403 research outputs found

    Waveforms and channel coding for 5G

    Get PDF
    Abstract. The fifth generation (5G) communication systems are required to perform significantly better than the existing fourth generation (4G) systems in data rate, capacity, coverage, latency, energy consumption and cost. Hence, 5G needs to achieve considerable enhancements in the areas of bandwidth, spectral, energy, and signaling efficiencies and cost per bit. The new radio access technology (RAT) of 5G physical layer needs to utilize an efficient waveform to meet the demands of 5G. Orthogonal frequency division multiplexing (OFDM) is considered as a baseline for up to 30 GHz. However, a major drawback of OFDM systems is their large peak to average power ratio (PAPR). Here in this thesis, a simple selective-mapping (SLM) technique using scrambling is proposed to reduce the PAPR of OFDM signals. This technique selects symbol sequences with high PAPR and scrambles them until a PAPR sequence below a specific threshold is generated. The computational complexity of the proposed scheme is considerably lower than that of the traditional SLM. Also, performance of the system is investigated through simulations and more than 4.5 dB PAPR reduction is achieved. In addition, performance of single carrier waveforms is analyzed in multiple-input multiple-output (MIMO) systems as an alternative to OFDM. Performance of a single carrier massive MIMO system is presented for both uplink and downlink with single user and multiple user cases and the effect of pre-coding on the PAPR is studied. A variety of channel configurations were investigated such as correlated channels, practical channels and the channels with errors in channel estimate. Furthermore, the candidate coding schemes are investigated for the new RAT in the 5G standard corresponding the activities in the third generation partnership project (3GPP). The schemes are evaluated in terms of block error rate (BLER), bit error rate (BER), computational complexity, and flexibility. These parameters comprise a suitable set to assess the performance of different services and applications. Turbo, low density parity check (LDPC), and polar codes are considered as the candidate schemes. These are investigated in terms of obtaining suitable rates, block lengths by proper design for a fair comparison. The simulations have been carried out in order to obtain BLER / BER performance for various code rates and block lengths, in additive white Gaussian noise (AWGN) channel. Although polar codes perform well at short block lengths, LDPC has a relatively good performance at all the block lengths and code rates. In addition, complexity of the LDPC codes is relatively low. Furthermore, BLER/BER performances of the coding schemes in Rayleigh fading channels are investigated and found that the fading channel performance follows a similar trend as the performance in the AWGN channel

    Frequency-domain precoding for single carrier frequency-division multiple access

    Get PDF

    Peak to average power ratio reduction and error control in MIMO-OFDM HARQ System

    Get PDF
    Currently, multiple-input multiple-output orthogonal frequency division multiplexing (MIMOOFDM) systems underlie crucial wireless communication systems such as commercial 4G and 5G networks, tactical communication, and interoperable Public Safety communications. However, one drawback arising from OFDM modulation is its resulting high peak-to-average power ratio (PAPR). This problem increases with an increase in the number of transmit antennas. In this work, a new hybrid PAPR reduction technique is proposed for space-time block coding (STBC) MIMO-OFDM systems that combine the coding capabilities to PAPR reduction methods, while leveraging the new degree of freedom provided by the presence of multiple transmit chairs (MIMO). In the first part, we presented an extensive literature review of PAPR reduction techniques for OFDM and MIMO-OFDM systems. The work developed a PAPR reduction technique taxonomy, and analyzed the motivations for reducing the PAPR in current communication systems, emphasizing two important motivations such as power savings and coverage gain. In the tax onomy presented here, we include a new category, namely, hybrid techniques. Additionally, we drew a conclusion regarding the importance of hybrid PAPR reduction techniques. In the second part, we studied the effect of forward error correction (FEC) codes on the PAPR for the coded OFDM (COFDM) system. We simulated and compared the CCDF of the PAPR and its relationship with the autocorrelation of the COFDM signal before the inverse fast Fourier transform (IFFT) block. This allows to conclude on the main characteristics of the codes that generate high peaks in the COFDM signal, and therefore, the optimal parameters in order to reduce PAPR. We emphasize our study in FEC codes as linear block codes, and convolutional codes. Finally, we proposed a new hybrid PAPR reduction technique for an STBC MIMO-OFDM system, in which the convolutional code is optimized to avoid PAPR degradation, which also combines successive suboptimal cross-antenna rotation and inversion (SS-CARI) and iterative modified companding and filtering schemes. The new method permits to obtain a significant net gain for the system, i.e., considerable PAPR reduction, bit error rate (BER) gain as compared to the basic MIMO-OFDM system, low complexity, and reduced spectral splatter. The new hybrid technique was extensively evaluated by simulation, and the complementary cumulative distribution function (CCDF), the BER, and the power spectral density (PSD) were compared to the original STBC MIMO-OFDM signal

