46 research outputs found

    Two Different Forms of Arousal in Drosophila Are Oppositely Regulated by the Dopamine D1 Receptor Ortholog DopR via Distinct Neural Circuits

    Get PDF
    Arousal is fundamental to many behaviors, but whether it is unitary or whether there are different types of behavior-specific arousal has not been clear. In Drosophila, dopamine promotes sleep-wake arousal. However, there is conflicting evidence regarding its influence on environmentally stimulated arousal. Here we show that loss-of-function mutations in the D1 dopamine receptor DopR enhance repetitive startle-induced arousal while decreasing sleep-wake arousal (i.e., increasing sleep). These two types of arousal are also inversely influenced by cocaine, whose effects in each case are opposite to, and abrogated by, the DopR mutation. Selective restoration of DopR function in the central complex rescues the enhanced stimulated arousal but not the increased sleep phenotype of DopR mutants. These data provide evidence for at least two different forms of arousal, which are independently regulated by dopamine in opposite directions, via distinct neural circuits

    A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila

    Get PDF
    Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol

    Visualizing Neuromodulation In Vivo: TANGO-Mapping of Dopamine Signaling Reveals Appetite Control of Sugar Sensing

    Get PDF
    Behavior cannot be predicted from a "connectome" because the brain contains a chemical ‘‘map’’ of neuromodulation superimposed upon its synaptic connectivity map. Neuromodulation changes how neural circuits process information in different states, such as hunger or arousal. Here we describe a genetically based method to map, in an unbiased and brain-wide manner, sites of neuromodulation under different conditions in the Drosophila brain. This method, and genetic perturbations, reveal that the well-known effect of hunger to enhance behavioral sensitivity to sugar is mediated, at least in part, by the release of dopamine onto primary gustatory sensory neurons, which enhances sugar-evoked calcium influx. These data reinforce the concept that sensory neurons constitute an important locus for state-dependent gain control of behavior and introduce a methodology that can be extended to other neuromodulators and model organisms

    Sites of action of sleep and wake drugs: insights from model organisms

    Get PDF
    Small molecules have been used since antiquity to regulate our sleep. Despite the explosion of diverse drugs to treat problems of too much or too little sleep, the detailed mechanisms of action and especially the neuronal targets by which these compounds alter human behavioural states are not well understood. Research efforts in model systems such as mouse, zebrafish and fruit fly are combining conditional genetics and optogenetics with pharmacology to map the effects of sleep-promoting drugs onto neural circuits. Recent studies raise the possibility that many small molecules alter sleep and wake via specific sets of critical neurons rather than through the global modulation of multiple brain targets. These findings also uncover novel brain areas as sleep/wake regulators and indicate that the development of circuit-selective drugs might alleviate sleep disorders with fewer side effects

    Neuropeptide-Gated Perception of Appetitive Olfactory Inputs in Drosophila Larvae

    Get PDF
    SummaryUnderstanding how smell or taste translates into behavior remains challenging. We have developed a behavioral paradigm in Drosophila larvae to investigate reception and processing of appetitive olfactory inputs in higher-order olfactory centers. We found that the brief presentation of appetitive odors caused fed larvae to display impulsive feeding of sugar-rich food. Deficiencies in the signaling of neuropeptide F (NPF), the fly counterpart of neuropeptide Y (NPY), blocked appetitive odor-induced feeding by disrupting dopamine (DA)-mediated higher-order olfactory processing. We have identified a small number of appetitive odor-responsive dopaminergic neurons (DL2) whose activation mimics the behavioral effect of appetitive odor stimulation. Both NPF and DL2 neurons project to the secondary olfactory processing center; NPF and its receptor NPFR1 mediate a gating mechanism for reception of olfactory inputs in DL2 neurons. Our findings suggest that eating for reward value is an ancient behavior and that fly larvae are useful for studying neurobiology and the evolution of olfactory reward-driven behavior

    Dop1R1, a type 1 dopaminergic receptor expressed in Mushroom Bodies, modulates Drosophila larval locomotion

