7,166 research outputs found

    Real root finding for equivariant semi-algebraic systems

    Get PDF
    Let RR be a real closed field. We consider basic semi-algebraic sets defined by nn-variate equations/inequalities of ss symmetric polynomials and an equivariant family of polynomials, all of them of degree bounded by 2d<n2d < n. Such a semi-algebraic set is invariant by the action of the symmetric group. We show that such a set is either empty or it contains a point with at most 2d12d-1 distinct coordinates. Combining this geometric result with efficient algorithms for real root finding (based on the critical point method), one can decide the emptiness of basic semi-algebraic sets defined by ss polynomials of degree dd in time (sn)O(d)(sn)^{O(d)}. This improves the state-of-the-art which is exponential in nn. When the variables x1,,xnx_1, \ldots, x_n are quantified and the coefficients of the input system depend on parameters y1,,yty_1, \ldots, y_t, one also demonstrates that the corresponding one-block quantifier elimination problem can be solved in time (sn)O(dt)(sn)^{O(dt)}

    Simple and Nearly Optimal Polynomial Root-finding by Means of Root Radii Approximation

    Full text link
    We propose a new simple but nearly optimal algorithm for the approximation of all sufficiently well isolated complex roots and root clusters of a univariate polynomial. Quite typically the known root-finders at first compute some crude but reasonably good approximations to well-conditioned roots (that is, those isolated from the other roots) and then refine the approximations very fast, by using Boolean time which is nearly optimal, up to a polylogarithmic factor. By combining and extending some old root-finding techniques, the geometry of the complex plane, and randomized parametrization, we accelerate the initial stage of obtaining crude to all well-conditioned simple and multiple roots as well as isolated root clusters. Our algorithm performs this stage at a Boolean cost dominated by the nearly optimal cost of subsequent refinement of these approximations, which we can perform concurrently, with minimum processor communication and synchronization. Our techniques are quite simple and elementary; their power and application range may increase in their combination with the known efficient root-finding methods.Comment: 12 pages, 1 figur

    Cylindrical Algebraic Sub-Decompositions

    Full text link
    Cylindrical algebraic decompositions (CADs) are a key tool in real algebraic geometry, used primarily for eliminating quantifiers over the reals and studying semi-algebraic sets. In this paper we introduce cylindrical algebraic sub-decompositions (sub-CADs), which are subsets of CADs containing all the information needed to specify a solution for a given problem. We define two new types of sub-CAD: variety sub-CADs which are those cells in a CAD lying on a designated variety; and layered sub-CADs which have only those cells of dimension higher than a specified value. We present algorithms to produce these and describe how the two approaches may be combined with each other and the recent theory of truth-table invariant CAD. We give a complexity analysis showing that these techniques can offer substantial theoretical savings, which is supported by experimentation using an implementation in Maple.Comment: 26 page

    A quadratically convergent algorithm for structured low-rank approximation

    No full text

    Computing cardinalities of Q-curve reductions over finite fields

    Get PDF
    We present a specialized point-counting algorithm for a class of elliptic curves over F\_{p^2} that includes reductions of quadratic Q-curves modulo inert primes and, more generally, any elliptic curve over F\_{p^2} with a low-degree isogeny to its Galois conjugate curve. These curves have interesting cryptographic applications. Our algorithm is a variant of the Schoof--Elkies--Atkin (SEA) algorithm, but with a new, lower-degree endomorphism in place of Frobenius. While it has the same asymptotic asymptotic complexity as SEA, our algorithm is much faster in practice.Comment: To appear in the proceedings of ANTS-XII. Added acknowledgement of Drew Sutherlan

    Counting and computing regions of DD-decomposition: algebro-geometric approach

    Full text link
    New methods for DD-decomposition analysis are presented. They are based on topology of real algebraic varieties and computational real algebraic geometry. The estimate of number of root invariant regions for polynomial parametric families of polynomial and matrices is given. For the case of two parametric family more sharp estimate is proven. Theoretic results are supported by various numerical simulations that show higher precision of presented methods with respect to traditional ones. The presented methods are inherently global and could be applied for studying DD-decomposition for the space of parameters as a whole instead of some prescribed regions. For symbolic computations the Maple v.14 software and its package RegularChains are used.Comment: 16 pages, 8 figure
    corecore