T and C ∈ T iff (Lemma 3(1a)) B ∧ C ∈ T .
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(ii) F ∈ I(B ∧ C) iff (clause 3b) F ∈ I(B) or F ∈ I(C) iff (H.I) ¬B ∈ T
or ¬C ∈ T iff (Lemma 3(1b)) ¬(B ∧ C) ∈ T .

(d) A is of the form B ∨ C: Similar to c by using clause 4a, 4b and
Lemma 3(2).

(e) A is of the form B → C: (i) T ∈ I(B → C) iff (clause 5a)
F ∈ I(B) or T ∈ I(C) or (T /∈ I(B) and F /∈ I(C)) iff (H.I.) ¬B ∈ T
or C ∈ T or (B /∈ T and ¬C /∈ T ) iff (Lemma 4(1)) B → C ∈ T .
(ii) F ∈ I(B → C) iff (clause 5b) F /∈ I(B) and F ∈ I(C) iff (H.I.)
¬B /∈ T and ¬C ∈ T iff (Lemma 4(2)) ¬(B → C) ∈ T . ⊣

Once that it has been proved that T u
G3-interpretations are in fact T -

interpretations, we have to explain how T -interpretations are related to
uG3-interpretations. Then, we shall prove completeness.

Lemma 7 (uG3-interpretations and T -interpretations). If I is a T u
G3-

interpretation, then I is a uG3-interpretation.

Proof. Suppose that I is a T u
G3-interpretation. Firstly, notice that as

T is consistent, each propositional variable p is assigned {T} or {F}
but not both. Then, it follows by definitions 10 and 13 that I is a
uG3-interpretation. ⊣

We can now prove the completeness theorems.

Theorem 3 (Completeness of G3(FD+)). For any wff A, if �u
G3 A, then

⊢G3(FD+)
A. (Completeness of G3(FD+) w.r.t. uG3-validity).

Proof. Suppose 0G3(FD+)
A for some wff A and let G3(FD+) be the set

of its theorems. By Lemma 1, there is a (regular) consistent prime theory
T such that G3(FD+) ⊆ T and A /∈ T . By Definition 13 and Lemma 6,

we have a T u
G3-interpretation I such that for any wff B, T ∈ I(B) iff

B ∈ T . So, T /∈ I(A), and since I is a uG3-interpretation (Lemma 7),
2

u
G3 A, by Definition 10. ⊣

To end this section we shall record a couple of corollaries.

Corollary 1 (Soundness and completeness w.r.t. G3-validity). For any
wff A, �G3 A iff ⊢G3(FD+)

A.

Proof. By Theorem 1, Theorem 2 and Theorem 3. ⊣

Corollary 2 (Soundness and completeness w.r.t. �uG3). For any wff A,
�uG3 A iff ⊢G3(FD+)

A.

Proof. Immediate. It follows by Theorem 1 and Corollary 1. ⊣
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6. Strong soundness and completeness of G3(FD
+

)

So far, we have been concerned with G3 viewed as the set of its the-
orems. Or, given the completeness theorems in the precedent section,
viewed as the set of all valid formulas. In this section, however, G3
shall be understood in a more general way as a logic determined by a
consequence relation. Firstly, we define this (standard) relation. Un-
less otherwise stated, let Γ and A refer to any set of wffs and a wff,
respectively, throughout this section.

Definition 14 (Deriving consequences from premises in G3(FD+)).

Γ ⊢G3(FD+)
A (“A is derivable from the set of premises Γ in G3(FD+)”)

iff there is a finite sequence of wffs B1, ..., Bn such that Bn is A and for
each Bi (1 6 i 6 n) one of the following is the case: (1) Bi ∈ Γ; (2) Bi is
an axiom of G3(FD+); (3) Bi is the result of applying any of the primitive
rules of derivation of G3(FD+) to one or more previous formulas in the
sequence.

Next, we shall prove the “strong soundness” of G3(FD+).

Theorem 4 (Strong soundness of G3(FD+) w.r.t. �G3). If Γ ⊢G3(FD+)
A,

then Γ �G3 A.

