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Abstract

Because of the intrinsic complexity of nat-
ural language, automatically extracting ac-
curate information from text remains a
challenge. We have applied rich feature
vectors derived from dependency graphs
to predict protein-protein interactions using
machine learning techniques. We present
the first extensive analysis of applying fea-
ture selection in this domain, and show that
it can produce more cost-effective mod-
els. For the first time, our technique was
also evaluated on several large-scale cross-
dataset experiments, which offers a more
realistic view on model performance.
During benchmarking, we encountered
several fundamental problems hindering
comparability with other methods. We
present a set of practical guidelines to set
up a meaningful evaluation.
Finally, we have analysed the feature sets
from our experiments before and after fea-
ture selection, and evaluated the contribu-
tion of both lexical and syntactic informa-
tion to our method. The gained insight
will be useful to develop better performing
methods in this domain.

1 Introduction

Results of genetic studies are published on a daily
basis and appear in scientific articles, accessible
through online literature services like PubMed
(http://pubmed.gov). Over 17 million citations
are currently available through PubMed and this
resource is still growing exponentially. Fully
automated systems that extract biological know-
ledge from text have thus become a necessity.

Many approaches have been proposed to ex-
tract biological information from research arti-

cles. The first methods mainly relied on co-
occurrence of biological entities. They would
classify two proteins as interacting when men-
tioned in the same sentence, or when their co-
occurrence in an abstract is statistically overrepre-
sented (Ding et al., 2002; Rebholz-Schuhmann et
al., 2007). Typically, a co-occurrence based tech-
nique exhibits high recall, but low precision.

A second important set of techniques apply pat-
terns or rules which are usually hand-crafted, al-
lowing the method to obtain high precision while
recall typically drops. The RelEx system uses
three rules in combination with information de-
rived from dependency graphs (Fundel et al.,
2007). Dependency parsing uses graph topology
to represent syntactic relations between individ-
ual words of the sentence (Figure 1).

Finally, machine learning techniques use train-
ing data to construct a model, which is then ap-
plied to a test set to predict protein-protein inter-
actions (PPIs). To extract meaningful features for
the model construction, dependency parsing is of-
ten used. Both global context, such as the root of
the tree, and local context, such as the parent of
a particular node, can be taken into account (Ka-
trenko and Adriaans, 2007). Erkan et al. (2007)
extract sentences where two proteins co-occur
with an interaction word. Extracted features in-
clude the interaction words themselves and the
parents of the proteins in the dependency graph.
Kim et al. (2008) present a walk kernel, consist-
ing of patterns of two vertices and their interme-
diate edge (vertex-walk or v-walk), as well as se-
quences of two edges and their common vertex
(edge-walk or e-walk), extracted from the short-
est path between two proteins in the graph. They
also conclude that a feature-based approach per-
formans better than direct kernel techniques. A
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Figure 1: The dependency graph for the sentence ‘The
results show that myogenin heterodimerizes with E12
and E47 in vivo, but it does not homodimerize to a
measurable extent’

more reduced feature set is used by Fayruzov et
al. (2008), taking mainly syntactic information
into account. Finally, deep syntactic parsing can
be combined with a shallow dependency parser to
create a more accurate model (Saetre et al., 2008).

A hybrid approach is also possible, with hand-
crafted rules forming the basis for different ker-
nels, which are then aggregated by linear combi-
nation (Giuliano et al., 2006).

The application of feature selection in the do-
main of natural language processing is relatively
new. Jiang and Zhai (2007) have investigated
the type of features that are potentially useful for
relation extraction in general. Feature selection
techniques have also been employed for the task
of text classification (Wang et al., 2008). How-
ever, to the best of our knowledge, this paper
presents the first study of applying rich feature
vectors in combination with feature selection for
protein-protein interaction extraction. Our study
using fully automated feature selection methods
is clearly different to previous work concerning
manually selected varying sets of features (Ka-
trenko and Adriaans, 2007). Furthermore, it is the
first time that a broad cross-corpus study has been
conducted, offering an evaluation in a more realis-
tic setup than cross-validation on a single dataset.

