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Abstract
The research presented in this paper builds on previous work that lead to the definition of

a family of semantic relatedness algorithms that compute a proximity given as input a pair of
concept labels. The algorithms depends on a semantic graph, provided as RDF data, and on a
particular set of weights assigned to the properties of RDF statements (types of arcs in the RDF
graph). The current research objective is to automatically tune the weights for a given graph in
order to increase the proximity quality. The quality of a semantic relatedness method is usually
measured against a benchmark data set. The results produced by the method are compared
with those on the benchmark using the Spearman’s rank coefficient. This methodology works
the other way round and uses this coefficient to tune the proximity weights. The tuning process
is controlled by a genetic algorithm using the Spearman’s rank coefficient as the fitness function.
The genetic algorithm has its own set of parameters which also need to be tuned. Bootstrapping
is based on a statistical method for generating samples that is used in this methodology to
enable a large number of repetitions of the genetic algorithm, exploring the results of alternative
parameter settings. This approach raises several technical challenges due to its computational
complexity. This paper provides details on the techniques used to speedup this process. The
proposed approach was validated with the WordNet 2.0 and the WordSim-353 data set. Several
ranges of parameters values were tested and the obtained results are better than the state of the
art methods for computing semantic relatedness using the WordNet 2.0, with the advantage of
not requiring any domain knowledge of the ontological graph.
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1 Introduction

Consider a magazine, a pencil and a notepad. Of these three items which is the most related
pair? Is it magazine and pencil, pencil and notepad, or newspaper and notepad? People
living in more individualistic societies tend to find the magazine and the notepad more
related, since they are both made of sheets of paper; while people living in more collectivist
societies tend to find the pencil and the notepad more related, since they complement each
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other (a pencil writes on notepad) [7]. The differences are even more striking when people are
asked to assign a value to the relatedness [6]. These experiments reveal the lack of a standard
definition of relatedness and the difficulty to measure the relatedness of two concepts.

A standard approach to measure relatedness is to use an ontology [13]. An ontology
is a formal and explicit specification of the relationships between concepts. For instance,
a thesaurus is a kind of ontology specifying the relationships between words: synonymy
and antonymy, as well as hyponymy (words whose semantic field encloses other words, e.g.,
mammal has as hyponym horse) and hypernymy (words whose semantic field is enclosed in
other words, e.g, horse has a hypernym mammal).

This paper presents ongoing work aiming at the development of a new methodology to
determine the semantic relatedness between two concepts. This methodology is ontology
based, can be applied to an ontological graph, and does not require any knowledge of the
ontological domain. It uses a family of semantic relatedness algorithms based on the notion
of proximity [10]. An algorithm of this family is parametrized by a semantic graph and a
set of weights. The semantic graph is provided as RDF data, where the resources are the
graph nodes and the properties are the arcs. Each type of arc has a specific weight value.
Tuning these weights in order to improve the quality of the semantic relatedness is the current
objective of this research.

Other methods available in the literature [1, 11, 13] measure the quality of their algorithms
using as benchmark a standard data set [6]. The reference similarity of concept pairs is
the average similarity assigned by a group of persons. The relatedness computed with an
algorithm is compared against those of the benchmark using the Spearman’s rank order
correlation. The quality of an algorithm is as high as the value of this correlation.

A measure of quality is essential for using a genetic algorithm to tune weight values. In
this tuning approach, an assignment of values to weights is encoded as a set of genes of a
chromosome. New chromosomes are obtained by crossover and mutation of the chromosomes
from the previous generation and the best are selected using a fitness function plus randomness.
The fitness function receives as input a weight assignment and returns the Spearman’s rank
order correlation for a subset of benchmark data.

The genetic algorithm has in turn its own set of parameters that need to be tuned.
Bootstrapping is done through a statistical procedure that produces a large number of
samples that is used to explore the most promising settings of the genetic algorithm. The
best settings are finally used to run the genetic algorithm a large number of times with the
complete data set.

This methodology was validated with the ontology of WordNet 2.0 [5], using as benchmark
the WordSim-353 [6] data set. The obtained results were better than the best results available
on the literature for the same ontology and benchmark [13, 9].

