
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

André Carvalho Silva

Graphs with few crossings and the crossing number of

the Kp,q in topological surfaces

Grafos com poucos cruzamentos e o número de

cruzamentos do Kp,q em superfícies topológicas

CAMPINAS

2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296896999?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


André Carvalho Silva

Graphs with few crossings and the crossing number of the Kp,q in

topological surfaces

Grafos com poucos cruzamentos e o número de cruzamentos do

Kp,q em superfícies topológicas

Tese apresentada ao Instituto de Computação
da Universidade Estadual de Campinas como
parte dos requisitos para a obtenção do título
de Doutor em Ciência da Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial ful�llment of the requirements for the
degree of Doctor in Computer Science.

Supervisor/Orientador: Prof. Dr. Orlando Lee

Este exemplar corresponde à versão �nal da
Tese defendida por André Carvalho Silva e
orientada pelo Prof. Dr. Orlando Lee.

CAMPINAS

2018



Agência(s) de fomento e nº(s) de processo(s): FAPESP, 2014/14375-9 

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Márcia Pillon D'Aloia - CRB 8/5180

    
  Silva, André Carvalho, 1987-  
 Si38g SilGraphs with few crossings and the crossing number of Kp,q in topological

surfaces / André Carvalho Silva. – Campinas, SP : [s.n.], 2018.
 

   
  SilOrientador: Orlando Lee.
  SilTese (doutorado) – Universidade Estadual de Campinas, Instituto de

Computação.
 

    
  Sil1. Teoria dos grafos. 2. Topologia. 3. Análise combinatória. I. Lee, Orlando,

1969-. II. Universidade Estadual de Campinas. Instituto de Computação. III.
Título.

 

Informações para Biblioteca Digital

Título em outro idioma: Grafos com poucos cruzamentos e o número de cruzamentos do
Kp,q em superfícies topológicas
Palavras-chave em inglês:
Graph theory
Topology
Combinatorial analysis
Área de concentração: Ciência da Computação
Titulação: Doutor em Ciência da Computação
Banca examinadora:
Orlando Lee [Orientador]
Jorge Stolfi
Cândida Nunes da Silva
Cristiane Maria Sato
Guilherme Oliveira Mota
Data de defesa: 16-07-2018
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)



Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

André Carvalho Silva

Graphs with few crossings and the crossing number of the Kp,q in

topological surfaces

Grafos com poucos cruzamentos e o número de cruzamentos do

Kp,q em superfícies topológicas

Banca Examinadora:

• Orlando Lee
Universidade Estadual de Campinas

• Cristiane Maria Sato
Universidade Federal do ABC

• Guilherme Oliveira Mota
Universidade Federal do ABC

• Cândida Nunes da Silva
Universidade Federal de São Carlos

• Jorge Stol�
Universidade Estadual de Campinas

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida acadêmica do aluno.

Campinas, 16 de junho de 2018



Acknowledgements

This work would not be possible without the funding provided by the grant #2014/14375-
9, São Paulo Research Foundation (FAPESP).

Among the several people that helped with this work, two of them deserve special
mention.

A special thanks goes to my supervisor Orlando Lee, for helping me in all these years
of work and for accepting my supervision at di�cult times in my academic career.

I would also like to thank Prof. R. Bruce Richter for general uno�cial mentorship;
for presenting me several interesting problems on crossing number and, more importantly,
for being overly patient and a very nice person overall. A rarity among peers.



Resumo

O número de cruzamentos de um grafo G em uma superfície Σ é o menor número de
cruzamentos de arestas dentre todos os possíveis desenhos de G em Σ. Esta tese aborda
dois problemas distintos envolvendo número de cruzamentos de grafos: caracterização de
grafos com número de cruzamentos igual a um e determinação do número de cruzamentos
do Kp,q em superfícies topológicas.

Para grafos com número de cruzamentos um, apresentamos uma completa caracteri-
zação estrutural. Também desenvolvemos um algoritmo �prático� para reconhecer estes
grafos.

Em relação ao número de cruzamentos do Kp,q em superfícies, mostramos que para um
inteiro positivo p e uma superfície Σ �xos, existe um conjunto �nito D(p,Σ) de desenhos
�bons� de grafos bipartidos completos Kp,r (possivelmente variando o r) tal que, para
todo inteiro q e todo desenho D de Kp,q, existe um desenho bom D′ de Kp,q obtido
através de duplicação de vértices de um desenho D′′ em D(p,Σ) tal que o número de
cruzamentos de D′ é menor ou igual ao número de cruzamentos de D. Em particular,
para todo q su�cientemente grande, existe algum desenho do Kp,q com o menor número
de cruzamentos possível que é obtido a partir de algum desenho de D(p,Σ) através da
duplicação de vértices do mesmo. Esse resultado é uma extensão de outro obtido por
Cristian et. al. para esfera.



Abstract

The crossing number of a graph G in a surface Σ is the least amount of edge crossings
among all possible drawings of G in Σ. This thesis deals with two problems on crossing
number of graphs: characterization of graphs with crossing number one and determining
the crossing number of Kp,q in topological surfaces.

For graphs with crossing number one, we present a complete structural characteriza-
tion. We also show a �practical� algorithm for recognition of such graphs.

For the crossing number of Kp,q in surfaces, we show that for a �xed positive integer p
and a �xed surface Σ, there is a �nite set D(p,Σ) of �good� drawings of complete bipartite
graphs Kp,r (with distinct values of r) such that, for every positive integer q and every
good drawing D of Kp,q, there is a good drawing D′ of Kp,q obtained from a drawing D′′

of D(p,Σ) by duplicating vertices of D′′ and such that the crossing number of D′ is at
most the crossing number of D. In particular, for any large enough q, there exists some
drawing of Kp,q with fewest crossings which can be obtained from a drawing of D(p,Σ)
by duplicating vertices. This extends a result of Christian et. al. for the sphere.
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Chapter 1

Introduction

The origin of crossing number problems in graphs is usually attributed to the mathemati-
cian Paul Turán [Tur77]. During World War II, Turán worked in a brick factory. The
bricks were produced in kilns which were connected to storage yards via rails. The bricks
were transported on small wheeled trucks. When the trucks went over crossings of two
rails they generally jumped and some bricks fell out of them. This resulted in loss of time
and trouble for the workers. This motivated Turán to solve the problem of minimizing
the number of crossings on the rails. However, he found it to be very di�cult [Tur77].
The problem can be mathematically described as the problem of minimizing the number
of crossings in a drawing of the bipartite complete graph Kp,q in the plane. Generally
speaking, the crossing number of a graph G in a surface Σ is the least amount of edge
crossings over all possible drawings of G in Σ.

Crossing number of graphs has several practical applications on VLSI (Very Large
Scale Integration) and graph drawing problems. Leighton [Lei83] showed that the prob-
lem of minimizing the area of a circuit in a circuit board is intrinsically related to the
crossing number of the graph that represents the circuit. Purchase [Pur97] concluded that
minimizing the number of crossings in drawings of graphs results in drawings which are
easier to understand.

Crossing number is also useful in theoretical research. Székely [Szé97] provided several
short proofs on what he calls "hard Erd®s' problems" in discrete geometry using results
from crossing number theory.

We may think of crossing number as a general measure of �non-planarity� of a graph
similarly to genus, demigenus, thickness and skewness (also known as removal number).
The (demigenus) genus of a graph is the minimal (demigenus) genus of an (non-orientable)
orientable surface in which a graph is embeddable. Graph thickness is the least number of
planar graphs that a given graph can be decomposed into. Skewness is the least number
of edges that ought to be removed from a graph to make it planar.

This thesis is focused on two selected topics in crossing number: graphs with crossing
number one and the crossing number of Kp,q on topological surfaces. These problems are
discussed in Chapters 3 and 4, respectively. We refer the reader to Schaefer's dynamic
survey [Sch13] for a more complete overview on several topics in crossing number.

Our main contributions on this thesis are as follows. We provide a complete structural
characterization of graphs with crossing number one and; for a �xed positive integer p
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and surface Σ, we prove that there is a �nite set D(p,Σ) of �good� drawings of complete
bipartite graphs Kp,r (with possibly distinct r) such that, for every positive integer q
and every good drawing D of Kp,q, there is a good drawing D′ of Kp,q obtained from a
drawing D′′ of D(p,Σ) by duplicating vertices of D′′ and such that D′ has at most as
many crossings as D. In particular, for large enough q, there exists some drawing of Kp,q

with smallest number of crossings which can be obtained from a drawing of D(p,Σ) by
duplicating vertices. This extends a result of Christian, Richter and Salazar [CRS13] for
the sphere.

This thesis is organized as follows. The next chapter will provide the necessary nota-
tion and knowledge that we use throughout the thesis. Chapter 3 concerns graphs with
one crossing. Chapter 4 deals with the crossing number of Kp,q in surfaces. Chapter 5
provides some concluding remarks about the topics in this thesis.
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Chapter 2

Preliminaries

This section introduces basic notation, de�nitions and some results that we use throughout
the text.

We assume the reader is familiar with a variety of topics. Among them: complexity
theory (NP-hardness, big-Oh notation), basic graph theory and set theory.

2.1 Graph theory

This section is mostly composed of conventions and notations while avoiding some basic
de�nitions and folklore results (e.g. graphs, paths, isomorphism, Menger's Theorem, etc.).
We refer the reader to a readily available book on graph theory like [Die17] for the missing
de�nitions and concepts.

The graphs in this thesis are always �nite and may contain multiple edges and loops,
unless otherwise stated. For a graph G, we denote by V (G) and E(G) its vertex and edge
sets, respectively.

For a subset S of V (G), let G − S denote the subgraph of G induced by V (G) − S.
If S = {v}, then we simply write G− v instead of G− {v}. Let F denote a set of edges
between vertices of G (possibly F is not contained in E(G)). Let G + F and G − F to
denote the graphs (V (G), E(G)∪F ) and (V (G), E(G)\F ), respectively. If E = {e}, then
we simply write G+ e or G− e instead.

Let P be a path in G. The ends of P are its degree 1 vertices and the internal vertices
are its degree 2 vertices.

For two vertices u and v of a graph G, an uv-path is a path of G whose ends are u
and v.

If H is a subgraph or a subset of vertices in G, then we say that P is H-avoiding or
avoids H if no internal vertex of P is in H.

Let P be a path in G and let v and w be vertices of P . We denote by vPw the unique
vw-subpath of P . Let Q be a path of G.

A subdivision of a graph G is a graph obtained from G by replacing an edge uv by an
uv-path whose internal vertices do not belong to G. This operation is called a subdivision
of an edge e in G. For a vertex v of degree two in G, we say we suppress it whenever we
remove v and add a new edge joining its neighbors.
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A graph that is isomorphic to a subdivision of a K3,3 or K5 is called a Kuratowski

graph. Given graphs H,K and G, we say that H is a subdivision of K in G if H is
a subgraph of G isomorphic to a subdivision of K. A Kuratowski subgraph of G is a
subgraph of G that is a Kuratowski graph.

Let G be a connected graph. A node of G is any vertex with degree di�erent from
2. A branch of G is any path between nodes of G that does not contain any node as an
internal vertex. Two branches are adjacent if they have a common end. We will use these
terms when we deal with subdivisions in graphs.

2.2 Topology

The aim of this section is to provide a short introduction to some topological concepts
used in this text. Most of the de�nitions and concepts on this section are classical and
can be found in any General/Algebraic Topology textbook (e.g. [Mun00]).

2.2.1 General topology

In standard real analysis books, a subset U of Rn is called open if for any x ∈ U , there
exists ε > 0 such that the open ball with radius ε centered at x is contained in U .

In topology, we aim for a more abstract concept of open sets which does not rely on
any kind of metric, but brings some notion of �neighborhoodness� of points.

Let X be a set and τ a collection of subsets of X. The pair (X, τ) is a topological

space if:

1. ∅ and X are in τ ,

2. any arbitrary union of sets in τ is also in τ , and

3. any intersection of �nitely many sets in τ is also in τ .

In this context, we say that τ is a topology in X and its elements are called open sets.
If the topology is clear from the context, we simply say that X is a topological space.
For a given x ∈ X any open set containing x is denoted a neighborhood of x in X. For a
topological space, we usually refer its elements as points.

As an example, let I be the collection of all open intervals in R; and let τ be a collection
such that U ∈ τ if and only if U is the union of a collection of elements of I. We note
that R =

⋃
I∈I I and that ∅ is the union of an empty collection of open intervals. The

union of a collection of open intervals is also an open interval; and for two sets U, V ∈ τ ,
the reader may verify using DeMorgan laws that U ∩V is also the union of open intervals.
Thus τ is a topology on R. This topology is considered the usual topology of R.