2 Benchmarking protein-protein
interaction extraction techniques

While studying state-of-the art systems that ex-
tract PPIs from text, it became clear that this field
is struggling with a heterogeneous collection of
datasets and evaluation methods (Van Landeghem

et al., 2008). In this section we will analyse these
problems and introduce practical guidelines in or-
der to improve comparability between extraction
methods in this domain.

2.1 Benchmark datasets

The development of standard benchmarking
datasets is a step forward towards meaningful
comparisons between different information ex-
traction techniques. For genetic interaction ex-
traction, such corpora include AIMed (Bunescu
et al., 2005), Bioinfer (Pyysalo et al., 2007),
HPRD50 (Fundel et al., 2007), IEPA (Ding et al.,
2002) and LLL (Nedellec, 2005). These corpora
all have slightly different scopes, ranging from
protein-gene interactions concerned with Basili-
cus subtilis transcription to human protein-protein
interactions. Recently, conversion software has
been introduced to convert these different datasets
into a common data format, forming a rich cor-
pus with a broad range of genetic interactions
(Pyysalo et al., 2008). Another important re-
source is the Biocreative initiative, which aims
to provide a framework for the construction of
suitable ‘Gold standard’ datasets, applicable for
text-mining systems in biology (Hirschman et al.,
2005). Finally, the Genia corpus can be useful for
benchmarking various subtasks of text-mining al-
gorithms (Kim et al., 2008). It has been shown
by Pyysalo et al. (2008) that the choice of bench-
mark dataset can drastically influence extraction
performance. It is therefor advisable to evaluate
algorithms on a collection of different corpora.

2.2 Instance extraction

Even when evaluating on the same dataset, dif-
ferent preprocessing steps can yield a varying
set of instances. Homodimers, which are self-
interacting proteins, are sometimes discarded
from the dataset. A similar problem is raised by
nested annotations in the corpus which may or
may not be discarded, influencing the final num-
ber of instances in the dataset. To construct neg-
ative examples, the closed world assumption is
usually adapted, stating that no interaction exists
between two entities when there is no annotated
evidence. We believe it is best to always clearly
indicate which rules were applied for instance ex-
traction, and to report on the number of retrieved
instances.



2.3 The extraction task

For the extraction of protein-protein interactions,
it is often assumed that the proteins in the text
are known a priori. However, when performing
the named entity recognition (NER) step auto-
matically, errors will propagate and cause a drop
in performance. We believe that the NER step
is a different subtask which should be examined
and evaluated separately. Similarly, parse trees
can be automatically constructed or manually ver-
ified. In our opinion, parsing input sentences in a
fully-automated fashion is necessary to provide a
scalable method, applicable to large datasets.

2.4 Cross validation

Ideally, abstracts for the testing phase should be
completely hidden during training. Saetre et al.
(2008) pointed out that some evaluations exhibit
an artificial boost of performance by using fea-
tures from the same sentence in both training
and testing steps of the machine learning process.
This effect is caused by the fact that one sentence
in the dataset yields C2

n distinct instances, where
n is the number of proteins in the sentence and
each instance represents a pairwise combination
of proteins. It is therefore best to modify the reg-
ular cross-validation approach to include all in-
stances from one sentence in the same fold, or
even define folds consisting of complete abstracts.

2.5 Counting true positives

Finally, the definition of a true positive is am-
biguous in the text-mining domain. Each pair of
proteins is usually considered as an individual in-
stance, evaluated independently of others. How-
ever, two distinct instances may be expressing the
same interaction. Thus, to extract a true protein-
protein interaction, retrieving one such instance
suffices. The latter evaluation technique naturally
exhibits higher recall. Even though this technique
is useful for benchmarking complete information
retrieval systems, we feel that instance-level eval-
uation is more representative for the task of ex-
tracting interactions between named entities from
individual sentences.