Due to its computational complexity this tuning methodology raises several technical
challenges. Firstly, the semantic algorithms must collect a large number of paths connecting
each pair of labels in the graph. Secondly, in order to compute the Spearman’s rank order, the
semantic relatedness algorithm must be executed with several hundreds of pairs of concept
labels. Thirdly, the genetic algorithm must compute a correlation for each chromosome (a
set of weight assignments) in the genetic pool for hundreds of generations. And finally, the
evolution process of the genetic algorithm has to be repeated hundreds of times as part of
the bootstrapping method. This paper presents also approaches used to speedup the tuning
process.

The rest of the paper is organized as follows. The next section present the state of the art
on semantic relatedness. Section 3 describes the tuning methodology and Section 4 details
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its implementation. The experimental results and their analysis can be found in Section 5.
Finally, Section 6 summarizes this work and identifies opportunities for further research.

2 Related Work

The problem of computing semantic relatedness can be approached in several ways. Most
approaches fall in one of two types: path methods, based on the topology of the relationships
between concepts; and content methods, based on the frequency of word occurrence in
corpora. In many cases the paths relating the concepts traverse an ontology. The research
described in this paper follows the ontological approach.

Some of the ontological methods use only the underlying taxonomy, for instance, the
taxonomy created by the is-a relationships, or the hypernymy and hyponymy relationships
of a thesaurus. An example of this kind of approach is the work of Mazuel and Sobouret [11].
Their approach measures the relatedness based on the taxonomical part of the ontology of
the WordNet and discards paths that are not “semantically correct” working only with a
subset of “semantically correct” paths. To measure the semantic distance this methodology
selects the best one from the subset.

Other ontological methods explore the full range of relationships in an ontology. An
example of this approach is the work of Hirst and St-Onge [8] that used the WordNet as a
knowledge source to create a lexical chainer (SIC). A lexical chain is a chain where words
are included if they have a cohesive relationship with another word already in the chain. In
this work they defined three types of relations: extra-strong, strong and medium-strong. The
weight of a relation is higher as stronger is the relationship between the words.

Some path approaches use also statistical concepts. J. Garcia and E. Mena [2] developed
a method that uses the Web as knowledge source, based on the Normalized Google Distance.
This approach uses the frequencies of concepts provided by search engines to define a new
semantic relatedness measure among ontology terms.

The work of Michael Strube and Simone Paolo Ponzetto [13] analyses several path and
content approaches to choose the best one. The approaches they analysed were assigned
to three categories: path, content and text overlap. The approaches in this last category
compute an overlap score by using stemming to explore related words.

Several of the mentioned approaches use the WordNet. The WordNet [5] is a large lexical
knowledge base of English words. It groups nouns, verbs, adjectives and adverbs into synsets
(sets of cognitive synonyms) that express distinct concepts. Synsets are interlinked by lexical
and conceptual-semantic relationships. This knowledge base is well-known and widely used
but lacks some specialized vocabularies and named entities, such as Diego Maradona or
Freddie Mercury. On the other hand, it is a comparatively small knowledge base and thus it
is ideal for the initial tests of a tuning methodology.

3 Multiscale Weight Tuning

This section is to describe an approach for tuning weights in a family of semantic relatedness
algorithms. The proposed approach for tuning weights operates at different scales. Although
each scale has its own distinctive features, there are self-similar patterns common to all
scales.

Consider a fractal as a metaphor. At each scale a fractal exhibits features that are found
also on other fractal dimensions. That is, if we zoom in (or zoom out) on a fractal we observe
a identical pattern. Mathematical fractals are exact and infinite repetitions of the same

SLATE 2014



204 Multiscale Parameter Tuning of a Semantic Relatedness Algorithm

pattern. Nonetheless, fractals observed in nature, such as shells, leaves or coastlines, exhibit
self-similar patterns that are neither infinite nor an exact repetition of other scales.

In this tuning approach, the common pattern is the concept of function, with input and
output values, and a set of parameters that can be tuned. At the lowest scale this function is
the semantic relatedness algorithm. It takes as input a pair of strings and produces a value
in the interval [0,1]. This function takes as parameters a semantic graph and a set of weights
that must be tuned.

