276 research outputs found

    Multiscale Parameter Tuning of a Semantic Relatedness Algorithm

    Get PDF
    The research presented in this paper builds on previous work that lead to the definition of a family of semantic relatedness algorithms that compute a proximity given as input a pair of concept labels. The algorithms depends on a semantic graph, provided as RDF data, and on a particular set of weights assigned to the properties of RDF statements (types of arcs in the RDF graph). The current research objective is to automatically tune the weights for a given graph in order to increase the proximity quality. The quality of a semantic relatedness method is usually measured against a benchmark data set. The results produced by the method are compared with those on the benchmark using the Spearman\u27s rank coefficient. This methodology works the other way round and uses this coefficient to tune the proximity weights. The tuning process is controlled by a genetic algorithm using the Spearman\u27s rank coefficient as the fitness function. The genetic algorithm has its own set of parameters which also need to be tuned. Bootstrapping is based on a statistical method for generating samples that is used in this methodology to enable a large number of repetitions of the genetic algorithm, exploring the results of alternative parameter settings. This approach raises several technical challenges due to its computational complexity. This paper provides details on the techniques used to speedup this process. The proposed approach was validated with the WordNet 2.0 and the WordSim-353 data set. Several ranges of parameters values were tested and the obtained results are better than the state of the art methods for computing semantic relatedness using the WordNet 2.0, with the advantage of not requiring any domain knowledge of the ontological graph

    Cross-domain multi-Task learning for sequential sentence classification in research papers

    Get PDF
    Sequential sentence classification deals with the categorisation of sentences based on their content and context. Applied to scientific texts, it enables the automatic structuring of research papers and the improvement of academic search engines. However, previous work has not investigated the potential of transfer learning for sentence classification across different scientific domains and the issue of different text structure of full papers and abstracts. In this paper, we derive seven related research questions and present several contributions to address them: First, we suggest a novel uniform deep learning architecture and multi-Task learning for cross-domain sequential sentence classification in scientific texts. Second, we tailor two common transfer learning methods, sequential transfer learning and multi-Task learning, to deal with the challenges of the given task. Semantic relatedness of tasks is a prerequisite for successful transfer learning of neural models. Consequently, our third contribution is an approach to semi-Automatically identify semantically related classes from different annotation schemes and we present an analysis of four annotation schemes. Comprehensive experimental results indicate that models, which are trained on datasets from different scientific domains, benefit from one another when using the proposed multi-Task learning architecture. We also report comparisons with several state-of-The-Art approaches. Our approach outperforms the state of the art on full paper datasets significantly while being on par for datasets consisting of abstracts

    Sequential sentence classification in research papers using cross-domain multi-task learning

    Get PDF
    The automatic semantic structuring of scientific text allows for more efficient reading of research articles and is an important indexing step for academic search engines. Sequential sentence classification is an essential structuring task and targets the categorisation of sentences based on their content and context. However, the potential of transfer learning for sentence classification across different scientific domains and text types, such as full papers and abstracts, has not yet been explored in prior work. In this paper, we present a systematic analysis of transfer learning for scientific sequential sentence classification. For this purpose, we derive seven research questions and present several contributions to address them: (1) We suggest a novel uniform deep learning architecture and multi-task learning for cross-domain sequential sentence classification in scientific text. (2) We tailor two transfer learning methods to deal with the given task, namely sequential transfer learning and multi-task learning. (3) We compare the results of the two best models using qualitative examples in a case study. (4) We provide an approach for the semi-automatic identification of semantically related classes across annotation schemes and analyse the results for four annotation schemes. The clusters and underlying semantic vectors are validated using k-means clustering. (5) Our comprehensive experimental results indicate that when using the proposed multi-task learning architecture, models trained on datasets from different scientific domains benefit from one another. Our approach significantly outperforms state of the art on full paper datasets while being on par for datasets consisting of abstracts