3 Methods

In our study, we used all the datasets that have
been converted to a common data format by
Pyysalo et al. (2008), with the exception of Bioin-
fer. This corpus is relatively new, and contains

dataset positive negative total
AIMed 1000 4670 5670

HPRD50 163 270 433
IEPA 335 482 817
LLL 164 166 330
All 1662 5588 7250

Table 1: Number of instances in the four corpora

extensive annotations of proteins and interactions.
For example, the words alpha 5 integrins are an-
notated as being a protein reference in the con-
struct alpha 5 and beta 1 integrins. Our extrac-
tion method assumes a protein is mentioned as a
contiguous stream of tokens, which are replaced
by the token PROT for all training and testing in-
stances in the dataset. This is why we exclude
Bioinfer from further analysis and focus on the
other four corpora: AIMed, HPRD5, IEPA and
LLL. However, we plan on resolving these issues
in the future, as well as considering more corpora
to test our method on, such as theBiocreative and
Genia datasets.

3.1 Dataset preprocessing

In preparing the datasets we excluded homod-
imers, as not all corpora support homodimer an-
notation. Sentences with at least two co-occurring
proteins are selected for further processing, cre-
ating a distinct instance in the dataset for each
pairwise combination of proteins in the sentence.
Nested annotations are taken into consideration in
all datasets. We apply the closed-world assump-
tion to create negative instances, assuming there
is no interaction between two proteins when there
is no annotated evidence. For AIMed, the ab-
stracts included in the corpus that contain no in-
teractions are also taken into account. The result-
ing numbers of positive and negative instances are
shown in Table 1.

3.2 Extracting rich feature vectors

Our feature extraction method uses syntactic and
lexical patterns derived from the shortest path
between two proteins in the dependency graph.
These graphs are built automatically using the
Stanford parser (de Marneffe et al., 2006). The
shortest path in the graph is scanned for all sub-
sequent vertices and their intermediate edge (v-
walk), as well as all subsequent edges and their
common vertex (e-walk), taking into account both
syntactic and lexical properties of the walks (Ta-
ble 2, upper four rows). To traverse this path,



Type Features

Lex v-walk heterodimer nsubj PROT,
heterodimer prep PROT

Syn v-walk VBZ nsubj PROT,
VBZ prep PROT

Lex e-walk nsubj heterodimer prep
Syn e-walk nsubj VBZ prep

BOW

PROT, a, and, but, doe, extent,
heterodimer, homodimer, in,
it, measur, not, result, show,

that, the, to, vivo, with
Lex root heterodimer
Syn root VBZ

Table 2: Syntactic and lexical features for the pair of
proteins (Myogenin, E12) from Figure 1

we go up from the first protein to the root by in-
verting the original direction of the edges, and go
down again from the root to the second protein.
To improve generalization of lexical information
by the classifier, we apply the Porter stemming
algorithm (Porter, 1980). Protein names are sub-
stituted by the token PROT to enable the classi-
fier to learn interaction patterns, disregarding the
specific proteins involved. The walk features are
augmented with a bag-of-words (BOW) approach
in combination with the stemming algorithm, to
capture critical information outside the shortest
path of the dependency graph (Table 2, fifth row).
This bag-of-words approach will give rise to quite
some irrelevant features, which is one of the rea-
sons why we will apply fully automated feature
selection techniques after feature extraction. Syn-
tactic and lexical information from the root node
are stored as separate features (Table 2, last two
rows). Finally there is a numeric feature indicat-
ing the length of the shortest path.

All features are encoded by defining one spe-
cific numeric feature for each syntactic or lexical
pattern, storing the number of times that pattern
occurs in the sentence or its derived dependency
graph. This encoding technique results in sparse
feature vectors and high-dimensional feature sets.
For example, when using cross-validation on the
AIMed dataset, which is the richest corpus of the
four, over 14.000 numeric features are extracted
from the training set.

