128 research outputs found

    Multiple-Access Relaying with Network Coding: Iterative Network/Channel Decoding with Imperfect CSI

    Get PDF
    International audienceIn this paper, we study the performance of the four-node multiple-access relay channel with binary Network Coding (NC) in various Rayleigh fading scenarios. In particular, two relay protocols, decode-and-forward (DF) and demodulate-and-forward (DMF) are considered. In the first case, channel decoding is performed at the relay before NC and forwarding. In the second case, only demodulation is performed at the relay. The contributions of the paper are as follows: (1) two joint network/channel decoding (JNCD) algorithms, which take into account possible decoding error at the relay, are developed in both DF and DMF relay protocols; (2) both perfect channel state information (CSI) and imperfect CSI at receivers are studied. In addition, we propose a practical method to forward the relays error characterization to the destination (quantization of the BER). This results in a fully practical scheme. (3) We show by simulation that the number of pilot symbols only affects the coding gain but not the diversity order, and that quantization accuracy affects both coding gain and diversity order. Moreover, when compared with the recent results using DMF protocol, our proposed DF protocol algorithm shows an improvement of 4 dB in fully interleaved Rayleigh fading channels and 0.7 dB in block Rayleigh fading channels

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    Self-concatenated coding for wireless communication systems

    No full text
    In this thesis, we have explored self-concatenated coding schemes that are designed for transmission over Additive White Gaussian Noise (AWGN) and uncorrelated Rayleigh fading channels. We designed both the symbol-based Self-ConcatenatedCodes considered using Trellis Coded Modulation (SECTCM) and bit-based Self- Concatenated Convolutional Codes (SECCC) using a Recursive Systematic Convolutional (RSC) encoder as constituent codes, respectively. The design of these codes was carried out with the aid of Extrinsic Information Transfer (EXIT) charts. The EXIT chart based design has been found an efficient tool in finding the decoding convergence threshold of the constituent codes. Additionally, in order to recover the information loss imposed by employing binary rather than non-binary schemes, a soft decision demapper was introduced in order to exchange extrinsic information withthe SECCC decoder. To analyse this information exchange 3D-EXIT chart analysis was invoked for visualizing the extrinsic information exchange between the proposed Iteratively Decoding aided SECCC and soft-decision demapper (SECCC-ID). Some of the proposed SECTCM, SECCC and SECCC-ID schemes perform within about 1 dB from the AWGN and Rayleigh fading channels’ capacity. A union bound analysis of SECCC codes was carried out to find the corresponding Bit Error Ratio (BER) floors. The union bound of SECCCs was derived for communications over both AWGN and uncorrelated Rayleigh fading channels, based on a novel interleaver concept.Application of SECCCs in both UltraWideBand (UWB) and state-of-the-art video-telephone schemes demonstrated its practical benefits.In order to further exploit the benefits of the low complexity design offered by SECCCs we explored their application in a distributed coding scheme designed for cooperative communications, where iterative detection is employed by exchanging extrinsic information between the decoders of SECCC and RSC at the destination. In the first transmission period of cooperation, the relay receives the potentially erroneous data and attempts to recover the information. The recovered information is then re-encoded at the relay using an RSC encoder. In the second transmission period this information is then retransmitted to the destination. The resultant symbols transmitted from the source and relay nodes can be viewed as the coded symbols of a three-component parallel-concatenated encoder. At the destination a Distributed Binary Self-Concatenated Coding scheme using Iterative Decoding (DSECCC-ID) was employed, where the two decoders (SECCC and RSC) exchange their extrinsic information. It was shown that the DSECCC-ID is a low-complexity scheme, yet capable of approaching the Discrete-input Continuous-output Memoryless Channels’s (DCMC) capacity.Finally, we considered coding schemes designed for two nodes communicating with each other with the aid of a relay node, where the relay receives information from the two nodes in the first transmission period. At the relay node we combine a powerful Superposition Coding (SPC) scheme with SECCC. It is assumed that decoding errors may be encountered at the relay node. The relay node then broadcasts this information in the second transmission period after re-encoding it, again, using a SECCC encoder. At the destination, the amalgamated block of Successive Interference Cancellation (SIC) scheme combined with SECCC then detects and decodes the signal either with or without the aid of a priori information. Our simulation results demonstrate that the proposed scheme is capable of reliably operating at a low BER for transmission over both AWGN and uncorrelated Rayleigh fading channels. We compare the proposed scheme’s performance to a direct transmission link between the two sources having the same throughput