A basis B for a set X is a collection of subsets of X such that:

(a) For any x ∈ X there exists a N ∈ B with x ∈ N ;

(b) if x belongs to the intersection of a pair B1 and B2 in B, there exists a B3 ∈ B such
that B3 ⊆ (B1 ∩B2).
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q

p

r

Figure 2.1: The points p,q and r are in the exterior, interior, and boundary, respectively,
in the subset of R2 represented by the horizontal lines.

Let B be a basis of X. The topology τB generated by B is de�ned as follows: a set U
is open in τB if for every x ∈ U there exists a basis element B such that x ∈ B ⊆ U .
An equivalent de�nition is that the open sets of τB are union of all combinations of basis
elements.

Conversely, given a topological space X with topology τ , a collection B of open sets
of X generates τ if for every x ∈ X and every neighborhood N of x, there exists a M ∈ B
such that x ∈M ⊆ N .

The aforementioned set I is an example of a basis of R. Conversely, I also generates
the usual topology of R. In contrast, an example of a collection of subsets of R which
satis�es (a) but is not a basis is the collection S of all semi-in�nite intervals of the form
(−∞, x) of (x,∞), where x ∈ R. Note that 1/2 ∈ (0, 1) = (−∞, 1)∩ (0,∞) but no subset
of (0, 1) can be written as a union of elements of S.

Let X be a topological space with topology τ . Let Y be a topological space with
topology τY . The product topology on X × Y is the topology generated from the basis
τ × τY . Henceforth we assume that any product of spaces mentioned has the product
topology.

For a given subset A of X, the interior of A is composed of all the points of X with
at least one neighborhood completely in A. The exterior of A is similarly de�ned but the
neighborhoods are completely in X \ A. The closure of A is the subset of points x of X
such that every neighborhood of x contains at least one point in A. A point x in is the
boundary ∂A of A if every neighborhood of x contains a point not in A and another in A.
Figure 2.1 illustrates these concepts.

For a subset A of X the subspace topology τA of A is the collection of sets {S ∩ A :

S ∈ τ}. For example, a basis for the subspace topology of [0, 1] ⊆ R is composed of all
sets (a, b), [0, b) and (a, 1], with 0 ≤ a < b ≤ 1.

Let X∗ be a partition of X. Let p : X → X∗ be the surjective map that maps every
element of X to its part in X∗. The quotient topology τp of the quotient space X∗ is the
set {U ⊆ X∗ : p−1(U) is open }. So, one can imagine that the quotient space is obtained



15

x y

(a) A closed disk ∆ in R2

x y

x y

(b) The image of a non-continuous function

on ∆.

x y

(c) The image of a homeomorphism on ∆.

x y

(d) The image of a continuous function that

is not a homeomorphism on ∆.

Figure 2.2: Visual representation of a non-continuous, continuous functions, and a home-
omorphism of a closed disk in R2.

by "gluing" or "pasting" the points in the parts of X together. We shall make use of this
intuition in some parts of the text. Figure 2.4a provides an example of quotient space.

A function f between two topological spaces X and Y is continuous if for any open set
U of Y , f−1(U) is also open in X. A homeomorphism f between X and Y is a bijection
such that f and f−1 are both continuous. Refer to Figure 2.2 for some visual examples of
continuous functions and homeomorphisms. The next lemma asserts that the composition
of continuous functions is also continuous.

Lemma 2.1. Let X, Y and Z be topological spaces. Let f : X → Y and g : Y → Z be

continuous functions. Then g ◦ f is also continuous.

2.2.2 Surfaces

In this subsection we present a brief overview of concepts and results related to topological
surfaces (de�ned below). In order to give a precise de�nition of a surface, we need to
introduce a few properties that a surface must satisfy as a topological space. We include
them only for the sake of completeness. When we deal with surfaces in other chapters
we use the more friendly equivalent de�nition of surfaces given by the Classi�cation of
Surfaces Theorem (Theorem 2.5). We present Theorem 2.5 without proof. We refer the
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x

sin(1/x)

Figure 2.3: The topologist sine curve.

reader to the following books for a proof of Theorem 2.5 along with a more complete
introduction to surfaces: [Kin12; MT01; Mun00].

A topological space X is Hausdor� if for any two distinct elements x and y of X,
there exists disjoint neighborhoods N and M of x and y, respectively.

Let X be a topological space. A collection A of subsets of X is said to cover X if
their union is X. It is an open cover if A is a collection of open sets and �nite if A is a
�nite set. We say that X is compact if every open cover of X contains a �nite cover of X.
An example of a space that is not compact is an open disk with the subspace topology in
Rn with the product topology.

An arc (or curve) α is a continuous mapping from [0, 1] to X. If α is injective then,
the arc is is simple. We sometimes refer to the image of α as the arc itself. We say that α
joins or connects α(0) to α(1) and we say that α(0) and α(1) are the ends of α. A closed

curve is an arc γ such that γ(0) = γ(1). We say that γ is simple if the restriction of γ to
[0, 1) is injective.

We say that X is connected if no two disjoint nonempty open sets A and B of X are
such that A ∪ B = X. We say that X is arcwise connected if for every pair of distinct
elements x and y in X, there exists an arc that connects them.

De�ne an equivalence relation ∼ on X such that x ∼ y if there exists a connected
subspace of X containing x and y. The equivalence classes are the connected components

of X. Similarly, if we de�ne x ∼ y to mean that there exists an arc connecting both in
X, the equivalence classes are the arc-components of X.

We note that every arcwise connected space is also connected. However, the converse
is not true. The topologist sine curve T = {(x, sin(1/z)) : x ∈ (0, 1]} ∪ (0, 0) (pictured in
Figure 2.3) is a classic example of a connected space that is not arcwise-connected.

The following lemmas assert that connectedness and compactness are preserved in
continuous maps.

Lemma 2.2. The image of a continuous map of a connected space is also connected.

Lemma 2.3. The image of a continuous map of a compact space is also compact.

We say that a topological space X is locally n-euclidean if for every x ∈ X, there exists
a neighborhood of x homeomorphic to Rn. Equivalently, for every point x in an open set
U of X, there exists an open set V ⊆ U which is homeomorphic to Rn. A neighborhood
homeomorphic to Rn is called an euclidean ball. For locally n-euclidean spaces, connected
spaces are also arcwise-connected.
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a

b b

a

(a) A torus. (b) A torus in R3.

Figure 2.4: Distinct representations of a torus.

p q

pq

a a

(a) A Möbius strip.

a

a

p

p

(b) A Möbius strip in a projective plane.

Figure 2.5: Fundamental polygons of a Möbius strip and projective plane.

Lemma 2.4. If X is a locally n-euclidean connected topological space, then it is also

arcwise-connected.

A n-manifold is a locally n-euclidean, Hausdor�, nonempty topological space X. A
surface is a connected compact 2-manifold. A surface with boundary is a connected,
compact, Hausdor�, nonempty topological space such that every point has a neighborhood
homeomorphic to the half-plane or the plane. The boundary ∂(Σ) of a surface with
boundary Σ are all the points with some neighborhood homeomorphic to the half-plane.

Examples of surfaces include the sphere S0, torus and projective plane. Surfaces with
boundaries include the closed disk and Möbius strip. Some of these are de�ned below.

The torus1 S1 is the quotient space of the unit square X = [0, 1]×[0, 1] obtained by the
partition: X∗ = {{(x, y)} : x, y ∈ (0, 1)} ∪ {{(x, 0), (x, 1)} : x ∈ (0, 1)} ∪ {{(0, y), (1, y)} :

y ∈ (0, 1)} ∪ {{(0, 0), (0, 1), (1, 0), (1, 1)}}.
Figures 2.4a and 2.4b depict a torus. The edges with the same labels in Figure 2.4a

represent the parts of the quotient space. Note that the corner vertices represent the same
point. Together, the arcs around a corner point form a connected neighborhood of that
point.

The Möbius strip M is the quotient space obtained from the unit square by identifying
two opposing edges in opposite directions (See Figure 2.5a). We note that the Möbius

1Usually de�ned as the product S1 × S1 of two copies of the unit circle S1. Both these spaces are

homeomorphic.
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strip has a single continuous closed boundary represented by the edges joining p and q in
Figure 2.5a.

The projective plane N1 is the quotient space obtained by identifying the antipodal
points of the boundary of a closed disk in the plane. Figure 2.5b depicts the projective
plane. The arcs around the point p represents a single neighborhood. Note that the
dashed region is a Möbius strip. Indeed, one can obtain a projective plane by gluing a
Möbius strip in the boundary of a sphere with an open disk removed.

Given two surfaces Σ1 and Σ2, the connected sum Σ1#Σ2 is the surface obtained by
removing an open disk from each and identifying its boundaries. The reader may verify
that this operation is associative and commutative (up to homeomorphism).

We shall de�ne an n-torus Sn recursively as the connected sum of an (n−1)-torus with
a torus, where the 0-torus S0 is the sphere. Similarly, we use Nk to denote the n-projective
plane. Some surfaces have special names. The surface S2 is usually known as the double
torus and N2 is the Klein bottle. We note that S1#N1 is homeomorphic to N3.

The following theorem is a folklore result. It classi�es all surfaces up to homeomor-
phism.

Theorem 2.5. (Classi�cation of Surfaces) Any surface is homeomorphic to Sh, for some

h ≥ 0, or to Nk, for some k ≥ 1.

A similar folklore result exists for surfaces with boundary:

Theorem 2.6. Any surface with boundary Σ is homeomorphic to either a h-torus, for

some h ≥ 0, or to a k-projective plane, for some k ≥ 1, with a �nite number of open disks

removed.

The removed open disks on a surface are oftentimes called holes.
A handle is a sphere with two holes which is also called a cylinder. A crosscap is a

Möbius strip. By attaching a handle to a surface (with or without boundary) Σ we mean
that we glue the boundary of the handle to the boundaries of two open disks removed
from Σ. Similarly, we attach a crosscap by removing an open disk from Σ and gluing
its boundary with the boundary of a Möbius strip. An equivalent statement of Theorem
2.5 is that any surface Σ is equivalent to a sphere with either h handles or k crosscaps
attached to it.

Let Σ be a surface. We say that Σ is orientable, if it is homeomorphic to an h-torus,
for some h ≥ 0, with a �nite number of holes, and non-orientable, otherwise.

Every surface without boundary may be represented by a quotient space obtained by
identifying the edges of a polygon2 in the plane. These are called fundamental polygons.
Let h ≥ 1 be an integer. Let a1, b1, a

′
1, b
′
1, ..., a2h, b2h, a

′
2h, b

′
2h be the edges of a regular 4h-

sided polygon on the plane in counterclockwise order. Identifying ai with a′i and bi with
b′i, for i = 1, 2, ..., 2h, such that their paired edges have distinct orientations will result in
a space homeomorphic to Sh. Similarly, let k ≥ 0 be an integer. Let a1, a

′
1, a2, a

′
2, ..., ak, a

′
k

be the edges of a 2k regular polygon. Identifying the edges ai with a′i, for i = 1, . . . , k

2Here we consider a polygon as all the points in the bounded region plus its boundary.
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Figure 2.6: Fundamental polygons for S2 and N4.

with the same orientation will result in a space homeomorphic to Nk
3. Figures 2.6b and

2.6a are examples for the fundamental polygons of N4 and S2, respectively.
If Σ is homeomorphic to Sh, for some h ≥ 0, with a �nite number of holes, then its

genus g(Σ) is h. Similarly, if Σ is homeomorphic to Nk with a �nite number of holes, then
its demigenus g̃(Σ) is k.

Suppose Σ has n holes. We de�ne the Euler characteristic χ(Σ) of Σ as:

χ(Σ) =

{
(2− 2g(Σ))− n , if Σ is orientable,

(2− g̃(Σ))− n , otherwise.
(2.1)

For example, the sphere, torus and Klein bottle have Euler characteristic χ(S0) = 2,
χ(N2) = 0 and χ(S1) = 0, respectively. A projective plane with a hole is homeomorphic
to a Möbius strip and hence it has Euler characteristic 0. Thus the Euler characteristic
is not enough to distinguish surfaces from each other.

2.2.3 Separation theorems

In this subsection, we state a couple useful classical Theorems about separation in the
plane. The proofs of these results are beyond the scope of this text, but the reader can
�nd self-contained proofs in [MT01].

Let X be a connected topological space and let A be a subset of X. We say that A
separates X if X \ A is not connected. The next theorem is the classical Jordan Curve
Theorem. It is used implicitly in many parts of the text.

Theorem 2.7. (Jordan Curve Theorem) Let γ be a simple closed curve in R2. Then

γ separates R2 into precisely two components W1 and W2 such that both have γ as a

boundary.