3.3 Classification model

For our experiments, we made use of a linear sup-
port vector machine classifier (SVM, Boser et al.
(1992)). The SVM is a data-driven method for
solving two-class classification tasks, based on
the concept of large margins, and is known to per-

form well in high-dimensional spaces (Saeys et
al., 2007). We used the Weka1 implementation of
LibSVM, with an internal 5-fold cross-validation
loop on the training portion of the data to deter-
mine the optimal C-parameter.

3.4 Feature selection

Feature selection (FS) techniques are a class of
dimensionality reduction techniques that aim at
identifying a subset of the most relevant features
from a potentially large initial set of features.
In contrast to other reduction techniques such as
methods based on projection, FS techniques only
select a subset of the original set of features, pre-
serving the original semantics.

Advantages of applying feature selection in-
clude its potential to improve generalization per-
formance (by avoiding overfitting), faster and
more cost-effective models and gaining a deeper
insight into the underlying processes that gener-
ated the data. Depending on the interaction with
the model, three classes of FS techniques can
be defined (Guyon and Elisseeff, 2003). In this
work, we will focus on the class of filter meth-
ods, which perform feature selection by looking
only at the intrinsic properties of the data, thus be-
ing independent of the classification model used
afterwards. Advantages of this class of meth-
ods include their scalability to high-dimensional
datasets (such as the ones we deal with in this
work) and their speed. An in-depth analysis of
the different classes of FS techniques, as well as
their application in bioinformatics can be found
in (Saeys et al., 2007).

The filter method we used in this work is based
on the information-theoretic concept of gain ra-
tio. A given set of training patterns S can be re-
garded as a distribution over the class labels, and
its entropy can be calculated as

H(S) = −
s∑

i=1

p(ci) log2 p(ci)

where p(ci) denotes the proportion of patterns in
S belonging to class ci. The information gain
IG(S, D) then represents the expected reduction
in entropy (uncertainty) when splitting on a fea-
ture D, and can be calculated as

IG(S, D) = H(S) − H(S|D)

1Available at http://www.cs.waikato.ac.nz/
ml/weka/



= H(S) −
∑

j∈V (D)

|Sj |
|S| H(Sj)

where V (D) denotes the possible values for fea-
ture D and Sj is the subset of S for which feature
D has value j.
To adjust the bias towards features with a larger
number of possible values, the information gain
should be scaled by the entropy of S with respect
to the values of feature D, resulting in the gain
ratio GR(S, D):

GR(S, D) =
IG(S, D)

−
∑

j∈V (D)

|Sj |
|S| log2

|Sj |
|S|

Applying the gain ratio to every feature in the
dataset gives an estimate of the feature’s impor-
tance, and all features can be ranked from most
influential to least influential by sorting their gain
ratios. The top k features can then be used to con-
struct a simplified classifier.

3.5 Evaluation strategy

For benchmarking our PPI extraction method, we
use instance-level evaluation. We have applied
regular 10-fold cross-validation (Instance CV), as
well as the modified version of 10-fold cross vali-
dation, with folds consisting of complete abstracts
(Abstract CV). We use the gold-standard protein
annotations which are available for all corpora.
As not all datasets provide annotation of the di-
rection of interactions, we consider interactions
to be symmetric. As a performance measure,
the F-measure is used, which is common prac-
tice in this domain. It is defined as the harmonic
mean between precision (p), which expresses how
many of the predictions are correct, and recall (r),
which expresses how many of the true interac-
tions are correctly predicted.