Zooming out to the next scale there is a genetic algorithm. A genetic algorithm can be
seen as a function taking another function as input a fitness function and producing a result.
It has also its own set of parameters that need to be tuned: the number of generations, the
mutation rate, etc.. In this case the fitness function takes as input a set of weights and
computes the correlation between the relatedness obtained by the algorithm and the standard
benchmark. Hence, each application of a genetic algorithm (seen as a function) aggregates
thousands of applications of functions from the previous scale – the semantic relatedness
algorithm.

Continuing to zoom out to the next and final scale there is a statistical method, the
bootstrapping method. This method measures the accuracy of the results obtained by the
genetic algorithm with different parameter sets. It can also be seen as a function taking as
input genetic algorithms, the candidates for producing a weight tuning, and producing an
estimate of which is the best. Again, each application of the bootstrapping method (seen as
a function) aggregates thousands of applications of the of functions from the previous scale –
the genetic algorithm – since each candidate configuration set is repeated hundreds of times.

The following subsections detail each of these “fractal scales”. Each scale describes
the function that is used as input for its upper scale, identifying its parameters. At least
metaphorically, these functions can be seen as a self-similar pattern that is present in the
three different layers in which the proposed approach operates.

3.1 Proximity Measure Layer

The core of the methodology for calculate proximity between concepts is an algorithm to
compute semantic relatedness using ontological information in RDF graphs. It uses the
notion of proximity, rather than distance, as the underlying concept for computing semantic
relatedness between two nodes.

Concepts in ontological graphs are represented by nodes. Take for instance the music
domain. Singers, bands, music genres, instruments or virtually any concept related to music
is represented as nodes in an ontology. These nodes are related by properties, such as has
genre connecting singers to genres, and thus form a graph. This graph can be retrieved in
RDF format using the SPARQL endpoint of a knowledge base, such as DBpedia or Freebase.

The core idea of the research presented in this paper is to use the RDF graph to compute
the relatedness between nodes. Actually, the goal is the relatedness between terms, but
concept nodes of this graph typically have a label – a string representation or stringification –
that can be seen as a term.

At first sight relatedness may seem to be the inverse of the distance between nodes.
Two nodes far apart are unrelated and every node is totally (infinitely) related to itself.
Interpreting relatedness as a function of distance has an obvious advantage: computing
distances between nodes in a graph is a well studied problem with several known algorithms.
After assigning a weight to each arc one can compute the distance as the minimum length of
all the paths connecting the two nodes.
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Figure 1 RDF graph for concepts in music domain.

On a closer inspection this interpretation of relatedness as the inverse of distance reveals
some problems. Consider the graph in Figure 1. Depending on the weight assigned to the
arcs formed by the properties has type and has genre, the distances between Lady Gaga,
Madonna and Queen are the same. If the has genre has less weight than has type, this
would mean that the band Queen is as related to Lady Gaga as Madonna, which obviously
should not be the case. On the other hand, if has type has less weight than has genre
then Queen is more related to AC/DC than to Lady Gaga or Madonna simply because they
are both bands, which also should not be the case.

In the semantic relatedness methodology proposed, we consider proximity rather than
distance as a measure of relatedness among nodes. By definition1, proximity is closeness;
the state of being near as in space, time, or relationship. Rather than focusing solely on
minimum path length, proximity balances also the number of existing paths between nodes.
As an example consider the proximity between two persons. More than resulting from a
single common interest, however strong, it results from a collection of common interests.

With this notion of proximity, Lady Gaga and Madonna are more related to each other
than with Queen since they have two different paths connecting each other, one through
Musical Artist and another Pop Rock. By the same token the band Queen is more related
to them than to the band AC/DC.

An algorithm to compute proximity must take into account the several paths connecting
two nodes and their weights. However, paths are made of several edges, and the weight of an
edge should contribute less to proximity as it is further away in the path. In fact, there must
be a limit in number of edges in a path, as RDF graphs are usually connected graphs.

The main issue with this definition of proximity2 is how to determine the weights of

1 https://en.wiktionary.org/wiki/proximity
2 See [10] for a detailed description of the algorithm.
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transitions. The first attempt was to define these weights using domain knowledge. For
instance, when comparing musical performers one may consider that being associated with a
band or with another artist is more important than their musical genre, and that genre is
more important than their stylistics influences and even more important than instruments
they play.