Proof. It is easy by induction on the length of the proof of A from Γ.
If A ∈ Γ, the proof is trivial, and if A is an axiom, A is G3-valid by
Theorem 2. Next, it is clear that Adj is truth-preserving, and, on the
other hand, it is easily checked that the theses corresponding to the rest
of the rules, (that is, [(A → B) ∧ A] → B (MP), [(A → B) ∧ (B →
C)] → (A → C) (Trans), [(A → B) ∧ (A → C)] → [A → (B ∧ C)] (CI∧),
[(A → C)∧(B → C)] → [(A∨B) → C] (E∨)) are G3-valid. So, each one
of these rules preserves truth. Consequently, for any G3-interpretation
I, if I(Γ) = 1, then I(A) = 1, as it was to be proved. ⊣

In the sequel, we prove strong completeness of G3(FD+) w.r.t. the u-

determined relation �u1
G3 that will be defined below. We begin by defining

two different consequence relations on MG3. Then, u-interpretations of
sets of wffs are also defined. Finally, we prove that uG3-interpretations
and G3-interpretations of sets of wffs are isomorphic.

Definition 15 (U-interpretations of sets of wffs). Let Σu be a u-seman-
tics and I a u-interpretation in Iu (cf. Definition 10). Then, (1) T ∈ I(Γ)
iff ∀A ∈ Γ(T ∈ I(A)); (2) F ∈ I(Γ) iff ∃A ∈ Γ(F ∈ I(A)).
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In the case of many-valued logics, there are essentially two ways of
defining consequence relations: truth-preserving and degree of truth-
preserving relations, which regarding the logic treated in this paper can
be defined as shown below. Firstly, G3-interpretations of sets of wffs are
defined.

Definition 16 (G3-interpretations of sets of wffs). Let I be an arbitrary
G3-interpretation. Then, I(Γ) = inf{I(A) : A ∈ Γ}.

Definition 17 (Truth-preserving consequence relation). Γ �1
G3 A iff if

I(Γ) = 1, then I(A) = 1 for each G3-interpretation I.

Definition 18 (Degree of truth-preserving consequence relation).
Γ �<

G3 A iff I(Γ) 6 I(A) for each G3-interpretation I.

We shall refer by the symbols �1
G3, �<

G3 to the relations just defined.
These two ways of understanding the notion of semantical consequence in
many-valued logics are not in general equivalent. For example, they are
not equivalent in the case of Łukasiewicz logics; but G3 is a remarkable
case in which �1

G3 and �<

G3 are equivalent relations. This fact is recorded
in the proposition that follows.

Proposition 4 (Equivalence of �1
G3 and �<

G3). Γ �1
G3 A iff Γ �<

G3 A.

Proof. Cf., e.g., [2, Proposition 2.15]. ⊣

Given that �1
G3 and �<

G3 are equivalent, we shall dispense from now
on with, say, �<

G3.

Proposition 5 (Isomorphism of G3- and uG3-interpr. of sets of wffs).
Let IG3 (Iu) be a G3-interpretation (uG3-interpretation) and Iu (IG3) its
corresponding uG3-interpretation (G3-interpretation). Then, we have,
(1) Iu(Γ) = {T} iff IG3(Γ) = 1; (2) Iu(Γ) = ∅ iff IG3(Γ) = 1

2 ; (3)
Iu(Γ) = {F} iff IG3(Γ) = 0.

Proof. Immediate by Lemma 5, Definition 15 and Definition 16. ⊣

We can now define an under-determined relation that is immediately
proved to be coextensive with �1

G3.

Definition 19 (Under-determined �u1
G3-relation). Γ �u1

G3 A iff if T ∈
I(Γ), then T ∈ I(A) for all uG3-interpretations I.

Proposition 6 (Coextensiveness of �u1
G3 and �1

G3). Γ �1
G3 A iff Γ �u1

G3 A.

Proof. Immediate by definitions 17 and 19, and Proposition 5. ⊣
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Turning to the proof-theoretical side, we need the standard concept
of “set of consequences of a set of wffs” that is defined as follows.