In addition to training and testing on a sin-
gle dataset using CV, we have conducted a large-
scale evaluation using all four corpora. The ra-
tionale for this approach was to analyse the scala-
bility of our approach. Most datasets have been
constructed using specific keywords (e.g. LLL
: Bacillus subtilis transcription), which causes a
bias in the classifier towards this particular do-
main. However, when using features from three
different datasets and testing on an independent
dataset, we obtain a more diverse model, which
is more representative for the real world task of
extracting interactions from various PubMed ab-
stracts. We conducted four experiments, each

Corpus p r F

In
st

.C
V AIMed 0.66 0.58 0.62

HPRD50 0.71 0.71 0.71
IEPA 0.74 0.69 0.71
LLL 0.79 0.84 0.82

A
bs

tr.
C

V AIMed 0.49 0.44 0.46
HPRD50 0.60 0.51 0.55

IEPA 0.64 0.70 0.67
LLL 0.72 0.73 0.73

C
o-

oc
c. AIMed 0.18 1.00 0.30

HPRD50 0.38 1.00 0.55
IEPA 0.41 1.00 0.58
LLL 0.50 1.00 0.66

Table 3: Evaluation on the four individual datasets

time using a different corpus as test set, while in-
cluding the other three in the training data. To the
best of our knowledge, this is the first time such
a large-scale cross-dataset comparison has been
conducted.

4 Results

4.1 Individual dataset evaluation

As a baseline, we evaluated our method on all
datasets separately, using 10-fold instance CV
(Table 3, first row). We then evaluated the method
using the modified version of 10-fold CV, clus-
tering instances originating from the same sen-
tence in the same fold (Table 3, second row).
For the evaluation on AIMed, the original ab-
stract splits were used (Bunescu et al., 2005).
We noticed an artificial boost of performance of
up to 0.16 F-measure when using instance CV.
In both experiments we find a significant differ-
ence in F-measure between the best results (LLL)
and the worst results (AIMed), ranging between
0.20 and 0.27 F-measure. To demonstrate the
inherent differences between the four individual
datasets, we have included the results for a sim-
ple co-occurrence based technique, assigning a

Method p r F

A
IM

ed

ab
st

r.
cv

Rich features 0.49 0.44 0.46
Fundel et al. (2007) 0.40 0.50 0.44

Giuliano et al. (2006) 0.61 0.57 0.59
Saetre et al. (2008) 0.64 0.44 0.52

A
IM

ed

in
st

.c
v

Rich features 0.66 0.58 0.62
Erkan et al. (2007) 0.60 0.61 0.60

Fayruzov et al. (2008) 0.41 0.50 0.45
Katrenko and Adriaans (2007) 0.45 0.68 0.54

Saetre et al. (2008) 0.78 0.63 0.70

L
L

L

in
st

.c
v Rich features 0.79 0.84 0.82

Fayruzov et al. (2008) 0.72 0.86 0.78
Fundel et al. (2007) 0.85 0.79 0.82

Table 4: Comparison to existing techniques for indi-
vidual datasets.



features p r F syn lex bow

A
IM

ed
14.000 0.49 0.44 0.46 15 61 20
10.000 0.48 0.43 0.45 16 61 19
7.500 0.41 0.41 0.41 17 61 18
5.000 0.44 0.38 0.41 16 59 21

H
PR

D
50

2.600 0.60 0.51 0.55 21 44 29
1.500 0.51 0.60 0.55 23 48 23
750 0.57 0.61 0.59 23 52 20
500 0.61 0.62 0.61 23 45 28
250 0.58 0.36 0.45 23 51 23

IE
PA

6.900 0.64 0.70 0.67 17 49 30
5.000 0.61 0.71 0.65 14 43 38
2.500 0.63 0.75 0.68 22 51 21
1.000 0.54 0.66 0.60 20 42 34

L
L

L

1.600 0.72 0.73 0.73 22 44 28
800 0.75 0.71 0.73 27 48 19
400 0.68 0.77 0.73 33 44 18
200 0.54 0.66 0.60 35 58 3

Table 5: FS on individual datasets, showing the distri-
bution of the three most important type of features in
percentages (syntactic walks, lexical walks and BOW-
features). Evaluation using Abstract CV.

true interaction between each co-occurring pair of
proteins. These results exhibit a difference in F-
measure of up to 0.36 between AIMed and LLL.