This naïve approach to weight setting has several problems. Firstly, this kind of “informed
opinion” frequently has no evidence to support it, and sometimes is plainly wrong. How sure
can one be that stylistics influences should weight more than the genre in musical proximity?
Even if it is true sometimes, how can one be sure it is true in most cases? Secondly, this
approach is difficult to apply to a large ontology encompassing a broad range of domains. Is
a specialist required for every domain? How should an ontology be structured in domains?
What domain should be considered for concepts that fall in multiple domains? To be of
practical use, the weights of a proximity based semantic relatedness algorithm must be
automatically tuned.

3.2 Genetic Algorithm Layer
Genetic algorithms are a family of computational models that mimic the process of natural
selection in the evolution of the species. These algorithms use the concepts of variation,
differential reproduction and heredity to guide the co-evolution of a set of problem solutions.
This type of algorithm is frequently used to improve solutions of optimization problems [14].

There are two necessary conditions for using a genetic algorithm. Firstly, the different
candidate solutions must be representable as individuals (variation). This encoding of an
individual solution is sometimes called a chromosome which are a collection of genes that
characterize the solution. Secondly, it must be possible to compare a set of individuals,
decide which are the fittest and allow them to pass their genetic information to the next
generation (differential reproduction). Also, the representation of solutions as individuals
must allow their recombination with other solutions (heredity) so that favorable traits are
preferred over unfavorable ones as the population of solutions evolves.

A simple approach in the case of weight tuning is to consider as individual a vector of
weight values. This representation contrasts with the binary representations typically used
in genetic algorithms [4]. However it is closer to the domain and it can be processed more
efficiently with large number of weights.

Genetic algorithms introduce variance also by mutation. The are a number of mutation
operators, such as swap, scramble, insertion, that can be used on binary representations [4].
However, the approach taken to represent individuals in this methodology makes these kind
of mutations less interesting. Since weights are independent from each other, swapping values
among them is as likely to improve the solution as selecting a new random values. Hence,
the genetic algorithm created for tuning weights has a single kind of mutation: randomly
selecting a new value for a given “gene”.

The fitness function plays a decisive role in selecting the new generation of individuals,
created by crossover and mutation of their parents. The usual method for estimating the
quality of a semantic relatedness function is to compare it with a benchmark data set. The
benchmark data set contains pairs of words and their relatedness.

The Spearman’s rank order coefficient is commonly used to compare the relatedness
values in the benchmark data set with those produced by a semantic relatedness algorithm.
Rather than the simple correlation between the two data series, the Spearman’s rank order
sorts those data series and correlates their rank.

The genetic algorithm of this weight tuning methodology uses as fitness function the
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Spearman’s rank order coefficient on benchmark data, using as input a vector of weight
values assigned to each arc type.

3.3 Bootstrap Layer
The genetic algorithm itself has a number of parameters that must be tuned. Generic
parameters of a genetic algorithm include the number of generations and the mutation rate.
In this particular case the range of values that may be assigned to weights must also be
considered.

Several approaches to tuning parameters of genetic algorithms have been proposed and
compared [12]. Although with different approaches, these methods highlight the advantage
of using automated parameter tuning over tuning based on expert “informed opinions”. In
many cases the best solution contradicts the expert best intuitions.

The proposed methodology relies on a single benchmark data set to compare alternative
weight attributions. To repeat a large number of experiments using the genetic algorithm to
co-evolve a set solutions one needs a larger test sample. Bootstrapping [3] is a statistical
method for assigning measures of accuracy to data samples, using simple techniques known
as resampling.

Resampling is applied to the original data set to build a collection of sample data sets.
Each sample data set has the same size as the original data set and is build from the same
elements. If the original data set has size n then n elements from that set are randomly
chosen to create the sample set. When an element is selected it is not removed from the
original data set. Hence, a particular element may occur repeatedly on the sample data set
while other may not occur at all.