    Evolution of A Common Vector Space Approach to Multi-Modal Problems

    Get PDF
    A set of methods to address computer vision problems has been developed. Video un- derstanding is an activate area of research in recent years. If one can accurately identify salient objects in a video sequence, these components can be used in information retrieval and scene analysis. This research started with the development of a course-to-fine frame- work to extract salient objects in video sequences. Previous work on image and video frame background modeling involved methods that ranged from simple and efficient to accurate but computationally complex. It will be shown in this research that the novel approach to implement object extraction is efficient and effective that outperforms the existing state-of-the-art methods. However, the drawback to this method is the inability to deal with non-rigid motion. With the rapid development of artificial neural networks, deep learning approaches are explored as a solution to computer vision problems in general. Focusing on image and text, the image (or video frame) understanding can be achieved using CVS. With this concept, modality generation and other relevant applications such as automatic im- age description, text paraphrasing, can be explored. Specifically, video sequences can be modeled by Recurrent Neural Networks (RNN), the greater depth of the RNN leads to smaller error, but that makes the gradient in the network unstable during training.To overcome this problem, a Batch-Normalized Recurrent Highway Network (BNRHN) was developed and tested on the image captioning (image-to-text) task. In BNRHN, the highway layers are incorporated with batch normalization which diminish the gradient vanishing and exploding problem. In addition, a sentence to vector encoding framework that is suitable for advanced natural language processing is developed. This semantic text embedding makes use of the encoder-decoder model which is trained on sentence paraphrase pairs (text-to-text). With this scheme, the latent representation of the text is shown to encode sentences with common semantic information with similar vector rep- resentations. In addition to image-to-text and text-to-text, an image generation model is developed to generate image from text (text-to-image) or another image (image-to- image) based on the semantics of the content. The developed model, which refers to the Multi-Modal Vector Representation (MMVR), builds and encodes different modalities into a common vector space that achieve the goal of keeping semantics and conversion between text and image bidirectional. The concept of CVS is introduced in this research to deal with multi-modal conversion problems. In theory, this method works not only on text and image, but also can be generalized to other modalities, such as video and audio. The characteristics and performance are supported by both theoretical analysis and experimental results. Interestingly, the MMVR model is one of the many possible ways to build CVS. In the final stages of this research, a simple and straightforward framework to build CVS, which is considered as an alternative to the MMVR model, is presented

    Understanding Dynamic Social Grouping Behaviors of Pedestrians

    Get PDF

    FormNetV2: Multimodal Graph Contrastive Learning for Form Document Information Extraction

    Full text link
    The recent advent of self-supervised pre-training techniques has led to a surge in the use of multimodal learning in form document understanding. However, existing approaches that extend the mask language modeling to other modalities require careful multi-task tuning, complex reconstruction target designs, or additional pre-training data. In FormNetV2, we introduce a centralized multimodal graph contrastive learning strategy to unify self-supervised pre-training for all modalities in one loss. The graph contrastive objective maximizes the agreement of multimodal representations, providing a natural interplay for all modalities without special customization. In addition, we extract image features within the bounding box that joins a pair of tokens connected by a graph edge, capturing more targeted visual cues without loading a sophisticated and separately pre-trained image embedder. FormNetV2 establishes new state-of-the-art performance on FUNSD, CORD, SROIE and Payment benchmarks with a more compact model size.Comment: Accepted to ACL 202

    DASentimental : detecting depression, anxiety, and stress in texts via emotional recall, cognitive networks, and machine learning