Subsequently, we compared our method us-
ing rich feature vectors to other, recently intro-
duced PPI extraction techniques. To allow for a
fair comparison, we only consider studies using a
similar evaluation setup. The results of this anal-
ysis are shown in Table 4. We observe that our
method is comparable to state-of-the art perfor-
mance, and that it achieves particularly good re-
sults when using regular CV on the LLL dataset.

4.1.1 Feature selection
Because our extraction method results in high-
dimensional, sparse feature vectors, we have in-
vestigated the usability of feature selection tech-
niques to improve performance and obtain faster
models. The results of these experiments on the
individual datasets are shown in Table 5. On
HPRD50, recall could be increased with 0.11 re-
sulting in an increase in F-measure of 0.06, while
less than 20% of the features were kept. For IEPA
and LLL, F-measure remains stable when using
respectively 36% and 25% of all available fea-
tures. These results clearly indicate that FS can
reduce the feature set considerably without loss
of performance. For the more extensive dataset
AIMed, the number of extracted features and
training instances are multiplied by a factor 10 in
comparison to the other datasets, which induces
greater complexity. On AIMed, we can filter out
29% of all features while still obtaining the same

test features p r F syn lex bow

A
IM

ed

11.300 0.27 0.67 0.38 12 57 28
10.000 0.27 0.69 0.39 12 55 28
7.500 0.28 0.65 0.39 13 60 24
5.000 0.27 0.60 0.37 14 61 21

H
PR

D
50 26.100 0.62 0.52 0.57 9 67 21

20.000 0.69 0.51 0.59 9 66 21
15.000 0.76 0.47 0.58 9 66 22
10.000 0.80 0.25 0.38 7 69 20

IE
PA

22.500 0.87 0.27 0.41 10 67 21
20.000 0.84 0.24 0.38 9 66 21
15.000 0.84 0.23 0.36 10 66 22
10.000 0.71 0.16 0.25 11 63 23

L
L

L

26.700 0.54 0.32 0.40 9 67 21
25.000 0.51 0.33 0.40 8 66 22
20.000 0.43 0.21 0.28 9 66 22
15.000 0.53 0.28 0.37 9 66 22
10.000 0.93 0.15 0.26 7 69 20

Table 6: FS on cross-dataset experiments, showing the
distribution of the three most important type of fea-
tures in percentages (syntactic walks, lexical walks
and BOW-features). Evaluation using three datasets
as training data and one dataset as test set.

performance. If we filter out 64%, keeping only
5000 features of the original set, the F-measure
drops with 0.05. However, the time necessary to
build the classifier for all ten folds is reduced from
6 hours and 5 minutes to 3 hours and 22 min-
utes, including the FS step itself. This illustrates
the usefulness of feature selection to create more
cost-effective models.

Analysing the distribution of feature types be-
fore and after FS, we see that in general, syntactic
features take up a slightly bigger proportion after
filtering, usually accompanied by a reduction of
word features (Table 5, last three columns). How-
ever, lexical information still takes up the biggest
part of the feature set.

4.2 Cross dataset experiments
To assess the performance of our method in a
more realistic setup, we have conducted large-
scale cross-datasets experiments. For this pur-
pose, we used one dataset for testing, and the
other three for training, which will cause less bias
to a specific training set. These experiments pro-
vide an estimate of the out-of-domain general-
ization ability, by analysing the artificial boost
in performance when only performing a single-
domain evaluation. It is the first time such a broad
cross-corpus study is conducted.

The results of our experiments are shown in Ta-
ble 6. We see that testing on HPRD50 achieves
the best performance, with 0.62 precision, 0.52
recall and 0.57 F-measure. For this corpus, the



test set Features p r F

A
IM

ed all 0.27 0.67 0.38
syntactic 0.28 0.58 0.37
lexical 0.24 0.72 0.36

H
PR

D
50 all 0.62 0.52 0.57

syntactic 0.70 0.48 0.57
lexical 0.60 0.50 0.54

IE
PA

all 0.87 0.27 0.41
syntactic 0.62 0.26 0.37
lexical 0.82 0.17 0.29

L
L

L all 0.54 0.32 0.40
syntactic 0.64 0.30 0.41
lexical 0.47 0.28 0.35

Table 7: Cross-dataset experiments using lexical infor-
mation, syntactic information or both

performance is similar to the single-dataset eval-
uation. However, we observe a large drop in per-
formance when testing on IEPA and LLL, and to
a smaller extent, on AIMed. This shows that stud-
ies using single-dataset evaluations, are biased to-
wards the specific properties of the corpus used. It
confirms the need for extrinsic evaluations of text
mining tools as stated by Caporaso et al. (2008).