The bootstrapping method is used for comparing different approaches. Each approach is
repeated a large number of times, typically 200, each time with a different sample set. Each
approach is summarized by a statistics, such as the mean or the third quartile. In the end,
these statistics are compared to select the most effective approach. Since the objective is to
select the approach that may lead to the highest Spearman’s coefficient, the third quartile is
specially relevant since it is a lower bound of the largest solutions.

In this tuning methodology, each approach corresponds to a particular setting of the
genetic algorithm. Candidate settings include values for parameters such as the number
of generations or the mutation rate. Another important parameter that is specific to this
methodology is the range of values that are used as possible values for weights. As these
values have to be enumerated, this methodology considers only integer values bellow a certain
threshold.

As the result of the bootstrapping method a particular setting of the genetic algorithm’s
parameters is selected. The final stage is to run the genetic algorithm with these settings,
using the full benchmark data set in the fitness function. The selected genetic algorithm is
repeated an even larger number of times, typically 1000, and the best result is selected as
weights for the relatedness algorithm.

4 Implementation

The methodology presented for parameter tuning has a high computational complexity. At
its core it has to find all paths connecting two concepts to compute a single proximity. To
test the quality of a vector of weights, the proximity has to be computed for each pair of
concepts in a benchmark data set. Bootstrapping repeats 200 times the genetic algorithm
for each setting, and this process is repeated for a large number of settings.
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The strategy used for improving the efficiency of the methodology has three main
components: graph pre-processing (described in the Subsection 4.1), factorization of the
proximity algorithm and concurrent evaluation of the bootstrapping method (described in
the Subsection 4.2). The remainder of this section details each of these components.

4.1 Graph Pre-processing
The computation of the semantic proximity between two concepts depends on a data graph
search that finds all the paths that connect both concepts. The data graph search is
implemented in two different ways, supporting queries of remote and local data. The main
differences are the methods that retrieve the nodes with a specific label and the methods
used to retrieve the transitions from a node used by the semantic relatedness algorithm.

Remote data is usually retrieved from SPARQL endpoints. A SPARQL endpoint is
addressed by a URI to which SPARQL queries can be sent and which returns RDF as a
response. Paths are built from data collected from two SPARQL queries. The following
query retrieves the list of all nodes that have a given string as label. This query is executed
twice, one for each label. For each node retrieved with the previous SPARQL query another
SPARQL query is executed, as shown bellow, until the set of paths connecting both concepts
are finished.

The SPARQL approach raises a number of issues. Firstly, the endpoint or network
may be under maintenance or with performance problems. Secondly, some endpoints have
configuration problems and do not support queries with some operators, such as UNION. And
thirdly, the SPARQL queries can have performance issues, mainly when using operators such
as DISTINCT, and having a large amount of queries per proximity search can cause a huge
impact at the execution time.

In order to avoid those issues, this methodology also implements searches in local data.
Knowledge bases often provide dumps of their data. Local data are preprocessed RDF graphs
that are stored in the local file system, retrieved from those dumps. Graph pre-processing
begins with parsing the RDF data. RDF data can be retrieved in several formats, such
as Turtle, RDF/XML or N-Triples. To simplify this process, all RDF data is converted to
N-Triples, since this is the simplest RDF serialization.

This process takes some time to execute but it is only necessary to execute it once. Also,
the most used data is cached in memory which has a significant impact on performance.

The proximity algorithm is based on a previous definition [10]. This algorithm takes
two strings as labels and builds a set with all the paths that connect both concepts. In
this current implementation, there is a stemming process with labels aiming to increase the
meaning scope of each word.

The computation of the proximity of a single pair of concepts using the WordNet 2.0
SPARQL endpoint3 takes about 20 minutes. With the pre-processed graph4 that is executed
once and takes 30 minutes, the same computation takes about 6 seconds.

4.2 Other Optimizations
Traversing the graph searching for paths connecting two labels is the most frequently executed
part of this semantic relatedness methodology. Nevertheless, this procedure is almost the
same for each pair of concepts, varying only on the weights that are used for each arc type.

3 http://wordnet.rkbexplorer.com/sparql/
4 The tests were executed in a 8 core machine at 3.5 GHz and 16Gb of RAM

http://wordnet.rkbexplorer.com/sparql/
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This computation is repeated many times since the exact same pair of concepts is used each
time that the genetic algorithm is run.