    Get PDF
    Most current affect scales and sentiment analysis on written text focus on quantifying valence/sentiment, the primary dimension of emotion. Distinguishing broader, more complex negative emotions of similar valence is key to evaluating mental health. We propose a semi-supervised machine learning model, DASentimental, to extract depression, anxiety, and stress from written text. We trained DASentimental to identify how N = 200 sequences of recalled emotional words correlate with recallers’ depression, anxiety, and stress from the Depression Anxiety Stress Scale (DASS-21). Using cognitive network science, we modeled every recall list as a bag-of-words (BOW) vector and as a walk over a network representation of semantic memory—in this case, free associations. This weights BOW entries according to their centrality (degree) in semantic memory and informs recalls using semantic network distances, thus embedding recalls in a cognitive representation. This embedding translated into state-of-the-art, cross-validated predictions for depression (R = 0.7), anxiety (R = 0.44), and stress (R = 0.52), equivalent to previous results employing additional human data. Powered by a multilayer perceptron neural network, DASentimental opens the door to probing the semantic organizations of emotional distress. We found that semantic distances between recalls (i.e., walk coverage), was key for estimating depression levels but redundant for anxiety and stress levels. Semantic distances from “fear” boosted anxiety predictions but were redundant when the “sad−happy” dyad was considered. We applied DASentimental to a clinical dataset of 142 suicide notes and found that the predicted depression and anxiety levels (high/low) corresponded to differences in valence and arousal as expected from a circumplex model of affect. We discuss key directions for future research enabled by artificial intelligence detecting stress, anxiety, and depression in texts

    Cross-Domain information extraction from scientific articles for research knowledge graphs