Definition 20 (The set of consequences in G3 of a set of wffs). The set
CnΓ[G3] (“The set of all consequences of Γ in G3”) is defined as follows:
CnΓ[G3] = {A : Γ ⊢G3(FD+)

A}.

The most useful fact concerning CnΓ[G3] is recorded in:

Proposition 7 (CnΓ[G3] is a theory). The set CnΓ[G3] (i.e., the set
{A : Γ ⊢G3(FD+)

A}) is a G3-theory.

Proof. It is trivial that CnΓ[G3] is closed under (Adj) and (MP), and
it is clear, by definitions 2 and 14, that CnΓ[G3] contains all theorems of
G3(FD+). Finally, CnΓ[G3] is closed under G3(FD+)-imp, since it contains

all theorems and is closed under MP. Consequently, CnΓ[G3] is a theory.
⊣

The facts recorded so far in this section suffice to prove completeness.

Theorem 5 (Strong completeness of G3(FD+) w.r.t. �u1
G3). If Γ �u1

G3 A,
then Γ ⊢G3(FD+)

A.

Proof. Suppose, for some set of wffs Γ and wff A, Γ 0G3(FD+)
A. Then,

A /∈ CnΓ[G3] (by Definition 20). And since CnΓ[G3] is a G3-theory, by
Lemma 1, there is a consistent prime theory T such that CnΓ[G3] ⊆ T
and A /∈ T . By Definition 13, Lemma 6 and Lemma 7, T induces a
uG3-interpretation I such that for any wff B, T ∈ I(B) iff B ∈ T . Now,
Γ ⊆ T (Γ ⊆ CnΓ[G3]). So, T ∈ I(Γ) (cf. Definition 15). And, on the
other hand, T /∈ I(A). Therefore, Γ 2

u1
G3 A, by Definition 19, as it was

to be proved. ⊣

We note a couple of corollaries.

Corollary 3 (Strong sound. and compl. of G3(FD+) w.r.t. �1
G3 and

�u1
G3). (1) Γ �1

G3 A iff Γ ⊢G3(FD+)
A; (2) Γ �u1

G3 A iff Γ ⊢G3(FD+)
A.

Proof. (1) immediate by theorems 4 and 5, and Proposition 6. (2) By
(1) and Proposition 6. ⊣

Corollary 4 (Strong sound. and compl. of G3(FD+) w.r.t. �<
G3).

Γ �<

G3 A iff Γ ⊢G3(FD+)
A.

Proof. Immediate by Proposition 4 and Corollary 3(2). ⊣
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The paper is ended with a couple of remarks. The first one is on
the Routley and Meyer semantics; the second one, on the extension of
the present semantics. As it is well-known, the Routley-Meyer semantics
(RM-semantics) were devised in the early seventies of the past century
for interpreting relevant logics (cf. [16] and references therein). The RM-
semantics can modelize a wealth of logics; actually, a wide spectrum of
logics provided the basic positive logic B+ is included in each one of
them. The logic B+ is axiomatized as follows: A1–A4, (Adj) and (MP)
(cf. Section 2) and the following axioms and rules:

[(A → B) ∧ (A → C)] → [A → (B ∧ C)]
[(A → C) ∧ (B → C)] → [(A ∨ B) → C]
A → B ⇒ (B → C) → (A → C) Suffixing
B → C ⇒ (A → B) → (A → C) Prefixing

Now, since G3 can be axiomatized by extending FD+, this logic can
be axiomatized by extending B+. G3 can in particular be formulated
with independent axioms by adding A5, A6, A7, A9 and A10 (A8 is not
independent) to B+. Then, it seemed worth it to try and provide a RM-
semantics for G3. This aim was fulfilled and the results recorded in [12],
but we do not have room here to discuss it. Let us only point out that
the (simple) RM-semantics for G3 has, we think, some interest because
it provides means for comparing G3 and logics of similar structure to
relevant logics from the perspective of the latter, the RM-semantics.