    Polar-Coded OFDM with Index Modulation

    Get PDF
    Polar codes, as the first error-correcting codes with an explicit construction to provably achieve thesymmetric capacity of memoryless channels, which are constructed based on channel polarization, have recently become a primary contender in communication networks for achieving tighter requirements with relatively low complexity. As one of the contributions in this thesis, three modified polar decoding schemes are proposed. These schemes include enhanced versions of successive cancellation-flip (SC-F), belief propagation (BP), and sphere decoding (SD). The proposed SC-F utilizes novel potential incorrect bits selection criteria and stack to improve its error correction performance. Next, to make the decoding performance of BP better, permutation and feedback structure are utilized. Then, in order to reduce the complexity without compromising performance, a SD by using novel decoding strategies according to modified path metric (PM) and radius extension is proposed. Additionally, to solve the problem that BP has redundant iterations, a new stopping criterion based on bit different ratio (BDR) is proposed. According to the simulation results and mathematical proof, all proposed schemes can achieve corresponding performance improvement or complexity reduction compared with existing works. Beside applying polar coding, to achieve a reliable and flexible transmission in a wireless communication system, a modified version of orthogonal frequency division multiplexing (OFDM) modulation based on index modulation, called OFDM-in-phase/quadrature-IM (OFDM-I/Q-IM), is applied. This modulation scheme can simultaneously improve spectral efficiency and bit-error rate (BER) performance with great flexibility in design and implementation. Hence, OFDM-I/Q-IM is considered as a potential candidate in the new generation of cellular networks. As the main contribution in this work, a polar-coded OFDM-I/Q-IM system is proposed. The general design guidelines for overcoming the difficulties associated with the application of polar codes in OFDM-I/Q-IM are presented. In the proposed system, at the transmitter, we employ a random frozen bits appending scheme which not only makes the polar code compatible with OFDM-I/Q-IM but also improves the BER performance of the system. Furthermore, at the receiver, it is shown that the \textit{a posteriori} information for each index provided by the index detector is essential for the iterative decoding of polar codes by the BP algorithm. Simulation results show that the proposed polar-coded OFDM-I/Q-IM system outperforms its OFDM counterpart in terms of BER performance

    5G無線通信における誤り訂正符号化方式の評価に関する研究

    Get PDF
    早大学位記番号:新8267早稲田大

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    ON VARIOUS TECHNIQUES IN OFDM AND GFDM: A SURVEY

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is a multi-carrier modulation that divides the available spectrum into a finite number of carriers and applied into a digital transmission system. But it has some drawbacks such as sensitivity in inter-carrier interference, high peak to average power ratio and insufficient cyclic prefix in spectrum. These drawbacks may be reduced by a technique known as Generalized Frequency Division Multiplexing (GFDM). In the present scenario, it is a high speed multi-carrier multiplexing data transfer scheme for the cellular network. This paper deals with a comparison between OFDM and GFDM and focuses on various techniques in OFDM and GFDM
    corecore