The cross-dataset experiments give rise to high-
dimensional datasets, with up to 26.700 features.
We have applied FS in order to filter out irrelevant
features, and obtain faster models with less risk of
overfitting. The results for all four test cases can
be found in Table 6. In most cases, we are able
to reduce the feature set significantly without loss
of performance. Testing on HPRD50, we achieve
a gain in precision of 0.14 while only sacrificing
0.05 recall, when the feature set is reduced to 57%
of its original size. Model construction with the
entire feature set took one hour and 36 minutes,
while the classifier was built after 57 minutes us-
ing the reduced feature set. The FS step itself only
took an additional 5 minutes. This clearly shows
that FS can lead to faster and more cost-effective
models.

Testing on HPRD50, precision can rise to 0.84
when even more features are filtered, though re-
call starts dropping at this point. Nevertheless this
faster model may be preferred by a user who only
wants to extract highly reliable data. On LLL we
also obtain much higher precision when sacrific-
ing recall. When using AIMed as test set, we are
able to maintain good results when more than half
of the features are filtered out.

4.2.1 Contribution of lexical and syntactic
information

In order to gain deeper insight into the importance
of certain features, we performed a statistical
analysis of the contribution of different categories
of features (Table 6, last three columns). In gen-
eral, we saw that 85-90 % of the features consist
of lexical information (lexical walks and BOW
features combined). This distribution is roughly
maintained after feature selection. This indicates
that both lexical and syntactic information are im-
portant when extracting protein-protein interac-
tions. We validated this assumption by running
the cross-dataset experiments again, once with
only lexical information, and once with only syn-
tactic information. The results are shown in Table
7, demonstrating that the global performance of
both lexical and syntactic approaches are similar
to each other. However, when using only syntac-
tic information and comparing this approach to
the full feature set, a gain of precision of up to
0.10 can be achieved (HPRD50, LLL), while pro-
ducing a similar F-score. The only exception to
this general rule seems to be when IEPA is used as
testing set. In this particular case, high precision
is achieved by mainly lexical information. How-
ever, it is clear that a purely syntactic approach
can produce satisfying performance, while using
only 10-15 % of the original feature set. These
results support the hypothesis stated by Fayruzov
et al. (2008) that using only syntactic information
leads to classifiers that are able to perform well,
while being independent of a specific lexicon. To
improve recall however, including lexical infor-
mation might still be useful.

5 Conclusions and future work

We have developed a technique to extract protein-
protein interactions using rich feature vectors and
machine learning techniques. For the extraction
of relevant features, semantic information from
dependency graphs was used, as well as lexi-
cal information from the sentence expressing an
interaction. We have discussed some important
issues for benchmarking extraction techniques,
and have indicated practical guidelines for set-
ting up a meaningful evaluation. As an important
novelty, we have conducted cross-dataset exper-
iments which offer a more realistic view on the
performance of our method. Finally, for the first
time in this domain, we have applied feature se-



lection techniques to show these can improve the
generalization performance and lead to faster and
more cost-effective models. Analysing the feature
sets from our experiments before and after feature
selection, we have shown the importance of com-
bining both lexical and syntactic information for
the extraction of interactions from text.

Beyond the approach of rich feature vectors
and feature selection, we would like to use the in-
sight gained from these experiments to develop
more specific kernel-based approaches for the ex-
traction of protein-protein interactions from text,
building further on relation extraction kernels al-
ready developed (Kim et al., 2008).
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