Schoen�ies proved an extension of the Jordan Curve Theorem:

Theorem 2.8. (Schoen�ies Theorem) If f is a homeomorphism of a simple closed curve

γ in the plane onto a closed curve γ′ in the plane, then f can be extended to a homeo-

morphism of the entire plane.

3The �polygons� for S0 and N1 are degenerate cases with only two edges.
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Figure 2.7: Distinct types of intersection of edges.

2.3 Graph drawing

We use {si}i∈I as a notation for an indexed set with index set I. We often hide the
subscript whenever I is clear from the context. A drawing D of a graph G in a surface Σ

is the union of:

• the image of an injective function φ : V (G)→ Σ, and

• the images of the functions {φe}e∈E(G) in which φe is an arc joining the images of
the ends of e in φ and φe((0, 1)) is disjoint from φ(V ).

We make no distinction between the images of these functions and the graph objects
they represent (edges and vertices). No confusion should arise from this convention.

Let H be a subgraph of G. We use the notation D[H] to denote the drawing of H
obtained from D by deleting the corresponding vertices and edges not in H.

Let e and f be edges ofG. We say that they intersect inD if φe((0, 1))∩φf ((0, 1)) 6= ∅4.
Let x be an intersection point of e and f inD and let B be an euclidean ball in Σ containing
x. We may choose B such that: B is disjoint from any edge not containing x, and B

contains no other intersection of e and f . We say that e and f touch if there exists a
separating curve γ in B such that B \ γ has two components: one disjoint from e and
another disjoint from f . Otherwise, we say that e and f cross. Figures 2.7a and 2.7b
illustrate these concepts. A drawing with no intersection is called an embedding of G in
Σ.

Let D be a drawing of a graph G in a surface Σ. The crossing number cr(D) of D is
the total number of crossings between pairs of edges of G in D. We note a subtle detail
in this de�nition: if three edges have a common intersection in D then we have three
crossings, not one. The crossing number crΣ(G) of G in a surface Σ is the least number of
crossings among all possible drawings of G. We say that D is optimal if cr(D) = crΣ(G).

We shall adopt a few conventions. For a drawing, if no surface is mentioned, the
reader can assume it is a drawing in the plane. We shall use the notation cr(G) for
crossing number on the plane (or sphere).

For a given graph G and a non-negative integer k, computing whether cr(G) ≤ k is
NP-complete [GJ83]. Kawarabayashi and Reed [KR07] showed that there exists a linear

4Note that we do not consider a common end between two edges as an intersection.
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Figure 2.8: Cellular and non-cellular embeddings of K4 on a torus. The dashed areas
compose a single face. On the second picture this face is homeomorphic to a cylinder.

Fixed Parameter Tractable (FPT)5 algorithm for this problem.
A drawing is good if it satis�es the following properties:

1. no pair of edges touch,

2. edges with a common incident vertex do not cross,

3. no pair of edges cross more than once, and

4. no point is the intersection of three edges.

If a drawing is not good, we may eliminate or change the intersection(s) locally in a
small enough euclidean ball containing the intersection point. This does not increase the
number of crossings. The following lemma is a natural consequence of this fact (we omit
the proof):

Lemma 2.9. Every graph has a good optimal drawing in any surface.

Henceforth, unless otherwise stated, assume that any drawing mentioned is good. Let
D be an embedding of a graph G in a surface Σ. A face of D is a connected component
of Σ \D. We say that a vertex v (respectively, an edge e) of G is incident with a face F
if v (e, respectively) is contained in the boundary of F in D. We say that D is cellular
if all its faces are homeomorphic to a disk. Figure 2.8 shows examples of cellular and
non-cellular embeddings.

The genus of G, denoted by g(G), is the smallest genus such that G is embeddable
in Sg(G). The demigenus of G, denoted by g̃(G), is similarly de�ned for non-orientable
surfaces. We note that g(G) = 0 if and only if G is planar. Determining the genus of
a graph is NP-Complete [Tho89]. However, there are closed formulas for the genus and
demigenus of the complete graphs [RY68] and bipartite complete graphs [Rin65a; Rin65b]:

5A problem is FPT if there exists a parameter k and an algorithm with complexity f(k)nc, where n
is the size of the input and c is a constant.
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Theorem 2.10. If n ≥ 3 then:

g(Kn) =

⌈
(n− 3)(n− 4)

12

⌉
.

If n ≥ 3 and n 6= 7, then:

g̃(Kn) =

⌈
(n− 3)(n− 4)

6

⌉
.

Theorem 2.11. If m,n ≥ 2 then:

g(Km,n) =

⌈
(m− 2)(n− 2)

4

⌉
.

If m ≥ 3 and n ≥ 3, then:

g̃(Km,n) =

⌈
(m− 2)(n− 2)

2

⌉
.

The classical Kuratowski's Theorem stated below characterizes graphs that can be
embedded in the plane (or the sphere equivalently).

Theorem 2.12. (Kuratowski's Theorem [Kur30]) A graph is planar if and only if it does

not contain a subdivision of K3,3 or K5.

A Kuratowski subgraph of G is a subdivision of K3,3 or K5 in G.

2.3.1 Combinatorial embeddings

In this subsection, we present a combinatorial description of cellular embeddings of graphs
in surfaces. The concepts discussed here are only used in Chapter 4.

The concepts in this subsection are easier to describe for loopless graphs. Moreover,
for this thesis, we shall use these concepts only for loopless graphs. Therefore, for the
sake of simplicity, we will assume our graphs are loopless in this section. The reader may
�nd a deeper discussion on combinatorial embeddings in [MT01; GT87; LZ13].

Let v be a vertex of a loopless connected graph G. A local rotation πv around v is a
cyclic permutation of the edges incident with v. An (abstract) embedding scheme of G
is a pair ({πv}v∈V (G), λ), where πv is a local rotation around v and λ is a signal function
mapping each edge to {0, 1}. We say that an edge e of G is type-0 or type-1 if λ(e) = 0

or λ(e) = 1, respectively.
Let Π = ({πv}v∈V (G), λ) and Π′ = ({π′v}v∈V (G), λ

′) be two embedding schemes for a
graph G. We say that Π is equivalent to Π′ if we may obtain Π′ from Π by a sequence of
reversal of the local rotations, that is, for a vertex v of G we invert πv and subsequently
λ for all edges incident with v in Π. Thus if we do this for a sequence of vertices {vi} of
G and we obtain Π′ at the end, then they are equivalent.

Our goal right now is to show that an embedding scheme of a loopless connected
graph G uniquely determines (up to homeomorphism) a cellular embedding of G in some
surface Σ. To illustrate that, we show how we can obtain an embedding scheme from a



23

v

wh e

h

f

f

a

b b

a

(a)

Bv

Bwh e

h

f

f

a

b b

a

(b)

Figure 2.9: A cellular embedding of a graph in the Klein bottle and its ribbon graph.

cellular embedding of G and, subsequently, how to obtain a cellular embedding from an
embedding scheme.

Let D be a cellular embedding of a loopless connected graph G in a surface Σ. Each
vertex v has an euclidean ball B such that only edges of G incident with v intersect B
in D, and they intersect only once. The same applies to an edge e of G and the edges
of D with a common end with e. Using the appropriate euclidean balls, one can create a
neighborhood of G in D whose shape preserves the graph itself. We describe this process
in detail below.

A 1-band is a homeomorphism h : [0, 1] × [0, 1] → Σ. The arcs h([0, 1] × {j}) for
j = 0, 1 are the ends of the band, and the arcs h({j} × [0, 1]) are the sides of the band.
A 0-band and 2-band are homeomorphisms of the unit disk in Σ. A band decomposition

of Σ is a collection of 0-, 1- and 2-bands satisfying:

1. Di�erent bands intersect only along arcs in their boundaries;

2. the union of all bands is Σ;

3. each end of a 1-band is contained in a 0-band;

4. each side of a 1-band is contained in a 2-band;

5. the 0-bands are pairwise disjoint and so are the 2-bands.

The ribbon graph of D is the collection of 0- and 1-bands in a band decomposition of
Σ that is a neighborhood of G in D such that: every vertex v is in a 0-band and; for every
edge e with ends v and w, there exists a 1-band disjoint from every other edge whose ends
are 0-bands containing v and w. Figure 2.9 shows an example of an embedding and its
ribbon graph. Note that a ribbon graph of an embedding naturally de�nes a surface with
holes (one for each 2-band) and thus is unique up to homeomorphism.

An orientation of a 0- or 1-band is an orientation of the points in its boundary (i.e.
clockwise or counterclockwise). Note that if we orient a 0-band that is an end of a 1-band,
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we can induce an orientation of the 1-band based on the direction of its shared arc. We
say that a 1-band is type-0 if the orientations induced by its ends are the same and type-1

otherwise. As an example, using the orientations of the 0-bands Bv and Bw in Figure
2.9b, the 1-bands containing the edges e and h are type-0 and the one containing f is
type-1.

For a vertex v, let Bv be a 0-band containing v in the ribbon graph of D. Note that Bv

contains part of the edges incident with v. Let {ei} be the edges incident with v. We may
choose a 0-band of v that is small enough such that each edge ei will intersect only once.
Let {qj} be the set of points arising from the intersection of the edges with ∂(Bv). The
orientation of Bv naturally induces a cyclic permutation of the points {qj}. If G has no
loops, then we may associate each ei to its unique intersection qi with ∂(Bv). The cyclic
permutation of the edges around v in D is the natural permutation of {ei} arising from
the cyclic permutation of {qj}. Thus we de�ne πv as this cyclic permutation. Moreover,
for an edge e we de�ne λ(e) = 0 if the 1-band associated with e is type-0 and λ(e) = 1,
otherwise. For example, in the band decomposition of Figure 2.9b using the orientations
of Bv and Bw in the picture, the local rotations of v and w are πw = πv = (e f h). Also,
from these orientations, we have that λ(e) = λ(h) = 0 and λ(f) = 1.

The embedding scheme of D is the pair ({πv}V ∈V (G), λ) where λ is a signal function
for E(G) such that λ(e) = 1 if e is type-1 in D or λ(e) = 0 otherwise. Note that the
type of an edge, and thus the embedding scheme of D, depends on how the 0-bands are
oriented. Thus we can obtain equivalent embedding schemes by changing the rotation of
the 0-bands and subsequently the types of the 1-bands incident with it.

We now describe how to obtain an embedding from an (abstract) embedding scheme.
Suppose G is loopless, connected and has no vertex of degree two. Let ({πv}v∈V (G), λ) be
an abstract embedding scheme ofG. A facial walk W of Π is a closed walk v1e1v2e3v3...ekv1

of G obtained by the following procedure called the face traversal procedure. We start
with an arbitrary vertex u and an edge e incident with u whose other end is v. We
Traverse the edge from u to v. The next edge e′, whose ends we shall name v and w,
will depend on whether e is type-0 or type-1. If e is type-0, then e′ = πv(e), otherwise,
we use e′ = π−1

v (e). If the latter happens, for the next edge after e′ will be π−1
w (e′), if

e′ is type-0, and πw(e′), otherwise. This will continue until we �nd another type-1 edge.
The procedure stops whenever we �nd edge e1 again the next edge is e2. For example,
the embedding scheme obtained from the embedding depicted in Figure 2.9a has only one
facial walk W = vewfvewhvfwhv. Note how at the �rst time we �nd e again, the next
edge is not f , since we traversed a type-1 edge (f) before, and thus we do not stop there.

If G has a vertex of degree two, we can obtain another graph G′ by suppressing the
vertices of degree two while making adjustments to the local rotation. If P is an induced
path in G, then the resulting edge e of G′, obtained from G by suppressing the internal
vertices of P , will be type-1 if and only if there is an odd number of type-1 edges in P .
We thus apply the face traversal procedure to obtain the facial walks of G′ and make the
appropriate changes to obtain a facial walk of G.

Now we brie�y and informally describe how to obtain an embedding from a set of facial
walks. Let W be the set of all facial walks of G obtained from an abstract embedding
scheme of G. We do not distinguish between a facial walk and a cyclic shift of the same.
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For each facial walk W ∈ W , we create a regular polygon PW with the same number of
edges as the length of W and we label each edge of the polygon with an edge in the walk.
Note how each edge will appear exactly twice in {PW}W∈W . By gluing the polygons
together we obtain a quotient space Γ homeomorphic to a surface. The set of points
representing the edges and vertices of the polygon in Γ is an embedding of G.

This subsection discussion can be summarized by the following Theorem.

Theorem 2.13. Every cellular embedding of a connected graph G is uniquely determined,

up to homeomorphism, by its embedding scheme.