    Get PDF
    As in vertebrates, dopaminergic neural systems are key regulators of motor programs in insects, including the fly Drosophila melanogaster. Dopaminergic systems innervate the Mushroom Bodies (MB), an important association area in the insect brain primarily associated to olfactory learning and memory, but that has been also implicated with the execution of motor programs. The main objectives of this work is to assess the idea that dopaminergic systems contribute to the execution of motor programs in Drosophila larvae, and then, to evaluate the contribution of specific dopaminergic receptors expressed in MB to these programs. Our results show that animals bearing a mutation in the dopamine transporter show reduced locomotion, while mutants for the dopaminergic biosynthetic enzymes or the dopamine receptor Dop1R1 exhibit increased locomotion. Pan-neuronal expression of an RNAi for the Dop1R1 confirmed these results. Further studies show that animals expressing the RNAi for Dop1R1 in the entire MB neuronal population or only in the MB γ-lobe forming neurons, exhibit an increased motor output, as well. Interestingly, our results also suggest that other dopaminergic receptors do not contribute to larval motor behavior. Thus, our data support the proposition that CNS dopamine systems innervating MB neurons modulate larval locomotion and that Dop1R1 mediates this effect

    Evolutionarily conserved mechanisms for the selection and maintenance of behavioural activity

    Get PDF
    Survival and reproduction entail the selection of adaptive behavioural repertoires. This selection manifests as phylogenetically acquired activities that depend on evolved nervous system circuitries. Lorenz and Tinbergen already postulated that heritable behaviours and their reliable performance are specified by genetically determined programs. Here we compare the functional anatomy of the insect central complex and vertebrate basal ganglia to illustrate their role in mediating selection and maintenance of adaptive behaviours. Comparative analyses reveal that central complex and basal ganglia circuitries share comparable lineage relationships within clusters of functionally integrated neurons. These clusters are specified by genetic mechanisms that link birth time and order to their neuronal identities and functions. Their subsequent connections and associated functions are characterized by similar mechanisms that implement dimensionality reduction and transition through attractor states, whereby spatially organized parallel-projecting loops integrate and convey sensorimotor representations that select and maintain behavioural activity. In both taxa, these neural systems are modulated by dopamine signalling that also mediates memory-like processes. The multiplicity of similarities between central complex and basal ganglia suggests evolutionarily conserved computational mechanisms for action selection. We speculate that these may have originated from ancestral ground pattern circuitries present in the brain of the last common ancestor of insects and vertebrates

    Dietary Modulation of Drosophila Sleep-Wake Behaviour

    Get PDF
    Background A complex relationship exists between diet and sleep but despite its impact on human health, this relationship remains uncharacterized and poorly understood. Drosophila melanogaster is an important model for the study of metabolism and behaviour, however the effect of diet upon Drosophila sleep remains largely unaddressed. Methodology/Principal Findings Using automated behavioural monitoring, a capillary feeding assay and pharmacological treatments, we examined the effect of dietary yeast and sucrose upon Drosophila sleep-wake behaviour for three consecutive days. We found that dietary yeast deconsolidated the sleep-wake behaviour of flies by promoting arousal from sleep in males and shortening periods of locomotor activity in females. We also demonstrate that arousal from nocturnal sleep exhibits a significant ultradian rhythmicity with a periodicity of 85 minutes. Increasing the dietary sucrose concentration from 5% to 35% had no effect on total sucrose ingestion per day nor any affect on arousal, however it did lengthen the time that males and females remained active. Higher dietary sucrose led to reduced total sleep by male but not female flies. Locomotor activity was reduced by feeding flies Metformin, a drug that inhibits oxidative phosphorylation, however Metformin did not affect any aspects of sleep. Conclusions We conclude that arousal from sleep is under ultradian control and regulated in a sex-dependent manner by dietary yeast and that dietary sucrose regulates the length of time that flies sustain periods of wakefulness. These findings highlight Drosophila as an important model with which to understand how diet impacts upon sleep and wakefulness in mammals and humans
    corecore