41 research outputs found

    The Widths of Strict Outerconfluent Graphs

    Full text link
    Strict outerconfluent drawing is a style of graph drawing in which vertices are drawn on the boundary of a disk, adjacencies are indicated by the existence of smooth curves through a system of tracks within the disk, and no two adjacent vertices are connected by more than one of these smooth tracks. We investigate graph width parameters on the graphs that have drawings in this style. We prove that the clique-width of these graphs is unbounded, but their twin-width is bounded.Comment: 15 pages, 2 figure

    Polynomial growth of concept lattices, canonical bases and generators:: extremal set theory in Formal Concept Analysis

    Get PDF
    We prove that there exist three distinct, comprehensive classes of (formal) contexts with polynomially many concepts. Namely: contexts which are nowhere dense, of bounded breadth or highly convex. Already present in G. Birkhoff's classic monograph is the notion of breadth of a lattice; it equals the number of atoms of a largest boolean suborder. Even though it is natural to define the breadth of a context as being that of its concept lattice, this idea had not been exploited before. We do this and establish many equivalences. Amongst them, it is shown that the breadth of a context equals the size of its largest minimal generator, its largest contranominal-scale subcontext, as well as the Vapnik-Chervonenkis dimension of both its system of extents and of intents. The polynomiality of the aforementioned classes is proven via upper bounds (also known as majorants) for the number of maximal bipartite cliques in bipartite graphs. These are results obtained by various authors in the last decades. The fact that they yield statements about formal contexts is a reward for investigating how two established fields interact, specifically Formal Concept Analysis (FCA) and graph theory. We improve considerably the breadth bound. Such improvement is twofold: besides giving a much tighter expression, we prove that it limits the number of minimal generators. This is strictly more general than upper bounding the quantity of concepts. Indeed, it automatically implies a bound on these, as well as on the number of proper premises. A corollary is that this improved result is a bound for the number of implications in the canonical basis too. With respect to the quantity of concepts, this sharper majorant is shown to be best possible. Such fact is established by constructing contexts whose concept lattices exhibit exactly that many elements. These structures are termed, respectively, extremal contexts and extremal lattices. The usual procedure of taking the standard context allows one to work interchangeably with either one of these two extremal structures. Extremal lattices are equivalently defined as finite lattices which have as many elements as possible, under the condition that they obey two upper limits: one for its number of join-irreducibles, other for its breadth. Subsequently, these structures are characterized in two ways. Our first characterization is done using the lattice perspective. Initially, we construct extremal lattices by the iterated operation of finding smaller, extremal subsemilattices and duplicating their elements. Then, it is shown that every extremal lattice must be obtained through a recursive application of this construction principle. A byproduct of this contribution is that extremal lattices are always meet-distributive. Despite the fact that this approach is revealing, the vicinity of its findings contains unanswered combinatorial questions which are relevant. Most notably, the number of meet-irreducibles of extremal lattices escapes from control when this construction is conducted. Aiming to get a grip on the number of meet-irreducibles, we succeed at proving an alternative characterization of these structures. This second approach is based on implication logic, and exposes an interesting link between number of proper premises, pseudo-extents and concepts. A guiding idea in this scenario is to use implications to construct lattices. It turns out that constructing extremal structures with this method is simpler, in the sense that a recursive application of the construction principle is not needed. Moreover, we obtain with ease a general, explicit formula for the Whitney numbers of extremal lattices. This reveals that they are unimodal, too. Like the first, this second construction method is shown to be characteristic. A particular case of the construction is able to force - with precision - a high number of (in the sense of "exponentially many'') meet-irreducibles. Such occasional explosion of meet-irreducibles motivates a generalization of the notion of extremal lattices. This is done by means of considering a more refined partition of the class of all finite lattices. In this finer-grained setting, each extremal class consists of lattices with bounded breadth, number of join irreducibles and meet-irreducibles as well. The generalized problem of finding the maximum number of concepts reveals itself to be challenging. Instead of attempting to classify these structures completely, we pose questions inspired by Turán's seminal result in extremal combinatorics. Most prominently: do extremal lattices (in this more general sense) have the maximum permitted breadth? We show a general statement in this setting: for every choice of limits (breadth, number of join-irreducibles and meet-irreducibles), we produce some extremal lattice with the maximum permitted breadth. The tools which underpin all the intuitions in this scenario are hypergraphs and exact set covers. In a rather unexpected, but interesting turn of events, we obtain for free a simple and interesting theorem about the general existence of "rich'' subcontexts. Precisely: every context contains an object/attribute pair which, after removed, results in a context with at least half the original number of concepts