The version of this theorem restricted to orientable surfaces is known as the He�ter-
Edmonds-Ringel rotation principle [Hef91; Edm60; Rin74]. The general version was made
explicit by Ringel [Rin77] in the 50s and the �rst formal proof of it was published by
Stahl [Sta78].

We note that the procedure used to extract an embedding scheme from a cellular
embedding can also be used for non-cellular embeddings. Ho�man and Richter [HR84]
provided a combinatorial description for non-cellular embeddings. Let D be a good draw-
ing of a loopless connected graph G. The �attening of D is the graph P obtained from
G by inserting a vertex of degree 4 at each crossing in D. Thus, if e is crossed k times, e
is subdivided into k + 1 edges.

In the remainder of this chapter, we show that there exists only �nitely many (up to
isomorphism) good drawings of a connected graph G in any surface Σ (Theorem 2.16).
This proof works in two steps. We �rst show that there exists only �nitely many �attenings
arising from good drawings of G in Σ. Afterwards, for a particular �attening P of G, we
show that there exists only �nitely many (up to homeomorphism) embeddings of P in a
surface Σ.

Let flat(G,Σ) be the set of all �attenings (up to graph isomorphism) of G arising
from good drawings of G in Σ.

Lemma 2.14. For any graph G and surface Σ, flat(G,Σ) is �nite.

Proof. Let D and D′ be good drawings of G in Σ. Let P and P ′ be their �attening. Let
X and X ′ be the set of pairs of edges that cross in D and D′, respectively. Thus, for
every element of X we have an associated vertex of P . Similarly for X ′ and P ′.

Let e be an edge of G whose ends are u and v. Suppose f and h are two distinct edges
that cross e in G and that e is ordered from u to v in D. Let x be the intersection point
of e and f in D. Likewise, let y be the one for e and h. If x precedes y in D[e], then we
say that f ≺e h. Likewise, let ≺′e be the order of the edges crossing e obtained from D′.
Note that, for a particular crossing x between edges e and f in D the neighborhood of
the vertex arising from x in P depends only on the order of the crossing in both e and f .

Now, suppose that X = X ′ and that for every edge e of G, the orders ≺e and ≺′e are
the same. Thus, there exists a natural isomorphism between P and P ′ such that every
vertex x of P , arising from a crossing, is mapped to the vertex x′ in P ′ arising from the
crossing of the same pair of edges in D′. Therefore a �attening is characterized by the
pairs of edges that cross and the ordering of the crossings on the edges of G in a good
drawing.
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As good drawings of G have only �nitely many possible crossings (at most one for each
pair of edges), we conclude that there exist only �nitely many (up to graph isomorphism)
�attenings arising from good drawings of G.

We note that any good drawing D of G is also an embedding of its �attening P .
Thus D is in some homeomorphism class E of embeddings of P . Let D′ be another good
drawing of G, with �attening P ′. If P ′ is isomorphic to P , then D′ is also an embedding
of P . Thus, if D′ is also in E , then D is isomorphic to D′. In short, the isomorphism
classes of good drawings of G are homeomorphism classes of elements of flat(G). For
our purposes, it su�ces to show that for a P ∈ flat(G) there exists only �nitely many
homeomorphism classes of embeddings of P .

Lemma 2.15. For a loopless connected graph P embeddable in a surface Σ, there exists

only �nitely many (up to homeomorphism) embeddings of P in Σ.

Proof. Let R be an embedding scheme of an (possibly non-cellular) embedding Π of P in
Σ. We note that there can be many distinct non-cellular embeddings of P with R as its
embedding scheme.

The embedding scheme uniquely determines (up to homeomorphism) a cellular em-
bedding Π′ of P in a surface Γ with R as its embedding scheme (Theorem 2.13). One
may see Γ as the surface obtained from Σ by capping o� all the faces of Π with disks and
thus removing the handles and crosscaps in these faces. Thus χ(Σ) ≤ χ(Γ) with equality
only if Π is cellular.

Attaching an appropriate number of handles/cross caps to faces of Π′ in Γ will result
in an embedding of P in a surface Σ′ with the same embedding scheme R. If Σ and Σ′

have the same number of handle/crosscaps, then Σ′ is homeomorphic to Σ. We show that
there are only �nitely many ways to attach handles and crosscaps to the faces of Π′ in Γ

to obtain Σ.
Let Q be the set of facial walks of Γ and Q∗ a partition on Q. For a given part T in

Q∗ of size k we can attach any surface Ω with k holes into disks cut from each face of T in
Γ. This operation results in a surface of Euler genus χ(Γ) +χ(Ω). Thus χ(Ω) is bounded
as a function of χ(Σ) which implies that there are �nitely many possible surfaces we can
attach. This, combined with the �niteness of Q, and thus Q∗, shows that there are only
�nitely many possible embeddings of P in Σ.

It is clear, by the construction above, that any embedding of P in Σ with rotation
system R can be obtained from Π′ by adding the appropriate number of handles and cross
caps to the faces of Π′ in Γ. Moreover, we showed that there are only �nitely many ways to
do that. With this, we conclude that there are only �nitely many (up to homeomorphism)
embeddings of P with rotation scheme R in Σ. We note that there are only �nitely many
(up to homeomorphism) possible rotation schemes for P . Thus, overall, there exists only
�nitely many embedding of P in Σ

Theorem 2.16. For any connected graph G and any surface Σ, there are only �nitely

many (up to drawing isomorphism) good drawings of G in Σ .
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Chapter 3

Graphs with at most one crossing

In the context of crossing number, we can interpret Kuratowski's classic characterization
of planar graphs as: a graph has crossing number at least one if and only if it contains a
subdivision of K5 or K3,3. We answer a similar question: when does a graph have crossing
number at least 2? The answer is a characterization of graphs with crossing number one
(see Theorem 3.8). We also present a practical algorithm to recognize such graphs (see
Section 3.6). The results in this chapter were obtained in collaboration with Alan Arroyo
and R. Bruce Richter.

Our characterization extends a result of Richter and Arroyo [AR17] (see Theorem 3.1).
We characterize the crossing pairs of a non-planar graph G. A pair of edges e, f of a graph
G is a crossing pair of G if there exists a drawing D of G with cr(D) = 1 (we refer D as
a 1-drawing of G) in which e and f cross. Clearly, for non-planar graph G, cr(G) = 1 if
and only if G has a crossing pair and cr(G) ≥ 2 otherwise.

Before announcing the characterization in Theorem 3.8, we brie�y review the litera-
ture in Section 3.1. Section 3.2 expands on some properties of crossing pairs and details
the characterization in Theorem 3.8. In Section 3.3, we expand a bit on crossing pairs
of graphs and enunciate Theorem 3.8. Section 3.4 contains the proof of Theorem 3.8.
In Section 3.5, we provide a di�erent characterization for crossing pairs. Lastly, in Sec-
tion 3.6, we detail an algorithm for recognizing graphs with crossing number one based
on Theorem 3.8.

3.1 Related works

The problem of characterizing graphs with crossing number at least two was already
studied by Arroyo and Richter [AR17] in the context of peripherally 4-connected graphs.

A graph G is peripherally 4-connected if G is 3-connected and for every vertex 3-cut
X of G, and for any partition of the components of G −X into two non-null subgraphs
H and K, at least one of H or K has just one vertex. Two edges e = x1y1 and f = x2y2

are linked if either e, f are incident with a common vertex or there is a 3-cut X in G such
that X ⊂ {x1, y1, x2, y2} and the vertex in {x1, y1, x2, y2}\X induces a trivial component
of G−X. Otherwise, e, f are unlinked. A pair of edges e, f of G is separated by cycles if
there exists two (vertex-)disjoint cycles Ce and Cf in G with e ∈ Ce and f ∈ Cf .
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Theorem 3.1. [AR17] A peripherally 4-connected non-planar graph G has crossing num-

ber at least two if and only if for any pair of unlinked edges e, f in G they are separated

by cycles.

The line graph L(G) of a graph G is a graph with vertex set E(G) and a, b ∈ E(G)

are adjacent in L(G) if and only if a, b share a common vertex in G. Let ∆(G) denote the
maximum degree of a graph G.

We note that the edges incident with a vertex of degree d in a graph G corresponds
to a complete graph Kd in L(G). Thus, two vertices of degree 5 in G will create two
edge-disjoint copies of K5 in L(G). Therefore, since cr(K6) = 3 [Guy72], if cr(L(G)) = 1,
then ∆(G) ≤ 5. Also, this means that G has at most one vertex with degree 5.

Kulli, Akka and Beineke [KAB79] characterized planar graphs whose line graph has
crossing number one, while Jendrol' and Klevus£ [JK01] obtained a characterization for
non-planar graphs. Their results are detailed in what follows.

Theorem 3.2. [KAB79] For every planar graph G, we have cr(L(G)) = 1 if and only if:

(1) ∆(G) = 4 and there is a unique non-cut-vertex of degree 4, or

(2) ∆(G) = 5, every vertex of degree 4 is a cut vertex, and there is a unique vertex of

degree 5 with at most 3 edges in any block.

Theorem 3.3. [JK01] For a non-planar graph G, we have cr(L(G)) = 1 if and only if

the following conditions hold:

(1) cr(G) = 1,

(2) ∆(G) ≤ 4, and every vertex of degree 4 is a cut vertex of G, and

(3) there exists a drawing of G in the plane with exactly one crossing in which each crossed

edge is incident with a vertex of degree 2.

Akka, Jendrol, Kle²£, and Panshetty [Akk+97] obtained a characterization of planar
graphs whose line graph has crossing number two.

A graph G is k-crossing-critical if cr(G) ≥ k and every proper subgraph H of G has
cr(H) < k. The 1-crossing-critical graphs are exactly the Kuratowski graphs. We note
that a graph with crossing number at least 2 contains a 2-crossing-critical graph as a
subgraph.

A great deal of attention has been given to 2-crossing-critical graphs [BKQ83; Din+11;
Koc87; Ric88; RS09; �ir84; Bok+16].

For an positive integer n ≥ 3, the Möbius Ladder V2n on 2n vertices, is the graph
obtained from a 2n-cycle by joining vertices with distance n in the cycle. Bokal, Op-
porowski, Richter and Salazar [Bok+16] characterized all 3-connected 2-crossing-critical
graphs that contains a V10 as a minor and all the ones not containing a V8 as a minor.
They also showed how to obtain all the not 3-connected 2-crossing-critical graphs from
the 3-connected ones, and showed that there exists only �nitely many 3-connected 2-
crossing-critical graphs with no V10 minor. It remains to characterize or enumerate all the
3-connected 2-crossing-critical graphs with a V8 but no V10 as a minor.
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Figure 3.1: Removing v4v5 will result in a planar graph, however removing the edge v1v5

will result in a subdivision of K3,3. The squares and disks represents the parts of the
subdivision of K3,3.
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Figure 3.2: The pair of edges e, f is separated by the highlighted cycles, however removing
either will result in a planar graph.

3.2 Crossing pairs

In this section we expand on some properties of crossing pairs of graphs. We start by
pointing the crossing pairs of Kuratowski graphs.

Lemma 3.4. A pair of edges e, f is a crossing pair of a Kuratowski graph if and only if

they are not in the same branch or adjacent branches.

The graph in Figure 3.1a is a V8. The �gure shows a 1-drawing of the V8 where
v0v1, v4v5 is a crossing pair. Removing either v0v1 or v4v5 will result in a planar graph
(Figure 3.1b). However, as shown in Figure 3.1c, removing v1v5 will result in a subdivision
of K3,3. Any drawing of V8 will also contain a drawing of V8− v1v5 and thus, at least one
crossing not involving v1v5. This means that v1v5 cannot be in a crossing pair of V8.

In general terms, for a pair of edges e, f of a graph G to be a crossing pair, G− e and
G− f must be planar. The next lemma shows this.

Lemma 3.5. If e, f is a crossing pair of a graph G, then G− e and G− f are planar.

Proof. Let K be a Kuratowski subgraph of G and let D be a 1-drawing of G in which e
and f cross. Since D[K] must have a crossing, it contains e, f , since e, f is the only pair
of edges that cross in D. Thus D[G− e] and D[G− f ] have no crossing hence G− e and
G− f are planar.

This condition is not su�cient. Let G be the graph depicted in Figure 3.2a. Figures
3.2b and 3.2c show that G − e and G − f are planar, respectively. However, the pair of
edges e, f is separated by the highlighted cycles in the �gure. Thus, another condition
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for e, f to be a crossing pair is that e, f is not separated by cycles, as shown on the next
lemma.

Lemma 3.6. Let G be a graph and let e, f ∈ E(G). If e, f is separated by cycles then

e, f is not a crossing pair of G.