The solution found was to alter the proximity algorithm to compute the set of coefficients
that are multiplied to each weight. These coefficients are organized in a vector, using the
same order of the weight vector used in the genetic algorithm. Thus, computing the proximity
of a pair of concepts given a different weight vector is just the inner product of the weight
vector and the coefficient vector.

With this modification a single run of the genetic algorithm with 200 generations takes
less than a 1 minute and computing the coefficients for all the pairs takes about 30 minutes.

The final optimization was concurrent evaluation of the bootstrapping method. Each
of the settings can be processed independently, hence they could be assigned to a different
processor of a multi-core machine. Each run of the bootstrapping method takes about 200
minutes. It run 120 configurations that sequentially would take more than 16.5 days in about
2 days.

5 Validation

The validation of the proposed tuning approach consisted of tuning the weights of the
relatedness algorithm for WordNet 2.0. The tuning was performed in two rounds. In the first
round a large number of settings was explored to determine which were the most relevant. A
second round was then performed to explore new settings on those parameters that have
more impact on performance.

The tuning process uses as benchmark the WordSimilarity-353 data set [6]. It has 353
pairs of concepts with the mean of the relatedness values given by humans. Since WordNet
2.0 does not have all the words listed in this data set, the pairs with missing elements were
removed, creating a new data set with the non-missing pairs. In total 7 pairs were removed.

The bootstrapping process tests three parameters: weight values, mutation rate, and
number of generations. The weight values were divided in positive and mixed (positive and
negative) values; the positive values ranged in [0, n] with n ∈ N+ and n ≤ 10. The mixed
values ranged in [−n, n] for the same values of n. The mutation rate took values in the set
{0.3, 0.4, 0.5} values and the number of generations in {100, 200}. Permutating these values,
120 different sets of parameters were tested. Each set of parameters was executed 200 times
in the bootstrapping process. The results of those tests can be seen in the following graphs.
These graphs show the statistics of the correlation as function of a single variable: number
of weight values, mutation rate and number of generations.

Figure 2 shows how the correlation evolves with different amounts and ranges of distinct
weights. The correlation obtained when there are only positive values in the weight set is
much lower than when positive and negative weights are used. The positive values also
appear to reach a maximum value. However, the sets with positive and negative values do
not show that stabilization, becoming relevant more tests with a larger range of values.

The graph on the left of Figure 3 shows the impact of changing the mutation rate. Despite
the large overall variation, the mean and third quartile values are similar, showing that
variations in this parameter have a small impact on the tuning process. Still, the variation
of the maximums indicate the relevance of also testing lower mutation rates in the future.

The graph on the right of Figure 3 presents the variation of the number of generations.
As it occurs with the mutation rate, changes in the number of generations have no significant
impact in the correlation values.

After the first round, changes in range of weight values appear to have a higher impact
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Table 1 Weight values obtained after tuning process.

Edge type Weight Edge type Weight
null 1 wn:classifiedByUsage 18
wn:memberMeronymOf −2 wn:tagCount 1
wn:participleOf −6 wn:sameVerbGroupAs −8
wn:antonymOf −5 wn:derivationallyRelated 0
wn:classifiedByTopic 19 wn:attribute −15
wn:partMeronymOf 19 wn:synsetId 18
wn:word 12 wn:seeAlso 6
wn:gloss 19 rdfs:type −2
wn:similarTo −19 entails −1
wn:containsWordSense 4 wn:classifiedByRegion −9
wn:causes −17 wn:adverbPertainsTo 12
wn:frame 7 wn:hyponymOf 9
wn:adjectivePertainsTo 3 wn:substanceMeronymOf 18

Table 2 Previous work with WordNet and WordSim-353.

Method Spearman’s rank order
Jarmasz (2003) 0.33 - 0.35
Strube and Ponzetto (2006) 0.36
Proposed method 0.41

in the correlation values, specially if they allow negative values, increasing the correlation as
the range size increases. New tests were needed to investigate for how long the correlation
continues to increase, if it converges to an asymptote, or if the correlation degrades after a
certain threshold.