    Get PDF
    Today’s scholarly communication is a document-centred process and as such, rather inefficient. Fundamental contents of research papers are not accessible by computers since they are only present in unstructured PDF files. Therefore, current research infrastructures are not able to assist scientists appropriately in their core research tasks. This thesis addresses this issue and proposes methods to automatically extract relevant information from scientific articles for Research Knowledge Graphs (RKGs) that represent scholarly knowledge structured and interlinked. First, this thesis conducts a requirements analysis for an Open Research Knowledge Graph (ORKG). We present literature-related use cases of researchers that should be supported by an ORKG-based system and their specific requirements for the underlying ontology and instance data. Based on this analysis, the identified use cases are categorised into two groups: The first group of use cases needs manual or semi-automatic approaches for knowledge graph (KG) construction since they require high correctness of the instance data. The second group requires high completeness and can tolerate noisy instance data. Thus, this group needs automatic approaches for KG population. This thesis focuses on the second group of use cases and provides contributions for machine learning tasks that aim to support them. To assess the relevance of a research paper, scientists usually skim through titles, abstracts, introductions, and conclusions. An organised presentation of the articles' essential information would make this process more time-efficient. The task of sequential sentence classification addresses this issue by classifying sentences in an article in categories like research problem, used methods, or obtained results. To address this problem, we propose a novel unified cross-domain multi-task deep learning approach that makes use of datasets from different scientific domains (e.g. biomedicine and computer graphics) and varying structures (e.g. datasets covering either only abstracts or full papers). Our approach outperforms the state of the art on full paper datasets significantly while being competitive for datasets consisting of abstracts. Moreover, our approach enables the categorisation of sentences in a domain-independent manner. Furthermore, we present the novel task of domain-independent information extraction to extract scientific concepts from research papers in a domain-independent manner. This task aims to support the use cases find related work and get recommended articles. For this purpose, we introduce a set of generic scientific concepts that are relevant over ten domains in Science, Technology, and Medicine (STM) and release an annotated dataset of 110 abstracts from these domains. Since the annotation of scientific text is costly, we suggest an active learning strategy based on a state-of-the-art deep learning approach. The proposed method enables us to nearly halve the amount of required training data. Then, we extend this domain-independent information extraction approach with the task of \textit{coreference resolution}. Coreference resolution aims to identify mentions that refer to the same concept or entity. Baseline results on our corpus with current state-of-the-art approaches for coreference resolution showed that current approaches perform poorly on scientific text. Therefore, we propose a sequential transfer learning approach that exploits annotated datasets from non-academic domains. Our experimental results demonstrate that our approach noticeably outperforms the state-of-the-art baselines. Additionally, we investigate the impact of coreference resolution on KG population. We demonstrate that coreference resolution has a small impact on the number of resulting concepts in the KG, but improved its quality significantly. Consequently, using our domain-independent information extraction approach, we populate an RKG from 55,485 abstracts of the ten investigated STM domains. We show that every domain mainly uses its own terminology and that the populated RKG contains useful concepts. Moreover, we propose a novel approach for the task of \textit{citation recommendation}. This task can help researchers improve the quality of their work by finding or recommending relevant related work. Our approach exploits RKGs that interlink research papers based on mentioned scientific concepts. Using our automatically populated RKG, we demonstrate that the combination of information from RKGs with existing state-of-the-art approaches is beneficial. Finally, we conclude the thesis and sketch possible directions of future work.Die Kommunikation von Forschungsergebnissen erfolgt heutzutage in Form von Dokumenten und ist aus verschiedenen GrĂŒnden ineffizient. Wesentliche Inhalte von Forschungsarbeiten sind fĂŒr Computer nicht zugĂ€nglich, da sie in unstrukturierten PDF-Dateien verborgen sind. Daher können derzeitige Forschungsinfrastrukturen Forschende bei ihren Kernaufgaben nicht angemessen unterstĂŒtzen. Diese Arbeit befasst sich mit dieser Problemstellung und untersucht Methoden zur automatischen Extraktion