Proof. For a contradiction, assume that there exists a 1-drawing D of G in which e and
f cross. By hypothesis, there exist disjoint cycles Ce and Cf of G with e ∈ Ce and
f ∈ Cf . Since D is a 1-drawing, D[G − f ] has no crossings and in particular D[Ce] has
no self crossing. Note that the ends of the path Cf − f lie in di�erent faces of D[Ce].
Thus, this path must cross Ce at some point, contradicting our assumption that D is a
1-drawing.

One may conjecture that the conditions stated in Lemmas 3.5 and 3.6 would su�ce to
characterize crossing pairs. However, this is false. Let G be a graph, let e, f be a crossing
pair of a graph G and suppose e and f are edges in adjacent branches in a Kuratowski
subgraph K of G. Let D be a 1-drawing of G in which e and f cross. Removing either
e or f from K will make the graph planar, but since they are in adjacent branches of K
they cannot be crossed in any 1-drawing of K. However, D[K] is a 1-drawing of K, a
contradiction. This shows that e, f is also a crossing pair ofK. This condition is expressed
in the next lemma. A subgraph H of G is a 1-subgraph if cr(H) = 1.

Lemma 3.7. If e, f is a crossing pair of a graph G, then it is a crossing pair of every

1-subgraph of G

Our main result (Theorem 3.8) shows that the conditions expressed in Lemmas 3.5,
3.6 and 3.7 are su�cient. Note that we use a weaker version of Lemma 3.7.

Theorem 3.8. Let G be a non-planar graph that is not a Kuratowski graph and let

e, f ∈ E(G). Then, e, f is a crossing pair of G if and only if the following conditions

hold:

(i) G− e and G− f are planar,

(ii) e, f are not separated by cycles, and

(iii) there exists a proper Kuratowski subgraph H of G such that e, f is a crossing pair

of H.

Theorem 3.8 shows that crossing pairs in a graph with crossing number one have a
hereditary property. That is, we start with a list of all crossing pairs of some 1-subgraph
H of G (e.g. a Kuratowski subgraph, see Lemma 3.4) and eliminate pairs of edges that
are either separated by cycles or not included in some other 1-subgraph. This gives rise
to a simple algorithm to recognize these graphs which will be detailed in Section 3.6.

Let G be a non-planar graph and let K be a Kuratowski subgraph of G. Back to our
original question, in what conditions does cr(G) ≥ 2? As noted before, G must have no
crossing pairs. In light of Theorem 3.8, cr(G) > 2 if and only if for every crossing pair
e, f of K is either separated by cycles or either G− f or G− e is non-planar.

The proof of Theorem 3.8 is detailed in Section 3.4. But before that, we need a few
concepts and theorems detailed in the next section.
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3.3 Preliminaries

Let G be a graph and let H be a subgraph of G. An H-bridge B of G is either a single
edge of E(G) \E(H) with both ends in H, or a component F of G−V (H) together with
the edges of G with one end in F and another in H. We note that the set of vertices of
H in these edges are part of B and are called attachments of B and we denote such set
by Att(B). The nucleus Nuc(B) of B is de�ned as B \ Att(B). In the case that B is an
edge, we say that the B is trivial. We note that the de�nitions of attachment and nucleus
depend on the subgraph H and on the graph G, but we omit them in the notation. We
make clear from the context to which subgraph we refer.

Let C be a cycle of G. Two distinct C-bridges B1 and B2 overlap if they have exactly
three attachments in common or there exist vertices a, x, b, y occurring in this cyclic order
in C such that a, b ∈ Att(B1) and x, y ∈ Att(B2). If the latter happens, then they skew

overlap. A useful observation is that if we connect the nuclei of two skew overlapping
C-bridges B1, B2 through a path avoiding B1 ∪ B2 ∪ C, then we obtain a subdivision of
K3,3. Another useful observation is that if B1 and B2 are overlapping C-bridges, then in
any embedding D of G, B1 and B2 must be drawn in distinct faces of D[C].

For vertices x and y of a graph G, we say that a cycle C ⊆ G detaches x from y if
there exists two overlapping C-bridges with one containing x in its nucleus and another
containing y in its nucleus. We say that vertices x and y are cofacial of an embedding D,
if x and y are incident with a common face of D. The following theorem by Tutte (and
its slight modi�cation in Corollary 3.10) is an important tool in the proof of Theorem 3.8.

Theorem 3.9. (Tutte [Tut75]) Let G be a planar graph and let x, y ∈ V (G). Then G has

an embedding such that x and y are cofacial unless G contains a cycle C which detaches

x from y.

We need a slightly stronger version of Tutte's result on the existence of embeddings
in which a vertex and an edge are incident with a common face. Let G be a graph, let
x ∈ V (G) and let f be an edge not incident with x. Let C be a cycle of G which includes
neither x nor f . We say that C detaches x from f if there exists two overlapping C-bridges
of G with one containing x in its nucleus and another containing f . A vertex x and an
edge f are cofacial in an embedding D, if x and f are incident with a common face of D.

Corollary 3.10. Let G be a planar graph, let x ∈ V (G) and let f ∈ E(G) not incident

with x. Then G has an embedding such that x and f are incident with a common face

unless G contains a cycle C which detaches x from f .

Proof. Let G′ be the graph obtained by subdividing f and adding a new vertex y. If we
apply Theorem 3.9 to G′, x and y, then we obtain the desired result.

Recall that if H is a subgraph of G then a path P in G is H-avoiding or avoids H if
no internal vertex of P is in H. Also recall that the closure of a face F is F ∪ ∂(F ), that
is, the union of the face and its boundary. The following lemma shows how we can extend
planar embeddings by drawing bridges one by one. The result is intuitively obvious but
the proof is rather technical and relies on the Schoen�ies Theorem (Theorem 2.8).
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Lemma 3.11. Let B be a bridge of a cycle C in a planar graph G. Let D be a planar

embedding of G′ = G−Nuc(B) (or G′ = G−E(B) if B is trivial). If no bridge overlapping

B is drawn in the closure of a face F of D[C], then we can extend D to a drawing of

G′ ∪B.

Proof. We claim that there exists a face F ′ ⊆ F of D incident with all the vertices
of Att(B). If Att(B) is a singleton, then this is always true. So we may assume that
|Att(B)| ≥ 2.

If there exists no C-avoiding path joining two distinct vertices of C − Att(B) in the
closure of F , then it is easy to see that the vertices in Att(B) are incident with a common
face. Thus suppose not and let P be a C-avoiding path in the closure of F with ends x
and y in C − Att(B). We note that P is part of some C-bridge B′ in G′.

We claim that the vertices in Att(B) are in some component of C−{x, y}. Indeed, let
a and b be vertices of Att(B) and suppose they are in distinct components of C − {x, y}.
We note that, as B is connected, there exists an ab-path Q in B. However, this implies
that B′ overlaps B in G and is in the closure of F , contradicting our hypothesis.

Let R be the xy-path in C containing the vertices in Att(B). Let C ′ := R ∪ P . We
note that B is a C ′-bridge also, moreover any C ′-bridge in F may not overlap B in F .
Indeed, since any C ′-bridge is either also a C-bridge or is contained in B′. The argument
follows inductively on the number of C ′-avoiding paths. Thus we conclude that there
exists some face F ′ of D contained in F incident with all the vertices of Att(B).

We show that there exists a simple closed curve C in the closure of F ′ with C ∩D[C] =

D[Att(B)]. Let C ′ be the graph corresponding to ∂(F ′). If C ′ is a cycle then ∂(F ′) itself
is closed and simple. Otherwise we build C, by circumnavigating ∂(F ′) while avoiding
repeating vertices.

Since C ∪ B is planar, there exists an embedding DB of C ∪ B. In particular, DB[C]

is a simple closed curve and B is in the closure of some face of DB. As both DB[C] and C
are simple closed curves, there exists a mapping f from DB[C] and C. We can modify this
mapping such that for any v ∈ Att(B), f(D[v]) = v. By Schoen�ies Theorem (Theorem
2.8), there exists a homeomorphism f ′ of the plane to itself such that the restriction of f ′

to C is f . Thus, our desired drawing is D ∪ f ′(DB).

3.4 Proof of Theorem 3.8

Proof. Lemmas 3.5, 3.6 and 3.7 show that the conditions (i), (ii) and (iii) are necessary.
We focus on su�ciency.

Let G be a non-planar graph that is not a Kuratowski graph. Let e and f be edges of
G such that e, f is not separated by cycles in G. Suppose that e, f is a crossing pair of a
proper 1-subgraph H of G and that G− e and G− f are planar. Let u and v be the ends
of e.

We consider that a face of a drawing does not include its boundary. For a drawing D
of a graph G, a side is the closure of one of its faces. For example, if D is an embedding
of a cycle C, then D has two sides, each containing D[C]. For simplicity, we just say a
side of G instead of D, if the drawing is clear from the context.
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Claim 1. There exists a cycle C in G− e such that:

1. f ∈ E(C) and,

2. there exist overlapping C-bridges Bu and Bv in G− e such that u and v belong to
the nuclei of Bu and Bv, respectively.

Proof. Let DH be a 1-drawing of H in which e and f cross. Clearly H − e is planar since
DH [H − e] is an embedding of H − e. Since H is not planar, no embedding of H − e can
have both u and v incident with the same face. By Theorem 3.9, there exists a cycle C
of H − e, together with distinct overlapping C-bridges BH

u and BH
v containing u and v in

their nuclei, respectively.
Since the C-bridges BH

u and BH
v overlap, they must be drawn in DH [H−e] in distinct

sides of DH [C]. This shows that u and v are drawn in distinct faces of C with respect to
DH . Therefore e crosses at least one edge of C in DH , and since f is the only edge that
crosses e in DH , f must be in C.

Let Bu and Bv be the C-bridges in G−e containing u and v in their nuclei, respectively.
If Bu = Bv, then there is a uv-path P in Bu that is disjoint from C. Then P +e and C are
cycles that separate e and f in G, a contradiction. Thus, Bu 6= Bv. Moreover, BH

u ⊆ Bu

and BH
v ⊆ Bv, so Bu and Bv overlap on C.

Our goal now is to �nd an embedding of G− e in which u and v are on distinct faces
incident with f . Such an embedding can be easily extended to a 1-drawing of G where e
and f cross.

Let De be a planar embedding of G− e. Then u and v are drawn on di�erent sides of
C, which we call the u- and v-side of C, respectively.

Let Gu and Gv denote the subgraphs of G − e embedded on the u-side and v-side of
C in De, respectively.

First we prove that there exists an embedding Du of Gu such that u and f are cofacial
and C bounds a face of Du. By an analogous argument applied to v and f in Gv there
exists an embedding Dv of G such that v and f are cofacial and C bounds a face of Dv.
We can then combine both embeddings to obtain an embedding of G− e where u and v
are on distinct faces incident with f .

Claim 2. There exists an embedding Du of Gu such that C bounds a face of Du and u
and f are cofacial in Du.

Proof. We invite the reader to follow the proof alongside Figure 3.3. Since f is in C, in
De there is a face Fu incident with f which is on the u-side of C. We may assume u is
not incident with Fu, otherwise De[Gu] is our desired embedding. Since Bu overlaps Bv

on C, Bu has at least two attachments.
For any distinct vertices x, y of C joined by a C-avoiding path P in Gu, there is a

cycle CP consisting of P and the xy-subpath R of C that contains f . Let GP denote the
subgraph of G that is embedded in the side of CP that is contained in the u-side of C.
These �nitely many paths can be partially ordered under inclusion of the GP subgraphs.

Let P be a minimal path under this order. By minimality of GP , there is no CP -
bridge which has two attachments such that: both are on P , or one attachment is on P
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Figure 3.3: An abstract representation of the elements introduced in Claim 3.4

and another is on a component of R − f , or one in each component of R − f . It follows
that every vertex and edge of P is incident with Fu.

We claim there exists some C-avoiding path P such that P is minimal under inclusion
of GP and no path from u to an end of f avoids V (P ). In this case, we say that P
separates u from f . Since Bu overlaps Bv, Bu has at least two distinct attachments.
There exists some C-avoiding path W in Bu. Suppose that u ∈ V (W ). If GW is minimal
under inclusion, then u is incident with Fu. Thus, assume that u 6∈ V (W ). In this case,
there is some path P that does not contain u such that GP ⊆ GW and GP is minimal
under inclusion. It follows that u 6∈ V (GP ) and P separates u from f .