    Graphs with optimal forwarding indices: What is the best throughput you can get with a given number of edges?

    Get PDF
    The (edge) forwarding index of a graph is the minimum, over all possible routings of all the demands, of the maximum load of an edge. This metric is of a great interest since it captures the notion of global congestion in a precise way: the lesser the forwarding-index, the lesser the congestion. In this paper, we study the following design question: Given a number e of edges and a number n of vertices, what is the least congested graph that we can construct? and what forwarding-index can we achieve? Our problem has some distant similarities with the well-known (∆,D) problem, and we sometimes build upon results obtained on it. The goal of this paper is to study how to build graphs with low forwarding indices and to understand how the number of edges impacts the forwarding index. We answer here these questions for different families of graphs: general graphs, graphs with bounded degree, sparse graphs with a small number of edges by providing constructions, most of them asymptotically optimal. Hence, our results allow to understand how the forwarding-index drops when edges are added to a graph and also to determine what is the best (i.e least congested) structure with e edges. Doing so, we partially answer the practical problem that initially motivated our work: If an operator wants to power only e links of its network, in order to reduce the energy consumption (or wiring cost) of its networks, what should be those links and what performance can be expected

    Grafos com poucos cruzamentos e o número de cruzamentos do Kp,q em superfícies topológicas

    Get PDF
    Orientador: Orlando LeeTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O número de cruzamentos de um grafo G em uma superfície ? é o menor número de cruzamentos de arestas dentre todos os possíveis desenhos de G em ?. Esta tese aborda dois problemas distintos envolvendo número de cruzamentos de grafos: caracterização de grafos com número de cruzamentos igual a um e determinação do número de cruzamentos do Kp,q em superfícies topológicas. Para grafos com número de cruzamentos um, apresentamos uma completa caracterização estrutural. Também desenvolvemos um algoritmo "prático" para reconhecer estes grafos. Em relação ao número de cruzamentos do Kp,q em superfícies, mostramos que para um inteiro positivo p e uma superfície ? fixos, existe um conjunto finito D(p,?) de desenhos "bons" de grafos bipartidos completos Kp,r (possivelmente variando o r) tal que, para todo inteiro q e todo desenho D de Kp,q, existe um desenho bom D' de Kp,q obtido através de duplicação de vértices de um desenho D'' em D(p,?) tal que o número de cruzamentos de D' é menor ou igual ao número de cruzamentos de D. Em particular, para todo q suficientemente grande, existe algum desenho do Kp,q com o menor número de cruzamentos possível que é obtido a partir de algum desenho de D(p,?) através da duplicação de vértices do mesmo. Esse resultado é uma extensão de outro obtido por Cristian et. al. para esferaAbstract: The crossing number of a graph G in a surface ? is the least amount of edge crossings among all possible drawings of G in ?. This thesis deals with two problems on crossing number of graphs: characterization of graphs with crossing number one and determining the crossing number of Kp,q in topological surfaces. For graphs with crossing number one, we present a complete structural characterization. We also show a "practical" algorithm for recognition of such graphs. For the crossing number of Kp,q in surfaces, we show that for a fixed positive integer p and a fixed surface ?, there is a finite set D(p,?) of good drawings of complete bipartite graphs Kp,r (with distinct values of r) such that, for every positive integer q and every good drawing D of Kp,q, there is a good drawing D' of Kp,q obtained from a drawing D'' of D(p,?) by duplicating vertices of D'' and such that the crossing number of D' is at most the crossing number of D. In particular, for any large enough q, there exists some drawing of Kp,q with fewest crossings which can be obtained from a drawing of D(p,?) by duplicating vertices. This extends a result of Christian et. al. for the sphereDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação2014/14375-9FAPES