A new round of tests was made to investigate these hypothesis. This time only positive
and negative values were used, with fixed values of mutation rate and number of generations.
These new configurations uses ranges from [−10× n, 10× n] with n ∈ N+ and n ≤ 10. The
mutation rate value was fixed at 0.4 and the number of generations was fixed at 200. The
results are displayed in Figure 4. The values obtained by increasing the range of values show
a maximum value at the range [-20,20]. Ranges with higher values seem to never exceed the
Spearman’s rank order obtained at that point, indicating that performance degrades after
this threshold.

Using the best configuration obtained by the bootstrap process the genetic algorithm was
executed 1000 times aiming to obtain the best correlation value and the related configuration.

The best Spearman’s rank order value obtained was 0.409 and the corresponding weight
set is listed in the Table 1. The edges with the prefix wn correspond to the WordNet 2.0
URI5 and the prefix rdfs to the RDF Schema URI6. The edge type null is the custom edge
created in the stemming process.

Table 2 compares the results obtained by tuning the edge weights without domain
knowledge with other methodologies.

5 http://www.w3.org/2006/03/wn/wn20/schema/
6 http://www.w3.org/1999/02/22-rdf-syntax-ns#type
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6 Conclusion

The major contribution of the research presented in this paper is a method for tuning
a relatedness algorithm to a particular ontological graph, without requiring any domain
knowledge on the graph itself. The results obtained with this approach for WordNet 2.0 are
better than the state of the art for the same graph. A number of solutions to speedup graph
processing and the evaluation of fitness functions are also relevant contributions.

The proposed tuning approach performs a multiscale parameter tuning of an ontology
based semantic relatedness algorithm. The main feature of the base algorithm is the fact
that it considers all paths in an ontological graph that connect two labels and computes the
contribution of each path as a function of its length and of the type of its arcs (properties).
The main issue of this algorithm is the selection of parameters (weight values for each type
of arc) that maximize the quality of the relatedness algorithm.

The quality of semantic relatedness algorithms is usually measured against a benchmark
data set. This data set consists of the relatedness of a set of words, defined as the mean of the
relatedness attributed by a group a persons. The quality of the algorithm is computed as the
Spearman’s rank correlation coefficient between the relatedness produced by the algorithm
and the relatedness given by the data set. By defining this correlation as a function of weight
assignments it is possible to frame the problem of maximizing the quality of the relatedness
algorithm as finding the maximum of a function.

Evolutionary algorithms in general, and genetic algorithm in particular, are popular
choices for improving the quality of solutions. Using a genetic algorithm it is possible to use
variation and selection to improve the Spearman’s coefficient. The proposed genetic algorithm
uses as chromosome a set of weights attributions. The range of values used in attributions,
as well as the number of generations and the mutation rate are in turn parameters that must
also be tuned.

The statistical method of bootstrapping was used to measure the accuracy of different
parameter settings. This method generates diversity by producing many sample data sets
from the original data set. Bootstrapping is used to compare the results of the genetic
algorithm with different settings. After selecting the best candidate parameters for the
genetic algorithm, this is rerun with the complete benchmark data set.

The proposed approach for tuning the parameters of the semantic relatedness algorithm
was validated with Wordnet 2.0. The tuning procedure was actually executed twice. In
the first run several parameters of the genetic algorithm were tested to conclude that the
range of weight values is the decisive parameter, in particular if it is allowed to contain
negative values. The variation of some of the parameters, such as mutation rate and number
of generations, had no impact on the quality. Based on these findings a second run of the
tuning procedure explored a wider range of values. It showed that quality improves with the
width of range values but also that a small degradation occurs after a certain threshold. The
genetic algorithm was finally repeated a large number of times with the settings selected by
this approach and the maximum Spearman’s correlation obtained is significantly higher than
the best result reported on the literature for the same graph.

The Wordnet 2.0 graph used for the evaluation is comparatively small. It has just 26
different types of properties and 464.795 nodes. The next step is to investigate how this
approach works with Wordnet 3.0 and with even larger graphs, such as the DBPedia or
Freebase. Apart from the challenges of dealing with such large graphs, it will be interesting
to compare the semantic relatedness potential of different graphs and try to combine them
to improve the accuracy of the semantic relatedness algorithm.
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