Thus, suppose no C-avoiding path in Gu contains u. Since W ⊆ Bu, some path W ′

exists that joins u and an internal vertex b ofW . No other path from u to another internal
vertex of W can be disjoint from W ′, as otherwise this path together with W ′ and W

contains a C-avoiding path with u as a vertex. Thus some vertex c, closest to b in W ′, is
a cut vertex. It follows that either b = c, or c is part of some C-avoiding path W . In any
case, either W or W ′ separates u from f . We then choose P to be a minimal path under
inclusion of GP that is comparable to either W or W ′, depending on the aforementioned
case.

Thus, choose P to be a minimal path under inclusion of GP that separates u from f .
Let x and y be the ends of P in C. Let R and Q to be the xy-subpaths of C that contains
and not contains f , respectively. Recall that P separates u from f . As f belongs to R, we
have that no attachment of Bu may belong to an internal vertex of R. Thus, we conclude
that all attachments of Bu are on Q. Since Bv overlaps Bu in G− e, some attachment z
of Bv lies in the interior of Q.

Since Att(Bu) ⊆ V (Q), there is a (P ∪Q)-bridge B that contains u in its nucleus. We
claim that there is no (P ∪Q)-avoiding path from u to an internal vertex of Q. Suppose
for a contradiction that there is such a path W and let z′ be the end of W in Q. Consider
the cycle of G obtained from traversing W from u to z′, followed by the z′z-subpath of
Q, and then followed by a C-avoiding zv-path in Bv, and returning back to u by using e.
This cycle and CP = P ∪R separate e and f , which contradicts our hypothesis. So there
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is no (P ∪Q)-avoiding path joining u to an internal vertex of Q. Let BP be the C-bridge
of Gu containing P . This means that either u is in some P -bridge B, and Bu = BP , or
Bu 6= BP . The latter means that Att(BP ) = Att(Bu) = {x, y}.

We now turn our attention to the subgraph C ∪ BP ∪ Bu of G and prove that there
is an embedding D∗ of this subgraph having u and f incident with a common face. Note
that we may assume that C bounds a face in D∗ as BP and Bu are the same C-bridge
or do not overlap. Suppose this is true. If BP = Bu, then we can simply replace D[Bu]

with D∗[Bu] in D[Gu] to get the desired embedding of Gu having C bounding a face and
having u and f cofacial. If BP 6= Bu, then we simply replace D[Bu] with D∗[Bu] in D[Gu]

(so it is inside the face of D bounded by CP ) to get the desired embedding of Gu having C
bounding a face and having u and f cofacial. By contradiction, suppose there is no such
embedding D∗. Corollary 3.10 implies there is a cycle C ′ in C ∪BP ∪Bu which detaches
u from f . Let B′u and B′f be the C ′-bridges which contain u and f , respectively, with
u ∈ Nuc(B′u).

Since f 6∈ E(C ′) and all internal vertices of R have degree 2 in C ∪ BP ∪ Bu, R is
internally disjoint from C ′. We may also assume that x and y are not both attachments of
B′f , as otherwise they would be the only attachments of B′f and thus B′u does not overlap
B′f . So assume that, say, x ∈ Nuc(B′f ). We divide the rest of the proof in two cases
depending on whether C ′ contains an internal vertex of Q or not.

Case 1: C ′ contains no internal vertices of Q.

Let Kv and Ku be the C ′-bridges in G − e containing v and u, respectively. Clearly,
Ku 6= Kv. Note that Att(B′u) ⊆ Att(Ku). Our immediate aim is to show that the
component Lv of Kv− f containing v overlaps Ku on C ′. Since the C ′-bridge B′f overlaps
B′u (in C ∪BP ∪Bu), it su�ces to show that every attachment of B′f is an attachment of
Lv. As x is in the nucleus of B′f , then for any attachment w of B′f we have a C ′-avoiding
xw-path Pw in B′f . Recall that there exists a C-avoiding vz-path Pz in Bv. Recall that
Gv and Gu have only C in common. As Bv ⊆ Gv and C ′ ⊆ Gu, Pv is also C ′-avoiding.
The union of Pw, Pv, and the zx-path in Q is a walk from v to w that avoids C ′. It follows
that w is also an attachment of Lv, as required.

We conclude that G− e− f has two overlapping C ′-bridges, one containing u and the
other containing v. However, since u and v are the ends of e, this implies that G − f is
not planar, a contradiction.

Case 2: C ′ contains an internal vertex of Q.

Recall that (a) every vertex and edge of P is incident with Fu and (b) there is no
(P ∪ Q)-avoiding path joining u to an internal vertex of Q. Also, recall that C ′ ⊆
C ∪BP ∪Bu ⊆ Gu. Thus both C ′ and P are in the u-side of C in De.

We may assume that De[C
′] is completely contained in the side of De[P ∪ Q ∪ R]

disjoint from f . Suppose otherwise. Since De[P ] separates the u-side of C in De into two
faces, only one of them is incident with f and thus R. Either C ′ has a (P ∪ R)-avoiding
subpath in the closure of Fu with distinct ends in V (P ∪ R) or C ′ itself is in the closure
of Fu. In the �rst case, pick one such maximal subpath. Since V (C ′) is disjoint from the
internal vertices of R, both ends of this path are in P . This path contradicts (a). In the
second case, C ′ is contained in a P -bridge B in C ∪ BP ∪ Bu with only one attachment.
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Figure 3.4: The arcs AP (dashed) and AQ (bold) composing C ′.

We may then redraw B in the face of De[P ∪Q ∪R] disjoint from f .
From (b) and the fact that B′u overlaps B′f it follows that C ′ must have at least two

distinct vertices in common with P . Among the vertices in V (C ′) ∩ V (P ), let x′ be the
one that is closest to x with respect to P . Similarly de�ne y′ for y. Let AQ and AP be
the internally disjoint x′y′-paths whose union is C ′.

Since C ′ = AP ∪ AQ, both paths are drawn in the side of P ∪ Q ∪ R containing u.
Since these paths are internally disjoint, one of them, say AP , is internally disjoint from
the x′y′-subpath of P ∪Q containing Q, and symmetrically AQ is internally disjoint from
the x′y′-subpath of P .

Another consequence of (b) is that B′u has all its attachments in AP . Our next step is
to show that all attachments of B′f are in AQ. If so, B′u and B′f do not overlap and this
concludes the proof. Figure 3.4 provides some visual aid for the rest of the proof.

Since x ∈ Nuc(B′f ), we know that x 6= x′. Also, as C ′ contains an internal vertex of
Q, so does AQ. Let qx be the vertex V (Q) ∩ V (AQ) closest to x in Q. Let Ax

Q be the
x′qx-subpath of AQ. Similarly de�ne qy (possibly qx = qy) and A

y
Q for y′. Let Q′ be the

qxqy-subpath of Q and P ′ be the x′y′-subpath of P .
Let N = (P ∪ Q ∪ R) \ (V (P ′ ∪ Q′)). Since the internal vertices of R are in N , we

have V (N) ⊆ Nuc(B′f ). Note that De[N ] and De[AP ] are on distinct sides of De[AQ∪P ′].
Thus, if there is an attachment of B′f in the interior of AP , then any path A in B′f from N

to this attachment would have an internal vertex in AQ or P ′. If that happens, A either
contradicts (a) or crosses AQ, depending on whether the N -end of A is in R or not. Thus,
we conclude that no such path as A exists and thus B′f has no attachments in AP , as
desired.

The entire argument can be repeated with the v-side of C in De, showing that v and
f can be made cofacial on the v-side. Putting these embeddings together into one shows
that G has a 1-drawing with e crossing f .
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3.5 Alternative characterization

While working on the proof of Theorem 3.8, we realized that the necessary condition in
Lemma 3.7 was in fact a su�cient condition when combined with Lemma 3.6. We say
that a pair of edges e, f of a graph G is a potential crossing pair if e, f is a crossing pair
of every 1-subgraph of G.

Theorem 3.12. [Sil+18] A pair of edges e, f of a non-planar graph G is a crossing pair

if and only if e, f is a crossing pair not separated by cycles.

Let e, f be a pair of edges of a non-planar graph G. Suppose that e, f is not separated
by cycles. Theorem 3.12 implies that if e, f is a crossing pair of some 1-subgraph H of
G such that G− e and G− f are planar, then e, f is a potential crossing pair. We were
unable to �nd a graph with crossing number at least two that has a potential crossing
pair. Thus, it may be possible that potential crossing pairs only exists in graphs with
crossing number one.

We need to introduce a few concepts and a theorem before we proceed with the proof
of Theorem 3.12. The proof uses the classic Two Disjoint Paths theorem, proved by many
authors [Sey80; Shi80; Tho80; RS90]. Let x, y, a and b be vertices of a graph G. The Two
Disjoint Paths theorem gives condition for G to have xy- and ab- paths that are disjoint.
In particular, we use a version due to Mohar [Moh94].

We need a few de�nitions before stating the theorem. A graph G is nonseparable if it
has no 0- or 1-separation and separable otherwise. Let G be a nonseparable graph and
suppose G has a 2-separation {G1, G2} with V (G1) ∩ V (G2) = {x, y}. A 2-separation is
elementary if: either G1−{x, y} or G2−{x, y} is nonempty and connected; and either G1

or G2 is nonseparable. Graphs without elementary 2-separations are either 3-connected
graphs, cycles, parallel edges, or rather small [Tut66].

Suppose {G1, G2} is an elementary 2-separation of a nonseparable graph G with
{x, y} = V (G1)∩V (G2). Let G′1 and G

′
2 be graphs obtained from G1 and G2 by adding an

extra edge between x and y, respectively. This new edge is called a virtual edge. If Gi has
no elementary 2-separation itself then G′i is a 3-connected component of G, for i = 1, 2.
Otherwise, the 3-connected components of G are the 3-connected components of G′1 and
G′2. If G is separable, then the 3-connected components of G are the 3-connected compo-
nents of its blocks. The 3-connected components of G are uniquely determined [Tut66].
They are also called cleavage units [Tut66].

A useful observation is that, by construction, each edge of G is in exactly one 3-
connected component. Thus, for any 3-connected component H of G, there exists a
corresponding subgraph H ′ of G in which each virtual edge of H is replaced by an H-
avoiding path in G. Thus H ′ is a subdivision of H.

Let C be a cycle of G. Let P1 and P2 be a pair of disjoint paths both internally disjoint
from C and whose ends are in V (C). They are called a pair of disjoint crossing paths if
the ends of P1 and P2 alternate in C.

A tripod in G with respect to a cycle C of G is a subdivision H of a K2,3 in G together
with three disjoint paths (possibly trivial) joining C with the part of size 3 in H. Both the
part of size 2 and the edges of the tripod are disjoint from C. We denote by Aux(G,C)

the graph obtained from G by adding a new vertex v and an edge vw for each w ∈ V (C).
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Figure 3.5: The tripod in the proof of Theorem 3.12.

For a disk ∆ in the plane, let ∂(∆) denote its boundary. We need the following result
of Mohar.

Theorem 3.13. [Moh94] Let G be a graph, let C be a cycle of G and let ∆ be a closed

disk. Let G̃ = Aux(G,C). There is a linear time algorithm that either �nds an embedding

of G in ∆ with C drawn on ∂(∆), or:

(1) a pair of disjoint crossing paths (w.r.t. C),

(2) a tripod (w.r.t. C) or

(3) a Kuratowski subgraph contained in a 3-connected component of G̃ distinct from the

3-connected component of G̃ containing C.

We are ready to begin the proof of Theorem 3.12.

Proof. (of Theorem 3.12) Lemmas 3.6 and 3.7 show the necessity. We focus on su�ciency.
Let G be a non-planar graph that is not a Kuratowski graph. Let e, f be a pair of

edges of G and suppose that e, f is a potential crossing pair not separated by cycles. Let
H be a Kuratowski subgraph of G. Let a, b be the ends of e and x, y the ends of f .

Our goal is to show that there exists an embedding of G − {e, f} in a closed disk ∆

on the plane with ∂(∆) containing a, x, b, y in this cyclic order. If so, we can simply draw
e and f crossing on the exterior of ∆ obtaining a 1-drawing of G.

Let ax, xb, by and ya be new edges and let C be the cycle induced by them. Let
G′ = (G−{e, f})∪C. If we obtain an embedding of G′ on a closed disk ∆ with C drawn
on ∂(∆), we can delete the edges of C to obtain our desired embedding of G−{e, f}. So
suppose there is no such embedding. By Theorem 3.13 one of (1)-(3) holds.
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First, suppose (3) holds. Let G̃ = Aux(G′, C). Let J be the 3-connected component
of G̃ containing C. Let K be a Kuratowski subgraph of G̃ not in J . Let {G1, G2} be
an elementary 2-separation in G̃ with (G1 ∩ G2) = {u,w}, such that J ⊆ G1 + uw and
K ⊆ G2 + uw, where uw is a virtual edge. There is a uw-path P in G1 such that we can
exchange the virtual edge uw of K for P to obtain a Kuratowski subgraph in G2∪P . We
will also call this subgraph K.