    The Crossing Number of Graphs: Theory and Computation

    Get PDF
    This survey concentrates on selected theoretical and computational aspects of the crossing number of graphs. Starting with its introduction by Turán, we will discuss known results for complete and complete bipartite graphs. Then we will focus on some historical confusion on the crossing number that has been brought up by Pach and Tóth as well as Székely. A connection to computational geometry is made in the section on the geometric version, namely the rectilinear crossing number. We will also mention some applications of the crossing number to geometrical problems. This review ends with recent results on approximation and exact computations

    Graphs with optimal forwarding indices: What is the best throughput you can get with a given number of edges?

    Get PDF
    The (edge) forwarding index of a graph is the minimum, over all possible routings of all the demands, of the maximum load of an edge. This metric is of a great interest since it captures the notion of global congestion in a precise way: the lesser the forwarding-index, the lesser the congestion. In this paper, we study the following design question: Given a number e of edges and a number n of vertices, what is the least congested graph that we can construct? and what forwarding-index can we achieve? Our problem has some distant similarities with the well-known (∆,D) problem, and we sometimes build upon results obtained on it. The goal of this paper is to study how to build graphs with low forwarding indices and to understand how the number of edges impacts the forwarding index. We answer here these questions for different families of graphs: general graphs, graphs with bounded degree, sparse graphs with a small number of edges by providing constructions, most of them asymptotically optimal. Hence, our results allow to understand how the forwarding-index drops when edges are added to a graph and also to determine what is the best (i.e least congested) structure with e edges. Doing so, we partially answer the practical problem that initially motivated our work: If an operator wants to power only e links of its network, in order to reduce the energy consumption (or wiring cost) of its networks, what should be those links and what performance can be expected

    Extremal Graph Theory: Basic Results

    Get PDF
    Η παρούσα διπλωματική εργασία έχει σκοπό να παρουσιάσει μία σφαιρική εικόνα της θεωρίας των ακραίων γραφημάτων, διερευνώντας κοινές τεχνικές και τον τρόπο που εφαρμόζονται σε κάποια από τα πιο διάσημα αποτελέσματα του τομέα. Το πρώτο κεφάλαιο είναι μία εισαγωγή στο θέμα και κάποιοι προαπαιτούμενοι ορισμοί και αποτελέσματα. Το δεύτερο κεφάλαιο αφορά υποδομές πυκνών γραφημάτων και εστιάζει σε σημαντικά αποτελέσματα όπως είναι το θεώρημα του Turán, το λήμμα κανονικότητας του Szemerédi και το θεώρημα των Erdős-Stone-Simonovits. Το τρίτο κεφάλαιο αφορά υποδομές αραιών γραφημάτων και ερευνά συνθήκες που εξαναγκάζουν ένα γράφημα που περιέχει ένα δοθέν έλασσον ή τοπολογικό έλασσον. Το τέταρτο και τελευταίο κεφάλαιο είναι μία εισαγωγή στην θεωρία ακραίων r-ομοιόμορφων υπεργραφημάτων και περιέχει αποτελέσματα που αφορούν συνθήκες οι οποίες τα εξαναγκάζουν να περιέχουν πλήρη r-γραφήματα και Χαμιλτονιανούς κύκλους.In this thesis, we take a general overview of extremal graph theory, investigating common techniques and how they apply to some of the more celebrated results in the field. The first chapter is an introduction to the subject and some preliminary definitions and results. The second chapter concerns substructures in dense graphs and focuses on important results such as Turán’s theorem, Szemerédi’s regularity lemma and the Erdős-Stone-Simonovits theorem. The third chapter concerns substructures in sparse graphs and investigates conditions which force a graph to contain a certain minor or topological minor. The fourth and final chapter is an introduction to the extremal theory of r-uniform hypergraphs and consists of a presentation of results concerning the conditions which force them to contain a complete r-graph and a Hamiltonian cycle
    corecore