von relevanten Informationen aus Forschungspapieren fĂŒr Forschungswissensgraphen (Research Knowledge Graphs). Solche Graphen sollen wissenschaftliches Wissen maschinenlesbar strukturieren und verknĂŒpfen. ZunĂ€chst wird eine Anforderungsanalyse fĂŒr einen Open Research Knowledge Graph (ORKG) durchgefĂŒhrt. Wir stellen literaturbezogene AnwendungsfĂ€lle von Forschenden vor, die durch ein ORKG-basiertes System unterstĂŒtzt werden sollten, und deren spezifische Anforderungen an die zugrundeliegende Ontologie und die Instanzdaten. Darauf aufbauend werden die identifizierten AnwendungsfĂ€lle in zwei Gruppen eingeteilt: Die erste Gruppe von AnwendungsfĂ€llen benötigt manuelle oder halbautomatische AnsĂ€tze fĂŒr die Konstruktion eines ORKG, da sie eine hohe Korrektheit der Instanzdaten erfordern. Die zweite Gruppe benötigt eine hohe VollstĂ€ndigkeit der Instanzdaten und kann fehlerhafte Daten tolerieren. Daher erfordert diese Gruppe automatische AnsĂ€tze fĂŒr die Konstruktion des ORKG. Diese Arbeit fokussiert sich auf die zweite Gruppe von AnwendungsfĂ€llen und schlĂ€gt Methoden fĂŒr maschinelle Aufgabenstellungen vor, die diese AnwendungsfĂ€lle unterstĂŒtzen können. Um die Relevanz eines Forschungsartikels effizient beurteilen zu können, schauen sich Forschende in der Regel die Titel, Zusammenfassungen, Einleitungen und Schlussfolgerungen an. Durch eine strukturierte Darstellung von wesentlichen Informationen des Artikels könnte dieser Prozess zeitsparender gestaltet werden. Die Aufgabenstellung der sequenziellen Satzklassifikation befasst sich mit diesem Problem, indem SĂ€tze eines Artikels in Kategorien wie Forschungsproblem, verwendete Methoden oder erzielte Ergebnisse automatisch klassifiziert werden. In dieser Arbeit wird fĂŒr diese Aufgabenstellung ein neuer vereinheitlichter Multi-Task Deep-Learning-Ansatz vorgeschlagen, der DatensĂ€tze aus verschiedenen wissenschaftlichen Bereichen (z. B. Biomedizin und Computergrafik) mit unterschiedlichen Strukturen (z. B. DatensĂ€tze bestehend aus Zusammenfassungen oder vollstĂ€ndigen Artikeln) nutzt. Unser Ansatz ĂŒbertrifft State-of-the-Art-Verfahren der Literatur auf Benchmark-DatensĂ€tzen bestehend aus vollstĂ€ndigen Forschungsartikeln. Außerdem ermöglicht unser Ansatz die Klassifizierung von SĂ€tzen auf eine domĂ€nenunabhĂ€ngige Weise. DarĂŒber hinaus stellen wir die neue Aufgabenstellung domĂ€nenĂŒbergreifende Informationsextraktion vor. Hierbei werden, unabhĂ€ngig vom behandelten wissenschaftlichen Fachgebiet, inhaltliche Konzepte aus Forschungspapieren extrahiert. Damit sollen die AnwendungsfĂ€lle Finden von verwandten Arbeiten und Empfehlung von Artikeln unterstĂŒtzt werden. Zu diesem Zweck fĂŒhren wir eine Reihe von generischen wissenschaftlichen Konzepten ein, die in zehn Bereichen der Wissenschaft, Technologie und Medizin (STM) relevant sind, und veröffentlichen einen annotierten Datensatz von 110 Zusammenfassungen aus diesen Bereichen. Da die Annotation wissenschaftlicher Texte aufwĂ€ndig ist, kombinieren wir ein Active-Learning-Verfahren mit einem aktuellen Deep-Learning-Ansatz, um die notwendigen Trainingsdaten zu reduzieren. Die vorgeschlagene Methode ermöglicht es uns, die Menge der erforderlichen Trainingsdaten nahezu zu halbieren. Anschließend erweitern wir unseren domĂ€nenunabhĂ€ngigen Ansatz zur Informationsextraktion um die Aufgabe der Koreferenzauflösung. Die Auflösung von Koreferenzen zielt darauf ab, ErwĂ€hnungen zu identifizieren, die sich auf dasselbe Konzept oder dieselbe EntitĂ€t beziehen. Experimentelle Ergebnisse auf unserem Korpus mit aktuellen AnsĂ€tzen zur Koreferenzauflösung haben gezeigt, dass diese bei wissenschaftlichen Texten unzureichend abschneiden. Daher schlagen wir eine Transfer-Learning-Methode vor, die annotierte DatensĂ€tze aus nicht-akademischen Bereichen nutzt. Die experimentellen Ergebnisse zeigen, dass unser Ansatz deutlich besser abschneidet als die bisherigen AnsĂ€tze. DarĂŒber hinaus untersuchen wir den Einfluss der Koreferenzauflösung auf die Erstellung von Wissensgraphen. Wir zeigen, dass diese einen geringen Einfluss auf die Anzahl der resultierenden Konzepte in dem Wissensgraphen hat, aber die QualitĂ€t des Wissensgraphen deutlich verbessert. Mithilfe unseres domĂ€nenunabhĂ€ngigen Ansatzes zur Informationsextraktion haben wir aus 55.485 Zusammenfassungen der zehn untersuchten STM-DomĂ€nen einen Forschungswissensgraphen erstellt. Unsere Analyse zeigt, dass jede DomĂ€ne hauptsĂ€chlich ihre eigene Terminologie verwendet und dass der erstellte Wissensgraph nĂŒtzliche Konzepte enthĂ€lt. Schließlich schlagen wir einen Ansatz fĂŒr die Empfehlung von passenden Referenzen vor. Damit können Forschende einfacher relevante verwandte Arbeiten finden oder passende Empfehlungen erhalten. Unser Ansatz nutzt Forschungswissensgraphen, die Forschungsarbeiten mit in ihnen erwĂ€hnten wissenschaftlichen Konzepten verknĂŒpfen. Wir zeigen, dass aktuelle Verfahren zur Empfehlung von Referenzen von zusĂ€tzlichen Informationen aus einem automatisch erstellten Wissensgraphen profitieren. Zum Schluss wird ein Fazit gezogen und ein Ausblick fĂŒr mögliche zukĂŒnftige Arbeiten gegeben
    • 

    corecore