    Implementation of linear network coding over a flexible emulator

    Get PDF
    This dissertation has the main objective of study and implement network coding (NC) techniques in a flexible emulator, programmed in a language that allows the coexistence of entities running parallel code, in order to emulate each node independently. The dissertation starts with the study of NC’s concept and with the characterization of the different type of coding methods, with a focus on linear network coding (LNC). . A flexible Java emulator (named Net Genius) was developed, which not only allows numerous topologies of networks, but also different types of coding. In addition, the emulator allows to emulate the networks in two different modes: with a distributed network or with a centralized network. In order to present the differences between the LNC approach and the traditional approach used in packet networks (based in routing tables), the emulator allows the user to choose between these two types of approach, assessing the impact of having network coding over user-defined networks. When implementing LNC, the concept of generations of packets was introduced in order to avoid combining packets from different sources. Leveraging on this, the transfer matrix at each node is calculated based on the coded packets and not based on the information stored in each node. In addition to this, a mechanism to code packets at the source was implemented, as well as a mechanism to introduce errors in the connection links. This allowed to emulate networks with different link error probabilities, in order to assess the resilience of the different approaches to the presence of failures.Esta dissertação visa estudar e a implementar técnicas de network coding (NC) num emulador flexível, programado numa linguagem que permita a coexistência de entidades a correr código em paralelo por forma a simular cada nó de forma independente. Este trabalho começa com estudo do conceito de NC e da caracterização dos diferentes tipos de métodos de codificação, focando-nos essencialmente no linear network coding (LNC). Optou-se por criar um emulador flexível em Java (designado por Net Genius), que não só permite várias topologias de redes, mas também vários tipos de codificação. Além disso, o emulador permite emular as redes em dois modos diferentes, um modo com uma rede distribuída e outro com uma rede centralizada. De modo a evidenciar as diferenças entre a abordagem LNC e a abordagem tradicional (sem codificação), o emulador permite escolher o tipo de abordagem em cada emulação, o que permite estudar o impacto do NC em redes definidas por utilizadores. Procedeu-se à implementação de técnicas LNC e introduziu-se um conceito de gerações de pacotes, de modo a evitar a codificação de pacotes de diferentes fontes. A par disto, a matriz de codificação é calculada com base nos pacotes codificados e não com base na informação guardada em cada nó. Por último, implementou-se um mecanismo para codificação de pacotes na fonte e um mecanismo de introdução de erros nos links, permitindo emular a rede com diferentes probabilidades de erro, sendo possível ver como as abordagens resistem à existência de falhas nas ligações

    Channel parameter estimation for Quantize and Forward cooperative systems

    Get PDF

    Network coding: from theory to media streaming

    Get PDF
    Network coding has recently emerged as an alternative to traditional routing algorithms in communication systems. In network coding, the network nodes can combine the packets they receive before forwarding them to the neighbouring nodes. Intensive research efforts have demonstrated that such a processing in the network nodes can provide advantages in terms of throughput or robustness. These potentials, combined with the advent of ad hoc and wireless delivery architectures have triggered the interest of research community about the application of the network coding principles to streaming applications. This paper describes the potentials of network coding in emerging delivery architectures such as overlay or peer-to-peer networks. It overviews the principles of practical network coding algorithms and outlines the challenges posed by multimedia streaming applications. Finally, it provides a survey of the recent work on the application of network coding to media streaming applications, both in wireless or wired communication scenarios. Promising results have been demonstrated where network coding is able to bring benefits in media streaming applications. However, delay and complexity constraints are often posed as the main challenging issues that still prevent the wide-scale deployment of network coding algorithms in multimedia communication

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201
    corecore