Our idea is to obtain a modi�cation of K which contradicts the fact that e and f is a
potential crossing pair of G. Note that H is nonseparable and that e, f are disjoint edges
in H. Therefore, there are vertex-disjoint paths in H from {a, b} to {x, y}; we may choose
a labelling so that these are ax- and by-paths Pax and Pby, respectively. At most one of
these paths has an edge in G2.

Suppose that Pax contains an edge of G2. Then Pby is disjoint from {u,w} and we
may replace P in K with ((Pax∩G1)∪Pby) +{e, f} to get a Kuratowski subgraph of G in
which e, f are edges of the same branch. This contradicts the fact that e, f is a potential
crossing pair. Therefore, we may assume that Pax and Pby are contained in G1.

Let W be the subgraph of G̃ induced by V (C)∪ v. Recall that E(G̃) \E(G) ⊆ E(W ).
Thus, if P does not contain any edge of W , then K is also a Kuratowski subgraph of G
which does not contain e nor f , a contradiction. If P contains v, then we modify P by
shortcutting the neighbors of v in P with some path of C joining them. Thus, since C is
a cycle, we assume that P contains at most three edges of C.

If P contains two consecutive edges of C, then we may replaced these with either e or
f , in this case K converts to a Kuratowski subgraph of G containing only one of e and
f , a contradiction. Thus, we may assume that P contains at most two non-consecutive
edges of C in P , they are either ax and by, or ay and bx.

In the �rst case, we may replace ax with Pax and by with Pby to get a uw-walk W in
G2 that uses no edge of C. Thus, W contains a uw-path P ′ and replacing P with P ′ in
K will result in a Kuratowski subgraph of G− {e, f}, a contradiction.

In the second case, we replace ay with Pax + f and bx with Pby + e to get a uw-walk
W in G2 that uses no edge of C. In this case, G contains a Kuratowski subgraph K ′ in
which any of e and f that are in the same branch of K ′, again a contradiction.

Now, suppose (1) from Theorem 3.13 holds. If G − {e, f} contains a pair of disjoint
crossing paths, then these paths joined with e and f show that e and f are separated by
cycles, a contradiction.

Finally, suppose (2) from Theorem 3.13 holds. We refer the reader to Figure 3.5 for
a visual aid in the following de�nitions. Let T be a minimal (in the number of vertices)
tripod w.r.t. C in G′. As the tripod is edge-disjoint from C, T ⊆ G − {e, f}. Let K be
the subdivision of K2,3 in T . We may assume that {a, x, b} are the vertices of C connected
to K in T . Let {u, v} and S = {sa, sx, sb} be vertices of K representing the parts of the
subdivided K2,3. For i ∈ S, let Pui be the ui-subpath in K \ (S \ {i}). Similarly, de�ne
Pvi for v. For j ∈ {a, x, b}, let Rj be the jsj-paths connecting C to K in T .

Again, recall that H is a Kuratowski subgraph of G with e and f in di�erent branches.
So H − {e, f} is connected. It follows that there is a T -avoiding path from y to T in
H−{e, f} and, therefore, a path in G−{e, f}. The reader may verify that if P is a V (T )-
avoiding path from y to V (T ) which ends in Ra−sa or Rb−sb, then (T∪P )+e+f contains
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a Kuratowski subgraph in which e and f is not a crossing pair; and, for i ∈ {a, b, c}, if y
ends in Pui−{sa, sb} or Pvi−{sa, sb}, then e and f are separated by cycles in (T∪P )+e+f .

So any T -avoiding path from y to V (T ) in G − {e, f} ends in {sa, sb}. Note that by
symmetry, the same holds for a in place of y. Let Py be a path in G − {e, f} from y to
{sa, sb}, say sa. By the minimality of T , Py is nontrivial. If there exists some z ∈ (Py−sa)
(respectively, Ra− sa) with a zsb-path Q that is internally disjoint from Py (respectively,
Ra) then (K ∪ Py ∪ Q) + f (respectively, (K ∪ Ra ∪ Q) + e) is a subdivision of K3,3 in
G− e (G− f), a contradiction.

So, we may assume that sa separates y (a) from V (T ) in G−f (G−e). If Ra is trivial
(that is, sa = a), then {a, x} separates y from b in H. This implies that either e and
f are in the same or adjacent branches of H, a contradiction. If Ra is not trivial, then
(G−{e, f})− sa, and consequently (H −{e, f})− sa, has at least three components: one
for each vertex in {y, a, x}. Assuming H − {e, f} is connected, since otherwise e and f
are in the same branch of H, the only way this can happen is if sa is a node in H and e
and f are in adjacent branches, a contradiction.

3.6 Recognizing graphs with crossing number one

In this section, we present an small improvement over a naive practical algorithm for
recognizing graphs with at most one crossing. Kawarabayashi and Reed showed that
there exists a linear �xed parameter tractable algorithm to check whether a graph has
crossing number at most k. The algorithm quite complex and not really practical for
implementation. We �rst describe a more practical algorithm and then improve it using
Theorem 3.8.

Let G be a graph and let k ≥ 0 be an integer. Let n = |V (G)| and m = |E(G)|. We
�rst describe a naive O((m+ 2k)2k(n+ k))1 algorithm to decide if cr(G) ≤ k.

We use induction on k. If k = 0 we can use an algorithm to decide if G is planar
(see [HT74] for the �rst linear algorithm on n and [BM04] for a simpler version). By
induction, for any graph H we know whether cr(H) < k, if so, then we are done. Thus
we only need to check if cr(G) = k. We denote as Ge,f the graph obtained from G by
subdividing e and f once and identifying their subdivision. We note that any drawing of
Ge,f with k − 1 crossings is also a drawing of G with k crossings.

Thus, for every pair of edges e and f of G, we verify if cr(Ge,f ) < k by induction. If
this is true for at least one pair of edges, this implies that there exists a drawing of Ge,f

with at most k − 1 crossings and thus cr(G) ≤ k. If not, we conclude that no drawing D
of G with k crossings exists, for otherwise there would be a pair of edges e and f crossing
in D and thus cr(Ge,f ) ≤ k − 1.

At each step we generate a quadratic number of subproblems each with size n+ 1 and
m+ 2. Since we do this at most k times, we get the O((m+ 2k)2k(n+ k)) complexity.

For k = 1, we have an O(m2n) time algorithm. We note that if cr(G) = 1, then G has
a crossing pair, say e, f . Since G− e is planar, this means that m ≤ 3n− 5 edges. Thus,

1We slightly abuse the big-O notation here for didactic purposes



41

the algorithm is actually runs in O(n3) time, as we may reject any graph with more than
3n− 5 edges.

We �rst check if G is planar with a planarity algorithm. If G is planar, then we are
done, otherwise G has a Kuratowski subgraph H. This subgraph can be obtained from
the planarity sub-routine at no extra cost [BM04]. As shown by Lemma 3.5, if e, f is a
crossing pair of G, then it is also a crossing pair of H. Thus it su�ces to check all pairs
of edges of H instead of G. The algorithm follows as before.

This modi�cation gives us the complexity O(m2
hn) where mh is the number of edges

of the largest Kuratowski subgraph of G. Since mh ≤ m, this improves upon the original
algorithm, however the time complexity stays the same. Thus, the time complexity of the
modi�ed algorithm is also O(n3).

We can also slightly improve the general algorithm for the case k ≥ 1 if we use the
modi�ed algorithm as a base case.
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Chapter 4

Crossing number of Kp,q in surfaces

In this chapter we address the general problem of determining the crossing number of Kp,q

in surfaces. In particular, we address the question about generating optimal drawings of
Kp,q in surfaces. The work in this chapter was developed in collaboration with R. Bruce
Richter.

We prove that for each integer p ≥ 1 and each surface Σ, we show that there exists a
�nite set D(p,Σ) = {D1, ..., Dk}, where: for each i ∈ {1, .., k}, there is an integer ri such
that Di is a drawing of Kp,ri in Σ; and for each positive integer q, either there is an i such
that Di is an optimal drawing of Kp,q, or there exists an optimal drawing D of Kp,q that
is an extension (see de�nition in the next section) of Di. As an example, if Zarankiewicz's
conjecture (see next section) were true, for any p, a set composed of an embedding of Kp,1

and Kp,2 would su�ce for the sphere. The proof of existence of this set is one of the main
contributions of this chapter.

Theorem 4.1. [RSL18] Let p be a positive integer and let Σ be a surface. Then, there

exists a �nite set D(p,Σ) of drawings of bipartite complete graphs in Σ such that, for

every positive integer q, either an optimal drawing of Kp,q is in D(p,Σ) or there is one

that is an extension of a drawing in D(p,Σ).

We are particularly interested in proving only its �niteness, as the exact cardinality
of the set makes it not really practical. This theorem is an extension to higher genus
(orientable and non-orientable) surfaces of a result of Christian, Richter and Salazar
[CRS13] for the plane/sphere.

We denote the q-side and p-side of Kp,q to be the parts of Kp,q of size q and p,
respectively. As an intermediate step for the proof of Theorem 4.1, we bound q as a
function of Σ and p, as expressed in the next theorem.

For a pair of vertices u and v of a graph G, let crD(u, v) denote the number of crossings
between the edges incident with u and v in a drawing D of G. Let Z(p) =

⌊
p
2

⌋ ⌊
p−1

2

⌋
.

Theorem 4.2. [RSL18] Let D be a good drawing of Kp,q in a surface Σ such that for any

two vertices v and w of the q-side crD(v, w) < Z(p). Then, q is bounded by a function of

Σ and p.

The �rst section of this chapter presents Zarankiewicz's Conjecture, a classical con-
jecture about the crossing number of Kp,n in the plane, and details some properties of
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Figure 4.1: Zarankiewicz drawing of K4,5.

Zarankiewicz's drawings. In Section 4.2 we state a couple results that we need for the
proof of Theorem 4.1. Section 4.3 shows how we can bound the q as a function of Σ and
p. We use this fact as an intermediate step for the proof of Theorem 4.1 in Section 4.4.

4.1 Zarankiewicz's drawings

On this section we give an overview of Zarankiewicz's drawings and some of its properties.
Due to historical reasons and the fact that the general crossing number problem is NP-
hard [Tho89], a lot of attention on the crossing number literature were given to special
classes of graphs, especially Kn and Kp,q [BW10].

Zarankiewicz [Zar55] proposed a general drawing of Kp,q (see Figure 4.1) in the plane.
Place p-side vertices along the x-axis in the plane distributing the vertices equally among
the negative and positive side of the axis. Do the same with the q-side vertices along the
y-axis and draw a segment between every pair of vertices in di�erent axis.

This drawing has the following number of crossings:

Z(p, q) = Z(p)Z(q) =
⌊p

2

⌋⌊p− 1

2

⌋⌊q
2

⌋⌊q − 1

2

⌋
. (4.1)

This provides the following upper bound: cr(Kp,q) ≤ Z(p, q). This gave birth to the
famous conjecture by Zarankiewicz [Zar55]:

Conjecture 1. (Zarankiewicz) For p, q ≥ 3, cr(Kp,q) = Z(p, q).

Zarankiewicz proved that the conjecture is true for p = 3 and arbitrary q. He also
showed that if the conjecture holds for p odd and arbitrary q then it holds for p + 1.
Kleitman [Kle70] extended the result to p = 5 and arbitrary q. Woodall [Woo93] proved
that the conjecture is also true for K7,7 and K7,9. Christian, Richter and Salazar [CRS13]
showed that for a �xed p, there exists a function C(p) such that if the Conjecture holds
for q ≤ C(p) then so does it q > C(p).

Let G be a graph and let u and v be two of its vertices that are distinct. Let D be
a drawing of G in the plane/sphere. The next lemma shows a lower bound for crD(u, v).
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(a) (b) (c) (d)

Figure 4.2: For a �xed p, we can obtain Zarankiewicz's drawings throughout duplication
from an embedding.
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Figure 4.3: A duplicate of v with Z(p) crossings inside the disk.

It was originally used by Kleitman as a tool for proving Zarankiewicz's conjecture for the
K5,n family [Kle70]; Woodall [Woo93] proved it in a more general context.

Lemma 4.3. [Woo93] Let u and v be the vertices of the part of size 2 in a Kp,2. Let D

be a drawing of Kp,2 in the plane. If the rotations of u and v are the same in D, then

cr(D) ≥ Z(p).