Turning to the extension of the semantics, we remark that it can
be used for modelling other logics by varying the interpretation of the
conditional and/or the negation. Actually, as pointed out above, in [7]
some logics in the vicinity of intuitionistic logic are interpreted; in [6], the
quasi-relevant logic R-Mingle and in [3], the relevant logic BN4 and the
quasi relevant logic RM3 (an extension of R-Mingle); in [14], Łukasiewicz
3-valued logic Ł3. Finally, in [13], the logic G3<

Ł , a paraconsistent logic
akin to G3. But, in none of the aforementioned papers (except in [13]),
the logics under consideration have been defined from FD+. However,
it is to be expected that the pattern set in [13] and in this paper can
be used for defining different logics by introducing interpretations of
the conditional and/or the negation in bivalent semantics with “gaps”
and/or “gluts” of the type we have considered here.
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A. Appendix. Independence in G3(FD
+

)

All matrices that follow are such that:

1. A total order 0 6 1 6 · · · 6 n is defined on the set of truth values
V = {0, 1, ..., n}. (Except in one case as pointed out below.)

2. For all a, b ∈ V, a ∨ b and a ∧ b are understood as max{a, b} and
min{a, b}, respectively.

3. Designated values are starred.
4. The six matrices verify FD+ plus five of the six axioms A5–A10

whereas falsifying the sixth one.
5. Each one of the matrices is the simplest one supporting its respective

claim. These matrices have been found by using MaGIC, the matrix
generator developed by John Slaney (see [17]). In case a tester is
needed, the reader may use that in [10].

Independence of A5–A10 w.r.t. FD+:

Matrix I. Independence of A5 :

→ 0 1 2 ¬
0 2 2 2 2
1 1 2 2 1
*2 0 1 2 0

Falsifies A5 (v(A) = 1, v(B) = 0).

Matrix II. Independence of A6 :

→ 0 1 2 ¬
0 2 2 2 2
*1 0 1 2 0
*2 0 0 2 0

Falsifies A6 (v(A) = 1, v(B) = 2).

Matrix III. Independence of A7 :

→ 0 1 ¬
0 1 1 0
*1 0 1 0

Falsifies A7 (v(A) = 0, v(B) = 1).
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Matrix IV. Independence of A8 :

→ 0 1 2 3 ¬
0 3 3 3 3 3
1 0 3 2 3 0
2 0 1 3 3 0
*3 0 1 2 3 0

Falsifies A8 (v(A) = 2, v(B) = 1).
Matrix V. Independence of A9:

→ 0 1 ¬
0 1 1 1
*1 0 1 1

Falsifies A9 (v(A) = 1, v(B) = 0).
Matrix VI. Independence of A10 :

→ 0 1 2 3 ¬
0 3 3 3 3 3
1 0 3 3 3 0
2 0 1 3 3 0
*3 0 1 2 3 0

Falsifies A10 (v(A) = 2, v(B) = 1).
The structure of Matrix IV is as follows:

3

1 2

0

Acknowledgements
• Work supported by research project FFI2011-28494 financed by the

Spanish Ministry of Science and Innovation.
• G. Robles is supported by Program Ramón y Cajal of the Spanish

Ministry of Science and Innovation.
• I sincerely thank an anonymous referee of the LLP for his (her) com-

ments on a previous draft of this paper.



A simple Henkin-style completeness proof . . . 389

References

[1] Anderson, A. R., and N. D. Belnap, Jr., Entailment. The Logic of Rele-

vance and Necessity, vol. I, Princeton University Press, 1975.
[2] Baaz, M., N. Preining, and R. Zach, “First-Order Gödel Logics”, Annals

of Pure and Applied Logic, 147 (2007): 23–47.
DOI: 10.1016/j.apal.2007.03.001

[3] Brady, R., “Completeness Proofs for the Systems RM3 and BN4”, Logique

et Analyse, 25 (1982): 9–32.
[4] Dunn, J. M., “The algebra of intensional logics” (1966). Doctoral disser-

tation, University of Pittsburgh (Ann Arbor, University Microfilms).
[5] Dunn, J. M., “Intuitive semantics for first-degree entailments and ‘coupled

trees’”, Philosophical Studies, 29 (1976): 149–168.
DOI: 10.1007/BF00373152

[6] Dunn, J. M., “A Kripke-style semantics for R-Mingle using a binary ac-
cessibility relation”, Studia Logica, 35 (1976): 163–172.
DOI: 10.1007/BF02120878

