5 research outputs found

    ConTesse: Accurate Occluding Contours for Subdivision Surfaces

    Get PDF
    This paper proposes a method for computing the visible occluding contours of subdivision surfaces. The paper first introduces new theory for contour visibility of smooth surfaces. Necessary and sufficient conditions are introduced for when a sampled occluding contour is valid, that is, when it may be assigned consistent visibility. Previous methods do not guarantee these conditions, which helps explain why smooth contour visibility has been such a challenging problem in the past. The paper then proposes an algorithm that, given a subdivision surface, finds sampled contours satisfying these conditions, and then generates a new triangle mesh matching the given occluding contours. The contours of the output triangle mesh may then be rendered with standard non-photorealistic rendering algorithms, using the mesh for visibility computation. The method can be applied to any triangle mesh, by treating it as the base mesh of a subdivision surface.Comment: Accepted to ACM Transactions on Graphics (TOG

    Shader-Based Antialiased Dashed Stroked Polylines

    Get PDF
    International audienceDashed stroked paths are a widely-used feature found in the vast majority of vector drawing software and libraries. They allow, for example, highlighting a given path such as the cur- rent selection in drawing software or distinguishing curves in the case of a scientific plotting package. This paper introduces a shader-based method for rendering arbitrary dash patterns along any continuous polyline (smooth or broken). The proposed method does not tessellate individual dash patterns and allows for fast and nearly accurate rendering of any user-defined dash pattern and caps. Benchmarks indicates a slowdown ratio between 1.1 and 2.1 with an increased memory consumption between 3 and 6. Furthermore, the method can be used for solid thick polylines with correct caps and joins with only a slowdown of factor 1.1

    Self-similar texture for coherent line stylization

    Get PDF
    Oral Session: Lines and StrokesInternational audienceStylized line rendering for animation has traditionally traded-off between two undesirable artifacts: stroke texture sliding and stroke texture stretching. This paper proposes a new stroke texture representation, the self-similar line artmap (SLAM), which avoids both these artifacts. SLAM textures provide continuous, infinite zoom while maintaining approximately constant appearance in screen-space, and can be produced automatically from a single exemplar. SLAMs can be used as drop-in replacements for conventional stroke textures in 2D illustration and animation. Furthermore, SLAMs enable a new, simple approach to temporally coherent rendering of 3D paths that is suitable for interactive applications. We demonstrate results for 2D and 3D animations

    Two Fast Methods for High-Quality Line Visibility

    No full text
    corecore