We refer the reader to Figure 4.2. Figure 4.2a is an embedding of K4,2. Let u and w
be the leftmost and rightmost vertices in the Figure. We note that in any embedding of
Kp,2, the rotations of the vertices in the part of size 2 are each other's inverse. Figure 4.2b
shows that we may obtain a Zarankiewicz's drawing of K4,3 by adding another vertex in
a particular way such that it has the same rotation as v. This adds exactly Z(4) = 2

crossings. In Figure 4.2c we do the same, but now we the vertex has the same rotation
as u. Lastly, in Figure 4.2d we add another vertex with the same rotation as w. The
added edges cross 4 times in total, twice with the edges of each vertex that has the same
rotation.

Generally speaking, for a �xed integer p, we may obtain Zarankiewicz's drawings for
Kp,q, with q ≥ 3, from an embedding of Kp,2 by adding vertices in a alternating fashion
such that each added vertex has the same rotation as one of the vertices in the part of
size 2. This particular way of adding vertices is called duplication and is de�ned below.

Let crD(u) be the number of crossings between pairs of edges which include some edge
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incident with u in a drawing D. The following lemma shows how we can obtain a drawing
of Kp,q+1 from a drawing D of Kp,q with exactly cr(D) + Z(p) + crD(u) crossings.

Lemma 4.4. Let u and v be vertices of a loopless graph G with the same neighborhood

of size p. Let D be a drawing of G− v in a surface Σ. Then there is a drawing D′ of G

such that cr(D′) = cr(D) + Z(p) + crD(u).

Proof. We refer the reader to Figure 4.3 for a visual aid. Let ∆ be a su�ciently small
closed disk centered in u such that ∂(∆) intercepts only edges incident with u, and only
once, and their other ends are in its exterior. We place v in a face F of ∆ \ D in the
interior of ∆. Starting from any point of ∂(∆)\D incident with this F , for i = 0, ..., p−1,
let ei be the ith edge we meet when we traverse ∂(∆) counterclockwise from this point.
Let wi be the end of ei distinct from u. Let qi be the intersection of ei with ∂(∆).

For i = 0, . . . , p−1, denote by qi−1qi the arc joining qi−1 and qi in ∂(∆) where qp = q0.
We split the edges of u in roughly two halves such that for each edge in the �rst half

we draw the edges joining v to each vertex of {wi} incident with the edges on this half on
the �left� side of the edges of {ei}, and on the �right� side for the other half. This process
is described formally below.

For every i = 0, ...,
⌊
p−1

2

⌋
let si be a point in the interior of qi−1qi. We may draw an

arc fi from v to wi by �rst drawing an arc from v to si crossing exactly i edges incident
with u and then following along ei to wi. This may be done so that fi crosses only edges
that ei cross and in the same order.

For every i =
⌊
p−1

2

⌋
+ 1, ..., p− 1, let si be a point in the interior of qiqi+1. We make

sure that sp−1 is before s0 in qp−1q0. We follow the same procedure as before and note
that fi will cross exactly (p− 1)− i edges in the interior of ∆.

In total, we have 0 + ...+
⌊
p−1

2

⌋
plus 0 + ...+

⌊
p−2

2

⌋
crossings in the interior of ∆ which

gives us exactly Z(p) crossings. For i = 0, ..., p − 1, as each fi has the same crossings as
ei in the exterior of ∆, we have crD(u) extra crossings overall. This results in a total of
crD(u) + Z(p) additional crossings over the crossings of D.

The additional vertex v in the proof above is called a duplicate of u and the resulting
drawing D′ is an extension of D. We also call this operation duplication of a vertex.

Let u and v be two vertices of the q-side of Kp,q. Let D be a drawing of Kp,q in a
surface Σ such that πu and πv are the rotations of u and v, respectively. Suppose that
crD(u) ≤ crD(v) and that crD(u, v) ≥ Z(p). If we redraw, v as duplicate of u, we obtain
a drawing D′ with less crossings. This leads to the following lemma,

Lemma 4.5. [CRS13] If D is a drawing of Kp,q in the plane, then there is a drawing

D′ of Kp,q so that cr(D′) ≤ cr(D) and, for any two vertices u and v of the q-side, whose

rotations in D′ are πD′(u) and πD′(v), respectively:

(1) if πD′(u) = πD′(v), then u and v are duplicates in D′; and

(2) if πD′(u) 6= πD′(v), then crD′(u, v) < Z(p).
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a

b b

a
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Figure 4.4: A drawing of K2,4 on a torus. Note that u and v have the same rotation,
however we have only one crossing.

We say that a good drawing D of Kp,q is clean if the conditions (1) and (2) of the
previous lemma holds. Lemma 4.5 shows that for every pair of positive integers p, q, there
exists a drawing of Kp,q that is clean. Thus, in the plane, we may concern ourselves only
with clean drawings. Suppose D is optimal and that D has no duplicates. Thus, by
Lemma 4.2, every pair of vertices u, v have distinct rotation and thus crD(u, v) < Z(p).
Since there are at most (p− 1)! possible rotations, q < (p− 1)!. This is the conclusion of
Theorem 4.2 where Σ is the plane/sphere.

This preliminary work on Lemma 4.5, due by Christian, Richter and Salazar, is the
groundwork for the following theorem.

Theorem 4.6. [CRS13] Let p be a positive integer. If, for every q ≤ ((2Z(p))p!(p!)!)4,

cr(Kp,q) = Z(p)Z(q), then, for every q, cr(Kp,q) = Z(p)Z(q).

For general surfaces Lemma 4.3 (and consequently Lemma 4.5) is not true. Figure 4.4
shows a drawing of K4,2 in a torus such that, the vertices of the part of size 2 have the
same rotation, but the drawing has crossing number 1 < Z(4) = 2.

There is no known equivalent version of Zarankiewicz conjecture for arbitrary surfaces,
although some upper bounds are known. Suppose that Kp,h is embeddable in a surface Σ

for some p, h > 0. Richter and �irá¬ [R�96] obtained the following upper bound:

crΣ(Kp,q) ≤
1

2

⌊ q
h

⌋{
2q − h

(
1 +

⌊ q
h

⌋)}⌊p
2

⌋⌊p− 1

2

⌋
. (4.2)

This bound is achieved by duplicating the vertices of the h-side of Kp,h embedding
on Σ in a cyclic fashion. For a positive integer q, they showed that the upper bound of
Inequality 4.2 is also a lower bound for the crossing number of K3,q graphs in any surface
Σ. Similarly, Ho [Ho05; Ho09] also showed that the bound in Inequality 4.2 is also a lower
bound for the crossing number of K4,q in Σ, only if Σ is a torus or projective plane.

Just like Zarankiewicz's drawings of Kp,q, for q > 2, may be generated from a single
embedding of Kp,2, our goal, with Theorem 4.1, is to show that for any surface Σ we
may generate optimal drawings from a �nite set of drawings. The proof is contained in
Section 4.4. Before that, we state a couple useful results in the next section and afterwards
we prove Theorem 4.2 as a intermediate step for the proof of Theorem 4.1.
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4.2 Preliminaries

We need the general graph theoretical version of Ramsey's Theorem [Ram30], stated
below.

A k-edge-coloring of a graph G is a function φ from the edges of G to {1, ..., k}. A
subgraph H of G is monochromatic if all the edges of H have the same color.

Theorem 4.7. (Ramsey's Theorem) Let k, s1, s2, ..., sk be positive integers. Then, there

exists an integer R(s1, .., sk) such that if n ≥ R(s1, .., sk), then for every k-edge-coloring

of Kn there exists some i in {1, ..., k} so that some subgraph Ksi of Kn is colored only

with color i.

Let H be a graph. A graph is H-free if it does not contain H as a subgraph. The
next theorem, due to Turán [Tur41], limits the number of edges of Kr-free graphs.

Theorem 4.8. (Turán's Theorem [Tur41]) The number of edges in a Kr+1-free graph with

n vertices is at most: (
1− 1

r

)
n2

2
.

4.3 Bounding the q-side

Proof. (of Theorem 4.2) We may assume that p ≥ 3.
We �rst note that, for vertices i and j of the p-side, if the edges iv and jw of Kp,q

cross in D, then there exists a 4-cycle that self-cross in D at least once. Indeed, as the
graph is Kp,q the edges iw and jv are also in Kp,q and together with iv and jw induce a
4-cycle.

For each pair of vertices u and v of the q-side, we de�ne a function fuv on the pair
i and j of the p-side such that fuv(i, j) = 1 if the 4-cycle of Kp,q induced by {i, j, u, v}
crosses itself in D, and fuv(i, j) = 0 otherwise. We note that the set of all possible such
functions has size k = 2(p

2); therefore it is �nite.
Let r be an integer such that K3,r is not embeddable in Σ (see Theorem 2.11). Let

Kq be a complete graph such that its vertex set is the q-side of Kp,q. We color each
edge uv of Kq with �color� fuv. By Ramsey's Theorem (Theorem 4.7), there exists a
function R := R(s1, . . . , sk) such that if q ≥ R, then every k-edge-coloring of Kq with
colors 1, 2, . . . , k contains a monochromatic copy of Kr. Let f be the color of this Kr

(so f = fuv for some u, v on the q-side). Note that R is a function on r and k and both
depend only on Σ and p, respectively.

Now let us de�ne a graph G whose vertex set is the p-side. We join i and j in G if
f(i, j) = 0. This means that ij ∈ E(G) if for any u, v ∈ V (Kr) the 4-cycle induced by
{u, v, i, j} in Kp,q does not self-cross in D. If there exists a triangle in G, then there exists
a drawing of K3,r as a subdrawing of D without crossings, which cannot happen by the
choice of r. Thus G is triangle-free. Turán's Theorem (Theorem 4.8) implies that G has
at most (p2/4) edges. Thus, there are at least

(
p
2

)
− (p2/4) pairs of vertices of the p-side

which contributes with at least one crossing in D. Therefore, for any pair of vertices u
and v of Kr, we have that crD(u, v) ≥ Z(p), a contradiction.
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4.4 Finite number of drawings

Proof. (of Theorem 4.1)

Theorem 4.2 implies that there is a number F (p,Σ) such that if q > F (p,Σ), then
there exist distinct vertices u, v such that crD(u, v) ≥ Z(p). Let D(p,Σ) consist of all the
good drawings in Σ of Kp,q with q ≤ F (p,Σ). Theorem 2.16 implies D(p,Σ) is �nite.

For any drawing D of Kp,q with q > F (p,Σ), we can successively delete u1, u2, . . . ,

uq−F (p,Σ) such that, for each i = 1, 2, . . . , q − F (p,Σ), there is a vertex vi in Kp,q −
{u1, . . . , ui−1} such that crD−{u1,...,ui−1}(ui, vi) ≥ Z(p).

The drawing D− {u1, . . . , ui−1} is in D(p,Σ). Now reinserting ui to be a duplicate of
vi (in the order uq−F (p,Σ), . . . , u2, u1}) produces a drawing D′ of Kp,q such that cr(D′) ≤
cr(D), as required.
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Chapter 5

Conclusion

The main results of this thesis are detailed in Theorems 3.8,3.12,4.1 and 4.2. In short, we
present two distinct characterizations of graphs with crossing number one and a way to
obtain optimal drawings of Kp,q in surfaces. We now describe a few ways to use or extend
these results.

By the time of writing of this thesis. The problem of characterizing 3-connected 2-
crossing-critical graphs with a V8 but no V10 as a minor remains open. Theorem 3.8 may
help in this regard. Recall that a nonplanar graph has crossing number two if and only if
it contains no crossing pair. Thus, we may generate 2-crossing-critical graphs from a V8

by attaching bridges to it such that every crossing pair of V8 is either separated by cycles
or not contained in a Kuratowski subgraph. This strategy has been used at least a couple
times [Arr14; Aus12].

While the famous Zarankiewicz's conjecture has been the topic of much discussion in
the crossing number literature, we still lack a good generalization of it for higher genus
surfaces. The bound of Equation 4.2 was the �rst step towards this. However it already
fails for K5,5 in the projective plane. A straightforward generalization of the bound in 4.2
is to use general drawings instead of embeddings. In this sense, Theorem 4.1 provides the
�rst step in this direction, as it shows that we may need to consider only �nitely many
drawings as candidates for extensions. However, the bound obtained in the proof is quite
large and really not practical.

It may be possible that, for small p, only a handful of drawings are necessary to obtain
optimal drawings for the Kp,q family. It begs the question: what makes a drawing a good
candidate for a set like D(p,Σ) but with minimum size? Ideally we want drawings that
minimize the growth of crossings as more and more duplicates are added, even if the
drawing itself has a large number of crossings. Answers to these questions may lead to
developments of Zarankiewicz's conjecture itself.
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