[7] Dunn, J. M., “Partiality and its dual”, Studia Logica, 66 (2000), 5–40.
DOI: 10.1023/A:1026740726955

[8] Dunn, J. M., and R. K. Meyer, “Algebraic completeness results for Dum-
mett’s LC and its extensions”, Zeitschrift für Mathematische Logik und

Grundlagen der Mathematik, 17 (1971), 225–230.
DOI: 10.1002/malq.19710170126

[9] Gödel, K., “Zum intuitionistischen Aussagenkalkül”, Anzeiger Akademie

der Wissenschaffen Wien, Math.-Naturwissensch, Klasse, 69 (1933):
65–66.

[10] González, C., “MaTest” (2012), available at http://ceguel.es/matest

(Last access 10/10/2013).
[11] Łukasiewicz, J., “Die Logik und das Grundlagenproblem”, Les Entretiens

de Zürich sur les Fondaments et la Méthode des Sciences Mathématiques,
6–9 (1938), 12: 82–100.

[12] Robles. G., “A Routley-Meyer semantics for Gödel 3-valued logic and its
paraconsistent counterpart”, Logica Universalis (forthcoming).
DOI: 10.1007/s11787-013-0088-7

[13] Robles, G., and J. M. Méndez, “A paraconsistent 3-valued logic related to
Gödel logic G3” (manuscript).

[14] Robles, G., F. Salto, and J. M. Méndez, “Dual equivalent two-valued
under-determined and over-determined interpretations for Łukasiewicz’s
3-valued Logic Ł3”, Journal of Philosophical Logic (2013).
DOI: 10.1007/s10992-012-9264-0

[15] Routley, R., V. Routley, “Semantics of first-degree entailment”, Noûs, 1
(1972): 335–359. DOI: 10.2307/2214309

http://dx.doi.org/10.1016/j.apal.2007.03.001
http://dx.doi.org/10.1007/BF00373152
http://dx.doi.org/10.1007/BF02120878
http://dx.doi.org/10.1023/A:1026740726955
http://dx.doi.org/10.1002/malq.19710170126
http://ceguel.es/matest
http://dx.doi.org/10.1007/s11787-013-0088-7
http://dx.doi.org/10.1007/s10992-012-9264-0
http://dx.doi.org/10.2307/2214309


390 Gemma Robles

[16] Routley, R., R. K. Meyer, V. Plumwood, and R. T. Brady, Relevant Logics

and their Rivals, vol. 1, Atascadero, CA: Ridgeview Publishing Co., 1982.
[17] Slaney, J., MaGIC, Matrix Generator for Implication Connectives: Ver-

sion 2.1, Notes and Guide, Canberra: Australian National University,
1995. http://users.rsise.anu.edu.au/~jks

[18] Van Fraasen, B., “Facts and tautological entailments”, The Journal of

Philosophy, 67 (1969): 477–487. DOI: 10.2307/2024563
[19] Yang, E., “(Star-based) three-valued Kripke-style semantics for pseudo-

and weak-Boolean logics”, Logic Journal of the IGPL, 20 (2012): 187–206.
DOI: 10.1093/jigpal/jzr030

Gemma Robles

Dpto. de Psicología, Sociología y Filosofía
Universidad de León
Campus de Vegazana, s/n, 24071, León, Spain
gemmarobles@gmail.com

http://users.rsise.anu.edu.au/~jks
http://dx.doi.org/10.2307/2024563
http://dx.doi.org/10.1093/jigpal/jzr030
http://grobv.unileon.es

	Introduction
	The logic G3(FD+)
	Theories, primeness, consistency
	U-semantics for G3(FD+)
	Soundness and completeness of G3(FD+)
	Strong soundness and completeness of G3(FD+)
	Appendix. Independence in G3(FD+)
	References


