73,540 research outputs found

    Group Invariance, Stability to Deformations, and Complexity of Deep Convolutional Representations

    Get PDF
    The success of deep convolutional architectures is often attributed in part to their ability to learn multiscale and invariant representations of natural signals. However, a precise study of these properties and how they affect learning guarantees is still missing. In this paper, we consider deep convolutional representations of signals; we study their invariance to translations and to more general groups of transformations, their stability to the action of diffeomorphisms, and their ability to preserve signal information. This analysis is carried by introducing a multilayer kernel based on convolutional kernel networks and by studying the geometry induced by the kernel mapping. We then characterize the corresponding reproducing kernel Hilbert space (RKHS), showing that it contains a large class of convolutional neural networks with homogeneous activation functions. This analysis allows us to separate data representation from learning, and to provide a canonical measure of model complexity, the RKHS norm, which controls both stability and generalization of any learned model. In addition to models in the constructed RKHS, our stability analysis also applies to convolutional networks with generic activations such as rectified linear units, and we discuss its relationship with recent generalization bounds based on spectral norms

    ATLAS: A flexible and extensible architecture for linguistic annotation

    Full text link
    We describe a formal model for annotating linguistic artifacts, from which we derive an application programming interface (API) to a suite of tools for manipulating these annotations. The abstract logical model provides for a range of storage formats and promotes the reuse of tools that interact through this API. We focus first on ``Annotation Graphs,'' a graph model for annotations on linear signals (such as text and speech) indexed by intervals, for which efficient database storage and querying techniques are applicable. We note how a wide range of existing annotated corpora can be mapped to this annotation graph model. This model is then generalized to encompass a wider variety of linguistic ``signals,'' including both naturally occuring phenomena (as recorded in images, video, multi-modal interactions, etc.), as well as the derived resources that are increasingly important to the engineering of natural language processing systems (such as word lists, dictionaries, aligned bilingual corpora, etc.). We conclude with a review of the current efforts towards implementing key pieces of this architecture.Comment: 8 pages, 9 figure

    Quadratic Projection Based Feature Extraction with Its Application to Biometric Recognition

    Full text link
    This paper presents a novel quadratic projection based feature extraction framework, where a set of quadratic matrices is learned to distinguish each class from all other classes. We formulate quadratic matrix learning (QML) as a standard semidefinite programming (SDP) problem. However, the con- ventional interior-point SDP solvers do not scale well to the problem of QML for high-dimensional data. To solve the scalability of QML, we develop an efficient algorithm, termed DualQML, based on the Lagrange duality theory, to extract nonlinear features. To evaluate the feasibility and effectiveness of the proposed framework, we conduct extensive experiments on biometric recognition. Experimental results on three representative biometric recogni- tion tasks, including face, palmprint, and ear recognition, demonstrate the superiority of the DualQML-based feature extraction algorithm compared to the current state-of-the-art algorithm

    Evaluation of linear classifiers on articles containing pharmacokinetic evidence of drug-drug interactions

    Full text link
    Background. Drug-drug interaction (DDI) is a major cause of morbidity and mortality. [...] Biomedical literature mining can aid DDI research by extracting relevant DDI signals from either the published literature or large clinical databases. However, though drug interaction is an ideal area for translational research, the inclusion of literature mining methodologies in DDI workflows is still very preliminary. One area that can benefit from literature mining is the automatic identification of a large number of potential DDIs, whose pharmacological mechanisms and clinical significance can then be studied via in vitro pharmacology and in populo pharmaco-epidemiology. Experiments. We implemented a set of classifiers for identifying published articles relevant to experimental pharmacokinetic DDI evidence. These documents are important for identifying causal mechanisms behind putative drug-drug interactions, an important step in the extraction of large numbers of potential DDIs. We evaluate performance of several linear classifiers on PubMed abstracts, under different feature transformation and dimensionality reduction methods. In addition, we investigate the performance benefits of including various publicly-available named entity recognition features, as well as a set of internally-developed pharmacokinetic dictionaries. Results. We found that several classifiers performed well in distinguishing relevant and irrelevant abstracts. We found that the combination of unigram and bigram textual features gave better performance than unigram features alone, and also that normalization transforms that adjusted for feature frequency and document length improved classification. For some classifiers, such as linear discriminant analysis (LDA), proper dimensionality reduction had a large impact on performance. Finally, the inclusion of NER features and dictionaries was found not to help classification.Comment: Pacific Symposium on Biocomputing, 201

    Extracting protein-protein interactions from text using rich feature vectors and feature selection

    Get PDF
    Because of the intrinsic complexity of natural language, automatically extracting accurate information from text remains a challenge. We have applied rich featurevectors derived from dependency graphs to predict protein-protein interactions using machine learning techniques. We present the first extensive analysis of applyingfeature selection in this domain, and show that it can produce more cost-effective models. For the first time, our technique was also evaluated on several large-scalecross-dataset experiments, which offers a more realistic view on model performance. During benchmarking, we encountered several fundamental problems hindering comparability with other methods. We present a set of practical guidelines to set up ameaningful evaluation. Finally, we have analysed the feature sets from our experiments before and after feature selection, and evaluated the contribution of both lexical and syntacticinformation to our method. The gained insight will be useful to develop better performing methods in this domain
    corecore